- home
- Advanced Search
Filters
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Funded by:MESTD | Ministry of Education, Sc..., DFG | Biological Responses to N..., UKRI | ForeSight: Predicting and...MESTD| Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200169 (University of Belgrade, Faculty of Forestry) ,DFG| Biological Responses to Novel and Changing Environments ,UKRI| ForeSight: Predicting and monitoring drought-linked forest growth decline across EuropeLeifsson, Christopher; Buras, Allan; Klesse, Stefan; Baittinger, Claudia; Bat-Enerel, Banzragch; Battipaglia, Giovanna; Biondi, Franco; Stajić, Branko; Budeanu, Marius; Čada, Vojtěch; Cavin, Liam; Claessens, Hugues; Čufar, Katarina; de Luis, Martin; Dorado-Liñán, Isabel; Dulamsuren, Choimaa; Garamszegi, Balázs; Grabner, Michael; Hacket-Pain, Andrew; Hansen, Jon Kehlet; Hartl, Claudia; Huang, Weiwei; Janda, Pavel; Jump, Alistair; Kazimirović, Marko; Knutzen, Florian; Kreyling, Jürgen; Land, Alexander; Latte, Nicolas; Lebourgeois, François; Leuschner, Christoph; Longares, Luis; Martinez del Castillo, Edurne; Menzel, Annette; Motta, Renzo; Muffler-Weigel, Lena; Nola, Paola; Panayatov, Momchil; Petritan, Any Mary; Petritan, Ion Catalin; Popa, Ionel; Roibu, Cǎtǎlin-Constantin; Rubio-Cuadrado, Álvaro; Rydval, Miloš; Scharnweber, Tobias; Camarero, J. Julio; Svoboda, Miroslav; Toromani, Elvin; Trotsiuk, Volodymyr; van der Maaten-Theunissen, Marieke; van der Maaten, Ernst; Weigel, Robert; Wilmking, Martin; Zlatanov, Tzvetan; Rammig, Anja; Zang, Christian;pmid: 38782287
The future performance of the widely abundant European beech (Fagus sylvatica L.) across its ecological amplitude is uncertain. Although beech is considered drought-sensitive and thus negatively affected by drought events, scientific evidence indicating increasing drought vulnerability under climate change on a cross-regional scale remains elusive. While evaluating changes in climate sensitivity of secondary growth offers a promising avenue, studies from productive, closed-canopy forests suffer from knowledge gaps, especially regarding the natural variability of climate sensitivity and how it relates to radial growth as an indicator of tree vitality. Since beech is sensitive to drought, we in this study use a drought index as a climate variable to account for the combined effects of temperature and water availability and explore how the drought sensitivity of secondary growth varies temporally in dependence on growth variability, growth trends, and climatic water availability across the species' ecological amplitude. Our results show that drought sensitivity is highly variable and non-stationary, though consistently higher at dry sites compared to moist sites. Increasing drought sensitivity can largely be explained by increasing climatic aridity, especially as it is exacerbated by climate change and trees' rank progression within forest communities, as (co-)dominant trees are more sensitive to extra-canopy climatic conditions than trees embedded in understories. However, during the driest periods of the 20th century, growth showed clear signs of being decoupled from climate. This may indicate fundamental changes in system behavior and be early-warning signals of decreasing drought tolerance. The multiple significant interaction terms in our model elucidate the complexity of European beech's drought sensitivity, which needs to be taken into consideration when assessing this species' response to climate change.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2025 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/261433Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/135789Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/1893/36046Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaPublikationenserver der Georg-August-Universität GöttingenArticle . 2024Copenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemRepository of the University of LjubljanaArticle . 2024Data sources: Repository of the University of LjubljanaMinistry of Culture Research PortalArticle . 2024License: CC BYData sources: Ministry of Culture Research PortalUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2024Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 21visibility views 21 download downloads 28 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2025 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/261433Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/135789Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/1893/36046Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaPublikationenserver der Georg-August-Universität GöttingenArticle . 2024Copenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemRepository of the University of LjubljanaArticle . 2024Data sources: Repository of the University of LjubljanaMinistry of Culture Research PortalArticle . 2024License: CC BYData sources: Ministry of Culture Research PortalUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2024Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020 GermanyPublisher:Wiley Authors: Marieke van der Maaten-Theunissen; Jürgen Kreyling; Tobias Scharnweber; Karolina Janecka; +23 AuthorsMarieke van der Maaten-Theunissen; Jürgen Kreyling; Tobias Scharnweber; Karolina Janecka; Roberto Cruz-García; Alar Läänelaid; Juliane Stolz; Anna Cedro; Robert Weigel; Robert Weigel; Martin Wilmking; Ernst van der Maaten; Ryszard J. Kaczka; Roberts Matisons; Barbara Spyt; Marcin Klisz; Allan Buras; Igor Drobyshev; Igor Drobyshev; Āris Jansons; Kristina Sohar; Adomas Vitas; Marko Smiljanic; Lena Muffler; Lena Muffler; Jill E. Harvey; Jill E. Harvey;AbstractThe role of future forests in global biogeochemical cycles will depend on how different tree species respond to climate. Interpreting the response of forest growth to climate change requires an understanding of the temporal and spatial patterns of seasonal climatic influences on the growth of common tree species. We constructed a new network of 310 tree‐ring width chronologies from three common tree species (Quercus robur, Pinus sylvestris and Fagus sylvatica) collected for different ecological, management and climate purposes in the south Baltic Sea region at the border of three bioclimatic zones (temperate continental, oceanic, southern boreal). The major climate factors (temperature, precipitation, drought) affecting tree growth at monthly and seasonal scales were identified. Our analysis documents that 20th century Scots pine and deciduous species growth is generally controlled by different climate parameters, and that summer moisture availability is increasingly important for the growth of deciduous species examined. We report changes in the influence of winter climate variables over the last decades, where a decreasing influence of late winter temperature on deciduous tree growth and an increasing influence of winter temperature on Scots pine growth was found. By comparing climate–growth responses for the 1943–1972 and 1973–2002 periods and characterizing site‐level growth response stability, a descriptive application of spatial segregation analysis distinguished sites with stable responses to dominant climate parameters (northeast of the study region), and sites that collectively showed unstable responses to winter climate (southeast of the study region). The findings presented here highlight the temporally unstable and nonuniform responses of tree growth to climate variability, and that there are geographical coherent regions where these changes are similar. Considering continued climate change in the future, our results provide important regional perspectives on recent broad‐scale climate–growth relationships for trees across the temperate to boreal forest transition around the south Baltic Sea.
SLU publication data... arrow_drop_down The Repository of the University of Silesia (RE-BUŚ)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/20.500.12128/15982Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repozytorium Uniwersytetu Śląskiego RE-BUŚArticle . 2020License: CC BYData sources: Repozytorium Uniwersytetu Śląskiego RE-BUŚadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 175 citations 175 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert SLU publication data... arrow_drop_down The Repository of the University of Silesia (RE-BUŚ)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/20.500.12128/15982Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repozytorium Uniwersytetu Śląskiego RE-BUŚArticle . 2020License: CC BYData sources: Repozytorium Uniwersytetu Śląskiego RE-BUŚadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:Springer Science and Business Media LLC Authors: Karl Uwe Heußner; Ernst van der Maaten; Ernst van der Maaten; Tobias Scharnweber; +9 AuthorsKarl Uwe Heußner; Ernst van der Maaten; Ernst van der Maaten; Tobias Scharnweber; Thomas Struwe; Marko Smiljanic; Marieke van der Maaten-Theunissen; Marieke van der Maaten-Theunissen; Ingo Heinrich; Ingo Heinrich; Allan Buras; Allan Buras; Martin Wilmking;AbstractIn many parts of the world, especially in the temperate regions of Europe and North-America, accelerated tree growth rates have been observed over the last decades. This widespread phenomenon is presumably caused by a combination of factors like atmospheric fertilization or changes in forest structure and/or management. If not properly acknowledged in the calibration of tree-ring based climate reconstructions, considerable bias concerning amplitudes and trends of reconstructed climatic parameters might emerge or low frequency information is lost. Here we present a simple but effective, data-driven approach to remove the recent non-climatic growth increase in tree-ring data. Accounting for the no-analogue calibration problem, a new hydroclimatic reconstruction for northern-central Europe revealed considerably drier conditions during the medieval climate anomaly (MCA) compared with standard reconstruction methods and other existing reconstructions. This demonstrates the necessity to account for fertilization effects in modern tree-ring data from affected regions before calibrating reconstruction models, to avoid biased results.
Research@WUR arrow_drop_down Research@WURArticle . 2019License: CC BYFull-Text: https://edepot.wur.nl/472225Data sources: Research@WURhttps://doi.org/10.1038/s41598...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefGFZ German Research Centre for GeosciencesArticle . 2019License: CC BYData sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2019Data sources: GFZ German Research Centre for GeosciencesGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Research@WUR arrow_drop_down Research@WURArticle . 2019License: CC BYFull-Text: https://edepot.wur.nl/472225Data sources: Research@WURhttps://doi.org/10.1038/s41598...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefGFZ German Research Centre for GeosciencesArticle . 2019License: CC BYData sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2019Data sources: GFZ German Research Centre for GeosciencesGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022Embargo end date: 31 Oct 2022Publisher:Springer Science and Business Media LLC Funded by:MESTD | Ministry of Education, Sc..., MESTD | Ministry of Education, Sc..., EC | MONOSTARMESTD| Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200169 (University of Belgrade, Faculty of Forestry) ,MESTD| Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200016 (Institute of Recent History of Serbia , Belgrade) ,EC| MONOSTARAuthors: Martinez Del Castillo, Edurne; Zang, Christian S; Buras, Allan; Hacket-Pain, Andrew; +44 AuthorsMartinez Del Castillo, Edurne; Zang, Christian S; Buras, Allan; Hacket-Pain, Andrew; Esper, Jan; Serrano-Notivoli, Roberto; Hartl, Claudia; Weigel, Robert; Klesse, Stefan; Resco de Dios, Victor; Scharnweber, Tobias; Dorado-Liñán, Isabel; van der Maaten-Theunissen, Marieke; van der Maaten, Ernst; Jump, Alistair; Mikac, Sjepan; Banzragch, Bat-Enerel; Beck, Wolfgang; Cavin, Liam; Claessens, Hugues; Čada, Vojtěch; Čufar, Katarina; Dulamsuren, Choimaa; Gričar, Jozica; Gil-Pelegrín, Eustaquio; Janda, Pavel; Kazimirovic, Marko; Kreyling, Juergen; Latte, Nicolas; Leuschner, Christoph; Longares, Luis Alberto; Menzel, Annette; Merela, Maks; Motta, Renzo; Muffler, Lena; Nola, Paola; Petritan, Any Mary; Petritan, Ion Catalin; Prislan, Peter; Rubio-Cuadrado, Álvaro; Rydval, Miloš; Stajić, Branko; Svoboda, Miroslav; Toromani, Elvin; Trotsiuk, Volodymyr; Wilmking, Martin; Zlatanov, Tzvetan; de Luis, Martin;pmid: 35273334
pmc: PMC8913685
handle: 10459.1/83157 , 2268/288893 , 2318/1851142 , 20.500.12030/8138 , 1893/34095 , 11571/1452012
pmid: 35273334
pmc: PMC8913685
handle: 10459.1/83157 , 2268/288893 , 2318/1851142 , 20.500.12030/8138 , 1893/34095 , 11571/1452012
AbstractThe growth of past, present, and future forests was, is and will be affected by climate variability. This multifaceted relationship has been assessed in several regional studies, but spatially resolved, large-scale analyses are largely missing so far. Here we estimate recent changes in growth of 5800 beech trees (Fagus sylvatica L.) from 324 sites, representing the full geographic and climatic range of species. Future growth trends were predicted considering state-of-the-art climate scenarios. The validated models indicate growth declines across large region of the distribution in recent decades, and project severe future growth declines ranging from −20% to more than −50% by 2090, depending on the region and climate change scenario (i.e. CMIP6 SSP1-2.6 and SSP5-8.5). Forecasted forest productivity losses are most striking towards the southern distribution limit of Fagus sylvatica, in regions where persisting atmospheric high-pressure systems are expected to increase drought severity. The projected 21st century growth changes across Europe indicate serious ecological and economic consequences that require immediate forest adaptation.
CORE (RIOXX-UK Aggre... arrow_drop_down Digital Repository of University of Zaragoza (ZAGUAN)Article . 2022License: CC BYFull-Text: http://zaguan.unizar.es/record/112516Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/234915Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1893/34095Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2022License: CC BYData sources: Digital Repository of University of ZaragozaGöttingen Research Online PublicationsArticle . 2022License: CC BYData sources: Göttingen Research Online PublicationsGutenberg Open Science (Open-Science-Repository of the Johannes Gutenberg-University Mainz)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2022Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAIRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 209 citations 209 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert CORE (RIOXX-UK Aggre... arrow_drop_down Digital Repository of University of Zaragoza (ZAGUAN)Article . 2022License: CC BYFull-Text: http://zaguan.unizar.es/record/112516Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/234915Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1893/34095Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2022License: CC BYData sources: Digital Repository of University of ZaragozaGöttingen Research Online PublicationsArticle . 2022License: CC BYData sources: Göttingen Research Online PublicationsGutenberg Open Science (Open-Science-Repository of the Johannes Gutenberg-University Mainz)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2022Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAIRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Springer Science and Business Media LLC Publicly fundedFunded by:SNSF | ICOS-CH Phase 2, SNSF | Inter- and intra-specific..., SNSF | ICOS-CH: Integrated Carbo... +7 projectsSNSF| ICOS-CH Phase 2 ,SNSF| Inter- and intra-specific water-use strategies of European trees: towards a better mechanistic understanding of tree performance during drought and warming ,SNSF| ICOS-CH: Integrated Carbon Observation System in Switzerland ,ANR| ARBRE ,EC| VERIFY ,FWF| Analysis of Norway Spruce Rust-Resistance ,FWF| Carbon allocation and growth of Scots pine ,SNSF| Coupling stem water flow and structural carbon allocation in a warming climate: the Lötschental study case (LOTFOR) ,FWF| Conifer radial stem growth in response to drought ,ANR| FOREPROAuthors: Salomón, Roberto L.; Peters, Richard L.; Zweifel, Roman; Sass-Klaassen, Ute G.W.; +80 AuthorsSalomón, Roberto L.; Peters, Richard L.; Zweifel, Roman; Sass-Klaassen, Ute G.W.; Stegehuis, Annemiek I.; Smiljanic, Marko; Poyatos, Rafael; Babst, Flurin; Cienciala, Emil; Fonti, Patrick; Lerink, Bass J.W.; Lindner, Marcus; Martínez-Vilalta, Jordi; Mencuccini, Maurizio; Nabuurs, Gert-Jan; van der Maaten, Ernst; von Arx, Georg; Bär, Andreas; Akhmetzyanov, Linar; Balanzategui, Daniel; Bellan, Michal; Bendix, Jörg; Berveiller, Daniel; Blaženec, Miroslav; Čada, Vojtěch; Carraro, Vinicio; Cecchini, Sébastien; Chan, Tommy; Conedera, Marco; Delpierre, Nicolas; Delzon, Sylvain; Ditmarová, Lubica; Doležal, Jiří; Dufrêne, Eric; Edvardsson, Johannes; Ehekircher, Stefan; Forner, Alicia; Frouz, Jan; Ganthaler, Andrea; Gryc, Vladimír; Güney, Aylin; Heinrich, Ingo; Hentschel, Rainer; Janda, Pavel; Ježík, Marek; Kahle, Hans-Peter; Kahle, Hans-Peter; Knüsel, Simon; Krejza, Jan; Kuberski, Łukasz; Kučera, Jiří; Lebourgeois, François; Mikoláš, Martin; Matula, Radim; Mayr, Stefan; Oberhuber, Walter; Obojes, Nikolaus; Obojes, Nikolaus; Osborne, Bruce; Paljakka, Teemu; Plichta, Roman; Rabbel, Inke; Rathgeber, Cyrille B.K.; Salmon, Yann; Saunder, Matthew; Scharnweber, Tobias; Sitková, Zuzana; Stangler, Dominik Florian; Stereńczak, Krzysztof; Stereńczak, Marko; Střelcová, Katarína; Světlík, Jan; Svodoba, Miroslav; Tobin, Brian; Trotsiuk, Volodymyr; Urban, Josef; Valladares Ros, Fernando; Vavrčík, Hanuš; Vejpustková, Monika; Walthert, Lorenz; Wilmking, Martin; Zin, Ewa; Zou, Junliang; Steppe, Kathy;pmid: 35013178
pmc: PMC8748979
AbstractHeatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedFull-Text: https://doi.org/10.1038/s41467-021-27579-9Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2022 . Peer-reviewedFull-Text: https://doi.org/10.1038/s41467-021-27579-9Data sources: DIGITAL.CSICUniversity of Innsbruck Digital LibraryArticle . 2022License: CC BYData sources: University of Innsbruck Digital LibraryPadua research Archive (Archivio istituzionale della ricerca - Università di Padova)Article . 2022License: CC BYResearch@WURArticle . 2022License: CC BYFull-Text: https://edepot.wur.nl/563087Data sources: Research@WURUniversity of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/238266Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUniversität Innsbruck ForschungsleistungsdokumentationArticle . 2022Data sources: Universität Innsbruck ForschungsleistungsdokumentationDipòsit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Dipòsit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 128 citations 128 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 50visibility views 50 download downloads 87 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedFull-Text: https://doi.org/10.1038/s41467-021-27579-9Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2022 . Peer-reviewedFull-Text: https://doi.org/10.1038/s41467-021-27579-9Data sources: DIGITAL.CSICUniversity of Innsbruck Digital LibraryArticle . 2022License: CC BYData sources: University of Innsbruck Digital LibraryPadua research Archive (Archivio istituzionale della ricerca - Università di Padova)Article . 2022License: CC BYResearch@WURArticle . 2022License: CC BYFull-Text: https://edepot.wur.nl/563087Data sources: Research@WURUniversity of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/238266Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUniversität Innsbruck ForschungsleistungsdokumentationArticle . 2022Data sources: Universität Innsbruck ForschungsleistungsdokumentationDipòsit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Dipòsit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2018Publisher:Oxford University Press (OUP) Marko Smiljanic; Tobias Scharnweber; Roberto Cruz-García; Martin Wilmking; Ernst van der Maaten; Ernst van der Maaten; Jonas Pape; Marieke van der Maaten-Theunissen; Marieke van der Maaten-Theunissen;pmid: 29718395
Dendrometers offer a useful tool for long-term, high-resolution monitoring of tree responses to environmental fluctuations and climate change. Here, we analyze a 4-year dendrometer dataset (2014-17) on European beech (Fagus sylvatica L.), common hornbeam (Carpinus betulus L.) and pedunculate oak (Quercus robur L.), co-occuring in a mixed broadleaved forest in northeastern Germany. In our analyses, we focus both on seasonal growth dynamics as well as on the environmental forcing of daily stem-size variations. Over the study period with contrasting weather conditions, we observed species- and year-specific differences in growth phenology (i.e., growth onset, cessation and duration). Oak was characterized by early growth onset and long growth duration in all years as compared with beech and hornbeam. The analysis on the environmental forcing of daily stem dynamics revealed, however, highly similar responses for the studied species, with current-day vapor pressure deficit and sunshine duration negatively, and relative humidity and precipitation positively affecting stem size. When considering lagged effects, environmental conditions often oppositely affected stem-size changes. No consistent seasonality in environmental responses was detected, though specific weather conditions were found to affect temporal patterns in individual years. We suggest that the high similarity in environmental forcing observed between tree species can be explained by daily stem-size changes mainly reflecting tree water status rather than tree growth. Our results stress that correcting dendrometer series for reversible stem hydrological changes is of utmost importance to better quantify tree growth from dendrometers in future.
Tree Physiology arrow_drop_down Tree PhysiologyArticle . 2018 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routeshybrid 66 citations 66 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Tree Physiology arrow_drop_down Tree PhysiologyArticle . 2018 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020 GermanyPublisher:Wiley Funded by:DFGDFGAuthors: Martin Wilmking; Marieke van der Maaten‐Theunissen; Ernst van der Maaten; Tobias Scharnweber; +8 AuthorsMartin Wilmking; Marieke van der Maaten‐Theunissen; Ernst van der Maaten; Tobias Scharnweber; Allan Buras; Christine Biermann; Marina Gurskaya; Martin Hallinger; Jelena Lange; Rohan Shetti; Marko Smiljanic; Mario Trouillier;doi: 10.1111/gcb.15057
pmid: 32124523
AbstractTree‐ring records provide global high‐resolution information on tree‐species responses to global change, forest carbon and water dynamics, and past climate variability and extremes. The underlying assumption is a stationary (time‐stable), quasi‐linear relationship between tree growth and environment, which however conflicts with basic ecological and evolutionary theory. Indeed, our global assessment of the relevant tree‐ring literature demonstrates non‐stationarity in the majority of tested cases, not limited to specific proxies, environmental parameters, regions or species. Non‐stationarity likely represents the general nature of the relationship between tree‐growth proxies and environment. Studies assuming stationarity however score two times more citations influencing other fields of science and the science–policy interface. To reconcile ecological reality with the application of tree‐ring proxies for climate or environmental estimates, we provide a clarification of the stationarity concept, propose a simple confidence framework for the re‐evaluation of existing studies and recommend the use of a new statistical tool to detect non‐stationarity in tree‐ring proxies. Our contribution is meant to stimulate and facilitate discussion in light of our results to help increase confidence in tree‐ring‐based climate and environmental estimates for science, the public and policymakers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 170 citations 170 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2018Embargo end date: 22 Nov 2018Publisher:Wiley Funded by:EC | E3EC| E3Juergen Kreyling; Claudia Hartl; Franco Biondi; Renzo Motta; Annette Menzel; Tobias Scharnweber; Ionel Popa; Andrew D. Friend; Marco Conedera; Francçois Lebourgeois; Isabel Dorado Liñán; Robert Weigel; Andrew Hacket-Pain; Davide Ascoli; Christian Zang; Ernst van der Maaten; Martin Wilmking; Michael Grabner; Lena Muffler; Igor Drobyshev; Igor Drobyshev; Liam Cavin; Cătălin-Constantin Roibu; Giorgio Vacchiano; Marieke van der Maaten-Theunissen; Tom Levanič;pmid: 30230201
pmc: PMC6446945
handle: 10261/290710 , 20.500.12792/563 , 2434/616929 , 2318/1677066 , 1893/27941 , 11714/5419
pmid: 30230201
pmc: PMC6446945
handle: 10261/290710 , 20.500.12792/563 , 2434/616929 , 2318/1677066 , 1893/27941 , 11714/5419
AbstractClimatically controlled allocation to reproduction is a key mechanism by which climate influences tree growth and may explain lagged correlations between climate and growth. We used continent‐wide datasets of tree‐ring chronologies and annual reproductive effort in Fagus sylvatica from 1901 to 2015 to characterise relationships between climate, reproduction and growth. Results highlight that variable allocation to reproduction is a key factor for growth in this species, and that high reproductive effort (‘mast years’) is associated with stem growth reduction. Additionally, high reproductive effort is associated with previous summer temperature, creating lagged climate effects on growth. Consequently, understanding growth variability in forest ecosystems requires the incorporation of reproduction, which can be highly variable. Our results suggest that future response of growth dynamics to climate change in this species will be strongly influenced by the response of reproduction.
Archivio Istituziona... arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/1893/27941Data sources: Bielefeld Academic Search Engine (BASE)University of Nevada, Reno: ScholarWorks RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/11714/5419Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Resultados de Investigación del INIAArticle . 2018License: CC BY NC SAData sources: Repositorio de Resultados de Investigación del INIAPublikationenserver der Georg-August-Universität GöttingenArticle . 2019Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 116 citations 116 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/1893/27941Data sources: Bielefeld Academic Search Engine (BASE)University of Nevada, Reno: ScholarWorks RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/11714/5419Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Resultados de Investigación del INIAArticle . 2018License: CC BY NC SAData sources: Repositorio de Resultados de Investigación del INIAPublikationenserver der Georg-August-Universität GöttingenArticle . 2019Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Springer Science and Business Media LLC Funded by:NSF | CAREER: Tree-Ring Based R..., UKRI | Assessing Individual And ..., UKRI | ForeSight: Predicting and...NSF| CAREER: Tree-Ring Based Reconstruction of Northern Hemisphere Jetstream Variability ,UKRI| Assessing Individual And Local Scale Forest Vulnerability To Mortality From The 2019 Extreme Drought In Central Europe ,UKRI| ForeSight: Predicting and monitoring drought-linked forest growth decline across EuropeDorado-Liñán, Isabel; Ayarzagüena, Blanca; Babst, Flurin; Xu, Guobao; Gil, Luis; Battipaglia, Giovanna; Buras, Allan; Čada, Vojtěch; Camarero, J Julio; Cavin, Liam; Claessens, Hugues; Drobyshev, Igor; Garamszegi, Balázs; Grabner, Michael; Hacket-Pain, Andrew; Hartl, Claudia; Hevia, Andrea; Janda, Pavel; Jump, Alistair S; Kazimirovic, Marko; Keren, Srdjan; Kreyling, Juergen; Land, Alexander; Latte, Nicolas; Levanič, Tom; van der Maaten, Ernst; van der Maaten-Theunissen, Marieke; Martínez-Sancho, Elisabet; Menzel, Annette; Mikoláš, Martin; Motta, Renzo; Muffler, Lena; Nola, Paola; Panayotov, Momchil; Petritan, Any Mary; Petritan, Ion Catalin; Popa, Ionel; Prislan, Peter; Roibu, Catalin-Constantin; Roibu, Catalin-Constantin; Rydval, Miloš; Sánchez-Salguero, Raul; Scharnweber, Tobias; Stajić, Branko; Svoboda, Miroslav; Tegel, Willy; Teodosiu, Marius; Toromani, Elvin; Trotsiuk, Volodymyr; Turcu, Daniel-Ond; Weigel, Robert; Wilmking, Martin; Zang, Christian; Zlatanov, Tzvetan; Trouet, Valerie;pmid: 35440102
pmc: PMC9018849
handle: 20.500.14352/72531 , 10261/358835 , 10272/21276 , 2268/290531 , 20.500.12556/DiRROS-15044 , 11591/472948 , 2318/1866306 , 11571/1458015 , 1893/34183
pmid: 35440102
pmc: PMC9018849
handle: 20.500.14352/72531 , 10261/358835 , 10272/21276 , 2268/290531 , 20.500.12556/DiRROS-15044 , 11591/472948 , 2318/1866306 , 11571/1458015 , 1893/34183
AbstractThe mechanistic pathways connecting ocean-atmosphere variability and terrestrial productivity are well-established theoretically, but remain challenging to quantify empirically. Such quantification will greatly improve the assessment and prediction of changes in terrestrial carbon sequestration in response to dynamically induced climatic extremes. The jet stream latitude (JSL) over the North Atlantic-European domain provides a synthetic and robust physical framework that integrates climate variability not accounted for by atmospheric circulation patterns alone. Surface climate impacts of north-south summer JSL displacements are not uniform across Europe, but rather create a northwestern-southeastern dipole in forest productivity and radial-growth anomalies. Summer JSL variability over the eastern North Atlantic-European domain (5-40E) exerts the strongest impact on European beech, inducing anomalies of up to 30% in modelled gross primary productivity and 50% in radial tree growth. The net effects of JSL movements on terrestrial carbon fluxes depend on forest density, carbon stocks, and productivity imbalances across biogeographic regions.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedFull-Text: https://doi.org/10.1038/s41467-022-29615-8Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2024 . Peer-reviewedFull-Text: https://doi.org/10.1038/s41467-022-29615-8Data sources: DIGITAL.CSICArias Montano, Repositorio Institucional de la Universidad de HuelvaArticle . 2022License: CC BY NC NDUniversity of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/226443Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1893/34183Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADigital repository of Slovenian research organizationsArticle . 2022License: CC BYData sources: Digital repository of Slovenian research organizationsGöttingen Research Online PublicationsArticle . 2022License: CC BYData sources: Göttingen Research Online PublicationsOmorika - Repository of the Faculty of Forestry, BelgradeArticle . 2022Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAIRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 41visibility views 41 download downloads 25 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedFull-Text: https://doi.org/10.1038/s41467-022-29615-8Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2024 . Peer-reviewedFull-Text: https://doi.org/10.1038/s41467-022-29615-8Data sources: DIGITAL.CSICArias Montano, Repositorio Institucional de la Universidad de HuelvaArticle . 2022License: CC BY NC NDUniversity of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/226443Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1893/34183Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADigital repository of Slovenian research organizationsArticle . 2022License: CC BYData sources: Digital repository of Slovenian research organizationsGöttingen Research Online PublicationsArticle . 2022License: CC BYData sources: Göttingen Research Online PublicationsOmorika - Repository of the Faculty of Forestry, BelgradeArticle . 2022Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAIRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Funded by:EC | MONOSTAREC| MONOSTARJevšenak, Jernej; Klisz, Marcin; Mašek, Jiří; Čada, Vojtěch; Janda, Pavel; Svoboda, Miroslav; Vostarek, Ondřej; Treml, Vaclav; van der Maaten, Ernst; Popa, Andrei; Popa, Ionel; van der Maaten-Theunissen, Marieke; Zlatanov, Tzvetan; Scharnweber, Tobias; Ahlgrimm, Svenja; Stolz, Juliane; Sochová, Irena; Roibu, Cătălin Constantin; Pretzsch, Hans; Schmied, Gerhard; Uhl, Enno; Kaczka, Ryszard; Wrzesiński, Piotr; Šenfeldr, Martin; Jakubowski, Marcin; Tumajer, Jan; Wilmking, Martin; Obojes, Nikolaus; Rybníček, Michal; Lévesque, Mathieu; Potapov, Aleksei; Basu, Soham; Stojanović, Marko; Stjepanović, Stefan; Vitas, Adomas; Arnič, Domen; Metslaid, Sandra; Neycken, Anna; Prislan, Peter; Hartl, Claudia; Ziche, Daniel; Horáček, Petr; Krejza, Jan; Mikhailov, Sergei; Světlík, Jan; Kalisty, Aleksandra; Kolář, Tomáš; Lavnyy, Vasyl; Hordo, Maris; Oberhuber, Walter; Levanič, Tom; Mészáros, Ilona; Schneider, Lea; Lehejček, Jiří; Shetti, Rohan; Bošeľa, Michal; Copini, Paul; Koprowski, Marcin; Sass-Klaassen, Ute; Izmir, Şule Ceyda; Bakys, Remigijus; Entner, Hannes; Esper, Jan; Janecka, Karolina; Martinez del Castillo, Edurne; Verbylaite, Rita; Árvai, Mátyás; de Sauvage, Justine Charlet; Čufar, Katarina; Finner, Markus; Hilmers, Torben; Kern, Zoltán; Novak, Klemen; Ponjarac, Radenko; Puchałka, Radosław; Schuldt, Bernhard; Škrk Dolar, Nina; Tanovski, Vladimir; Zang, Christian; Žmegač, Anja; Kuithan, Cornell; Metslaid, Marek; Thurm, Eric; Hafner, Polona; Krajnc, Luka; Bernabei, Mauro; Bojić, Stefan; Brus, Robert; Burger, Andreas; D'Andrea, Ettore; Đorem, Todor; Gławęda, Mariusz; Gričar, Jožica; Gutalj, Marko; Horváth, Emil; Kostić, Saša; Matović, Bratislav; Merela, Maks; Miletić, Boban; Morgós, András; Paluch, Rafał; Pilch, Kamil; Rezaie, Negar; Rieder, Julia; Schwab, Niels; Sewerniak, Piotr; Stojanović, Dejan; Ullmann, Tobias; Waszak, Nella; Zin, Ewa; Skudnik, Mitja; Oštir, Krištof; Rammig, Anja; Buras, Allan;pmid: 38160816
handle: 20.500.12831/19587 , 20.500.14178/2773 , 20.500.14243/502441
To enhance our understanding of forest carbon sequestration, climate change mitigation and drought impact on forest ecosystems, the availability of high-resolution annual forest growth maps based on tree-ring width (TRW) would provide a significant advancement to the field. Site-specific characteristics, which can be approximated by high-resolution Earth observation by satellites (EOS), emerge as crucial drivers of forest growth, influencing how climate translates into tree growth. EOS provides information on surface reflectance related to forest characteristics and thus can potentially improve the accuracy of forest growth models based on TRW. Through the modelling of TRW using EOS, climate and topography data, we showed that species-specific models can explain up to 52 % of model variance (Quercus petraea), while combining different species results in relatively poor model performance (R2 = 13 %). The integration of EOS into models based solely on climate and elevation data improved the explained variance by 6 % on average. Leveraging these insights, we successfully generated a map of annual TRW for the year 2021. We employed the area of applicability (AOA) approach to delineate the range in which our models are deemed valid. The calculated AOA for the established forest-type models was 73 % of the study region, indicating robust spatial applicability. Notably, unreliable predictions predominantly occurred in the climate margins of our dataset. In conclusion, our large-scale assessment underscores the efficacy of combining climate, EOS and topographic data to develop robust models for mapping annual TRW. This research not only fills a critical void in the current understanding of forest growth dynamics but also highlights the potential of integrated data sources for comprehensive ecosystem assessments.
IRIS Cnr arrow_drop_down IRIS CnrArticle . 2024License: CC BYFull-Text: https://iris.cnr.it/bitstream/20.500.14243/502441/1/1-s2.0-S0048969723083225-main_compressed.pdfData sources: IRIS CnrResearch@WURArticle . 2024License: CC BYFull-Text: https://edepot.wur.nl/646911Data sources: Research@WURThe Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefİstanbul University Cerrahpaşa Institutional RepositoryArticle . 2024Data sources: İstanbul University Cerrahpaşa Institutional RepositoryCU Research Publications RepositoryArticle . 2024License: CC BYData sources: CU Research Publications RepositoryUniversität Innsbruck ForschungsleistungsdokumentationArticle . 2024Data sources: Universität Innsbruck Forschungsleistungsdokumentationadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down IRIS CnrArticle . 2024License: CC BYFull-Text: https://iris.cnr.it/bitstream/20.500.14243/502441/1/1-s2.0-S0048969723083225-main_compressed.pdfData sources: IRIS CnrResearch@WURArticle . 2024License: CC BYFull-Text: https://edepot.wur.nl/646911Data sources: Research@WURThe Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefİstanbul University Cerrahpaşa Institutional RepositoryArticle . 2024Data sources: İstanbul University Cerrahpaşa Institutional RepositoryCU Research Publications RepositoryArticle . 2024License: CC BYData sources: CU Research Publications RepositoryUniversität Innsbruck ForschungsleistungsdokumentationArticle . 2024Data sources: Universität Innsbruck Forschungsleistungsdokumentationadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Funded by:MESTD | Ministry of Education, Sc..., DFG | Biological Responses to N..., UKRI | ForeSight: Predicting and...MESTD| Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200169 (University of Belgrade, Faculty of Forestry) ,DFG| Biological Responses to Novel and Changing Environments ,UKRI| ForeSight: Predicting and monitoring drought-linked forest growth decline across EuropeLeifsson, Christopher; Buras, Allan; Klesse, Stefan; Baittinger, Claudia; Bat-Enerel, Banzragch; Battipaglia, Giovanna; Biondi, Franco; Stajić, Branko; Budeanu, Marius; Čada, Vojtěch; Cavin, Liam; Claessens, Hugues; Čufar, Katarina; de Luis, Martin; Dorado-Liñán, Isabel; Dulamsuren, Choimaa; Garamszegi, Balázs; Grabner, Michael; Hacket-Pain, Andrew; Hansen, Jon Kehlet; Hartl, Claudia; Huang, Weiwei; Janda, Pavel; Jump, Alistair; Kazimirović, Marko; Knutzen, Florian; Kreyling, Jürgen; Land, Alexander; Latte, Nicolas; Lebourgeois, François; Leuschner, Christoph; Longares, Luis; Martinez del Castillo, Edurne; Menzel, Annette; Motta, Renzo; Muffler-Weigel, Lena; Nola, Paola; Panayatov, Momchil; Petritan, Any Mary; Petritan, Ion Catalin; Popa, Ionel; Roibu, Cǎtǎlin-Constantin; Rubio-Cuadrado, Álvaro; Rydval, Miloš; Scharnweber, Tobias; Camarero, J. Julio; Svoboda, Miroslav; Toromani, Elvin; Trotsiuk, Volodymyr; van der Maaten-Theunissen, Marieke; van der Maaten, Ernst; Weigel, Robert; Wilmking, Martin; Zlatanov, Tzvetan; Rammig, Anja; Zang, Christian;pmid: 38782287
The future performance of the widely abundant European beech (Fagus sylvatica L.) across its ecological amplitude is uncertain. Although beech is considered drought-sensitive and thus negatively affected by drought events, scientific evidence indicating increasing drought vulnerability under climate change on a cross-regional scale remains elusive. While evaluating changes in climate sensitivity of secondary growth offers a promising avenue, studies from productive, closed-canopy forests suffer from knowledge gaps, especially regarding the natural variability of climate sensitivity and how it relates to radial growth as an indicator of tree vitality. Since beech is sensitive to drought, we in this study use a drought index as a climate variable to account for the combined effects of temperature and water availability and explore how the drought sensitivity of secondary growth varies temporally in dependence on growth variability, growth trends, and climatic water availability across the species' ecological amplitude. Our results show that drought sensitivity is highly variable and non-stationary, though consistently higher at dry sites compared to moist sites. Increasing drought sensitivity can largely be explained by increasing climatic aridity, especially as it is exacerbated by climate change and trees' rank progression within forest communities, as (co-)dominant trees are more sensitive to extra-canopy climatic conditions than trees embedded in understories. However, during the driest periods of the 20th century, growth showed clear signs of being decoupled from climate. This may indicate fundamental changes in system behavior and be early-warning signals of decreasing drought tolerance. The multiple significant interaction terms in our model elucidate the complexity of European beech's drought sensitivity, which needs to be taken into consideration when assessing this species' response to climate change.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2025 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/261433Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/135789Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/1893/36046Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaPublikationenserver der Georg-August-Universität GöttingenArticle . 2024Copenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemRepository of the University of LjubljanaArticle . 2024Data sources: Repository of the University of LjubljanaMinistry of Culture Research PortalArticle . 2024License: CC BYData sources: Ministry of Culture Research PortalUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2024Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 21visibility views 21 download downloads 28 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2025 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Freiburg: FreiDokArticle . 2024Full-Text: https://freidok.uni-freiburg.de/data/261433Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2024License: CC BYFull-Text: http://zaguan.unizar.es/record/135789Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2024License: CC BYFull-Text: http://hdl.handle.net/1893/36046Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2024Data sources: Digital Repository of University of ZaragozaPublikationenserver der Georg-August-Universität GöttingenArticle . 2024Copenhagen University Research Information SystemArticle . 2024Data sources: Copenhagen University Research Information SystemRepository of the University of LjubljanaArticle . 2024Data sources: Repository of the University of LjubljanaMinistry of Culture Research PortalArticle . 2024License: CC BYData sources: Ministry of Culture Research PortalUniversity of Copenhagen: ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2024Institut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020 GermanyPublisher:Wiley Authors: Marieke van der Maaten-Theunissen; Jürgen Kreyling; Tobias Scharnweber; Karolina Janecka; +23 AuthorsMarieke van der Maaten-Theunissen; Jürgen Kreyling; Tobias Scharnweber; Karolina Janecka; Roberto Cruz-García; Alar Läänelaid; Juliane Stolz; Anna Cedro; Robert Weigel; Robert Weigel; Martin Wilmking; Ernst van der Maaten; Ryszard J. Kaczka; Roberts Matisons; Barbara Spyt; Marcin Klisz; Allan Buras; Igor Drobyshev; Igor Drobyshev; Āris Jansons; Kristina Sohar; Adomas Vitas; Marko Smiljanic; Lena Muffler; Lena Muffler; Jill E. Harvey; Jill E. Harvey;AbstractThe role of future forests in global biogeochemical cycles will depend on how different tree species respond to climate. Interpreting the response of forest growth to climate change requires an understanding of the temporal and spatial patterns of seasonal climatic influences on the growth of common tree species. We constructed a new network of 310 tree‐ring width chronologies from three common tree species (Quercus robur, Pinus sylvestris and Fagus sylvatica) collected for different ecological, management and climate purposes in the south Baltic Sea region at the border of three bioclimatic zones (temperate continental, oceanic, southern boreal). The major climate factors (temperature, precipitation, drought) affecting tree growth at monthly and seasonal scales were identified. Our analysis documents that 20th century Scots pine and deciduous species growth is generally controlled by different climate parameters, and that summer moisture availability is increasingly important for the growth of deciduous species examined. We report changes in the influence of winter climate variables over the last decades, where a decreasing influence of late winter temperature on deciduous tree growth and an increasing influence of winter temperature on Scots pine growth was found. By comparing climate–growth responses for the 1943–1972 and 1973–2002 periods and characterizing site‐level growth response stability, a descriptive application of spatial segregation analysis distinguished sites with stable responses to dominant climate parameters (northeast of the study region), and sites that collectively showed unstable responses to winter climate (southeast of the study region). The findings presented here highlight the temporally unstable and nonuniform responses of tree growth to climate variability, and that there are geographical coherent regions where these changes are similar. Considering continued climate change in the future, our results provide important regional perspectives on recent broad‐scale climate–growth relationships for trees across the temperate to boreal forest transition around the south Baltic Sea.
SLU publication data... arrow_drop_down The Repository of the University of Silesia (RE-BUŚ)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/20.500.12128/15982Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repozytorium Uniwersytetu Śląskiego RE-BUŚArticle . 2020License: CC BYData sources: Repozytorium Uniwersytetu Śląskiego RE-BUŚadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 175 citations 175 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert SLU publication data... arrow_drop_down The Repository of the University of Silesia (RE-BUŚ)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/20.500.12128/15982Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Repozytorium Uniwersytetu Śląskiego RE-BUŚArticle . 2020License: CC BYData sources: Repozytorium Uniwersytetu Śląskiego RE-BUŚadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:Springer Science and Business Media LLC Authors: Karl Uwe Heußner; Ernst van der Maaten; Ernst van der Maaten; Tobias Scharnweber; +9 AuthorsKarl Uwe Heußner; Ernst van der Maaten; Ernst van der Maaten; Tobias Scharnweber; Thomas Struwe; Marko Smiljanic; Marieke van der Maaten-Theunissen; Marieke van der Maaten-Theunissen; Ingo Heinrich; Ingo Heinrich; Allan Buras; Allan Buras; Martin Wilmking;AbstractIn many parts of the world, especially in the temperate regions of Europe and North-America, accelerated tree growth rates have been observed over the last decades. This widespread phenomenon is presumably caused by a combination of factors like atmospheric fertilization or changes in forest structure and/or management. If not properly acknowledged in the calibration of tree-ring based climate reconstructions, considerable bias concerning amplitudes and trends of reconstructed climatic parameters might emerge or low frequency information is lost. Here we present a simple but effective, data-driven approach to remove the recent non-climatic growth increase in tree-ring data. Accounting for the no-analogue calibration problem, a new hydroclimatic reconstruction for northern-central Europe revealed considerably drier conditions during the medieval climate anomaly (MCA) compared with standard reconstruction methods and other existing reconstructions. This demonstrates the necessity to account for fertilization effects in modern tree-ring data from affected regions before calibrating reconstruction models, to avoid biased results.
Research@WUR arrow_drop_down Research@WURArticle . 2019License: CC BYFull-Text: https://edepot.wur.nl/472225Data sources: Research@WURhttps://doi.org/10.1038/s41598...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefGFZ German Research Centre for GeosciencesArticle . 2019License: CC BYData sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2019Data sources: GFZ German Research Centre for GeosciencesGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Research@WUR arrow_drop_down Research@WURArticle . 2019License: CC BYFull-Text: https://edepot.wur.nl/472225Data sources: Research@WURhttps://doi.org/10.1038/s41598...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefGFZ German Research Centre for GeosciencesArticle . 2019License: CC BYData sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2019Data sources: GFZ German Research Centre for GeosciencesGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022Embargo end date: 31 Oct 2022Publisher:Springer Science and Business Media LLC Funded by:MESTD | Ministry of Education, Sc..., MESTD | Ministry of Education, Sc..., EC | MONOSTARMESTD| Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200169 (University of Belgrade, Faculty of Forestry) ,MESTD| Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200016 (Institute of Recent History of Serbia , Belgrade) ,EC| MONOSTARAuthors: Martinez Del Castillo, Edurne; Zang, Christian S; Buras, Allan; Hacket-Pain, Andrew; +44 AuthorsMartinez Del Castillo, Edurne; Zang, Christian S; Buras, Allan; Hacket-Pain, Andrew; Esper, Jan; Serrano-Notivoli, Roberto; Hartl, Claudia; Weigel, Robert; Klesse, Stefan; Resco de Dios, Victor; Scharnweber, Tobias; Dorado-Liñán, Isabel; van der Maaten-Theunissen, Marieke; van der Maaten, Ernst; Jump, Alistair; Mikac, Sjepan; Banzragch, Bat-Enerel; Beck, Wolfgang; Cavin, Liam; Claessens, Hugues; Čada, Vojtěch; Čufar, Katarina; Dulamsuren, Choimaa; Gričar, Jozica; Gil-Pelegrín, Eustaquio; Janda, Pavel; Kazimirovic, Marko; Kreyling, Juergen; Latte, Nicolas; Leuschner, Christoph; Longares, Luis Alberto; Menzel, Annette; Merela, Maks; Motta, Renzo; Muffler, Lena; Nola, Paola; Petritan, Any Mary; Petritan, Ion Catalin; Prislan, Peter; Rubio-Cuadrado, Álvaro; Rydval, Miloš; Stajić, Branko; Svoboda, Miroslav; Toromani, Elvin; Trotsiuk, Volodymyr; Wilmking, Martin; Zlatanov, Tzvetan; de Luis, Martin;pmid: 35273334
pmc: PMC8913685
handle: 10459.1/83157 , 2268/288893 , 2318/1851142 , 20.500.12030/8138 , 1893/34095 , 11571/1452012
pmid: 35273334
pmc: PMC8913685
handle: 10459.1/83157 , 2268/288893 , 2318/1851142 , 20.500.12030/8138 , 1893/34095 , 11571/1452012
AbstractThe growth of past, present, and future forests was, is and will be affected by climate variability. This multifaceted relationship has been assessed in several regional studies, but spatially resolved, large-scale analyses are largely missing so far. Here we estimate recent changes in growth of 5800 beech trees (Fagus sylvatica L.) from 324 sites, representing the full geographic and climatic range of species. Future growth trends were predicted considering state-of-the-art climate scenarios. The validated models indicate growth declines across large region of the distribution in recent decades, and project severe future growth declines ranging from −20% to more than −50% by 2090, depending on the region and climate change scenario (i.e. CMIP6 SSP1-2.6 and SSP5-8.5). Forecasted forest productivity losses are most striking towards the southern distribution limit of Fagus sylvatica, in regions where persisting atmospheric high-pressure systems are expected to increase drought severity. The projected 21st century growth changes across Europe indicate serious ecological and economic consequences that require immediate forest adaptation.
CORE (RIOXX-UK Aggre... arrow_drop_down Digital Repository of University of Zaragoza (ZAGUAN)Article . 2022License: CC BYFull-Text: http://zaguan.unizar.es/record/112516Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/234915Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1893/34095Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2022License: CC BYData sources: Digital Repository of University of ZaragozaGöttingen Research Online PublicationsArticle . 2022License: CC BYData sources: Göttingen Research Online PublicationsGutenberg Open Science (Open-Science-Repository of the Johannes Gutenberg-University Mainz)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2022Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAIRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 209 citations 209 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert CORE (RIOXX-UK Aggre... arrow_drop_down Digital Repository of University of Zaragoza (ZAGUAN)Article . 2022License: CC BYFull-Text: http://zaguan.unizar.es/record/112516Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/234915Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1893/34095Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2022License: CC BYData sources: Digital Repository of University of ZaragozaGöttingen Research Online PublicationsArticle . 2022License: CC BYData sources: Göttingen Research Online PublicationsGutenberg Open Science (Open-Science-Repository of the Johannes Gutenberg-University Mainz)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Omorika - Repository of the Faculty of Forestry, BelgradeArticle . 2022Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAIRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Springer Science and Business Media LLC Publicly fundedFunded by:SNSF | ICOS-CH Phase 2, SNSF | Inter- and intra-specific..., SNSF | ICOS-CH: Integrated Carbo... +7 projectsSNSF| ICOS-CH Phase 2 ,SNSF| Inter- and intra-specific water-use strategies of European trees: towards a better mechanistic understanding of tree performance during drought and warming ,SNSF| ICOS-CH: Integrated Carbon Observation System in Switzerland ,ANR| ARBRE ,EC| VERIFY ,FWF| Analysis of Norway Spruce Rust-Resistance ,FWF| Carbon allocation and growth of Scots pine ,SNSF| Coupling stem water flow and structural carbon allocation in a warming climate: the Lötschental study case (LOTFOR) ,FWF| Conifer radial stem growth in response to drought ,ANR| FOREPROAuthors: Salomón, Roberto L.; Peters, Richard L.; Zweifel, Roman; Sass-Klaassen, Ute G.W.; +80 AuthorsSalomón, Roberto L.; Peters, Richard L.; Zweifel, Roman; Sass-Klaassen, Ute G.W.; Stegehuis, Annemiek I.; Smiljanic, Marko; Poyatos, Rafael; Babst, Flurin; Cienciala, Emil; Fonti, Patrick; Lerink, Bass J.W.; Lindner, Marcus; Martínez-Vilalta, Jordi; Mencuccini, Maurizio; Nabuurs, Gert-Jan; van der Maaten, Ernst; von Arx, Georg; Bär, Andreas; Akhmetzyanov, Linar; Balanzategui, Daniel; Bellan, Michal; Bendix, Jörg; Berveiller, Daniel; Blaženec, Miroslav; Čada, Vojtěch; Carraro, Vinicio; Cecchini, Sébastien; Chan, Tommy; Conedera, Marco; Delpierre, Nicolas; Delzon, Sylvain; Ditmarová, Lubica; Doležal, Jiří; Dufrêne, Eric; Edvardsson, Johannes; Ehekircher, Stefan; Forner, Alicia; Frouz, Jan; Ganthaler, Andrea; Gryc, Vladimír; Güney, Aylin; Heinrich, Ingo; Hentschel, Rainer; Janda, Pavel; Ježík, Marek; Kahle, Hans-Peter; Kahle, Hans-Peter; Knüsel, Simon; Krejza, Jan; Kuberski, Łukasz; Kučera, Jiří; Lebourgeois, François; Mikoláš, Martin; Matula, Radim; Mayr, Stefan; Oberhuber, Walter; Obojes, Nikolaus; Obojes, Nikolaus; Osborne, Bruce; Paljakka, Teemu; Plichta, Roman; Rabbel, Inke; Rathgeber, Cyrille B.K.; Salmon, Yann; Saunder, Matthew; Scharnweber, Tobias; Sitková, Zuzana; Stangler, Dominik Florian; Stereńczak, Krzysztof; Stereńczak, Marko; Střelcová, Katarína; Světlík, Jan; Svodoba, Miroslav; Tobin, Brian; Trotsiuk, Volodymyr; Urban, Josef; Valladares Ros, Fernando; Vavrčík, Hanuš; Vejpustková, Monika; Walthert, Lorenz; Wilmking, Martin; Zin, Ewa; Zou, Junliang; Steppe, Kathy;pmid: 35013178
pmc: PMC8748979
AbstractHeatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedFull-Text: https://doi.org/10.1038/s41467-021-27579-9Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2022 . Peer-reviewedFull-Text: https://doi.org/10.1038/s41467-021-27579-9Data sources: DIGITAL.CSICUniversity of Innsbruck Digital LibraryArticle . 2022License: CC BYData sources: University of Innsbruck Digital LibraryPadua research Archive (Archivio istituzionale della ricerca - Università di Padova)Article . 2022License: CC BYResearch@WURArticle . 2022License: CC BYFull-Text: https://edepot.wur.nl/563087Data sources: Research@WURUniversity of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/238266Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUniversität Innsbruck ForschungsleistungsdokumentationArticle . 2022Data sources: Universität Innsbruck ForschungsleistungsdokumentationDipòsit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Dipòsit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 128 citations 128 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 50visibility views 50 download downloads 87 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedFull-Text: https://doi.org/10.1038/s41467-021-27579-9Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2022 . Peer-reviewedFull-Text: https://doi.org/10.1038/s41467-021-27579-9Data sources: DIGITAL.CSICUniversity of Innsbruck Digital LibraryArticle . 2022License: CC BYData sources: University of Innsbruck Digital LibraryPadua research Archive (Archivio istituzionale della ricerca - Università di Padova)Article . 2022License: CC BYResearch@WURArticle . 2022License: CC BYFull-Text: https://edepot.wur.nl/563087Data sources: Research@WURUniversity of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/238266Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiGFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyInstitut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUniversität Innsbruck ForschungsleistungsdokumentationArticle . 2022Data sources: Universität Innsbruck ForschungsleistungsdokumentationDipòsit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Dipòsit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2018Publisher:Oxford University Press (OUP) Marko Smiljanic; Tobias Scharnweber; Roberto Cruz-García; Martin Wilmking; Ernst van der Maaten; Ernst van der Maaten; Jonas Pape; Marieke van der Maaten-Theunissen; Marieke van der Maaten-Theunissen;pmid: 29718395
Dendrometers offer a useful tool for long-term, high-resolution monitoring of tree responses to environmental fluctuations and climate change. Here, we analyze a 4-year dendrometer dataset (2014-17) on European beech (Fagus sylvatica L.), common hornbeam (Carpinus betulus L.) and pedunculate oak (Quercus robur L.), co-occuring in a mixed broadleaved forest in northeastern Germany. In our analyses, we focus both on seasonal growth dynamics as well as on the environmental forcing of daily stem-size variations. Over the study period with contrasting weather conditions, we observed species- and year-specific differences in growth phenology (i.e., growth onset, cessation and duration). Oak was characterized by early growth onset and long growth duration in all years as compared with beech and hornbeam. The analysis on the environmental forcing of daily stem dynamics revealed, however, highly similar responses for the studied species, with current-day vapor pressure deficit and sunshine duration negatively, and relative humidity and precipitation positively affecting stem size. When considering lagged effects, environmental conditions often oppositely affected stem-size changes. No consistent seasonality in environmental responses was detected, though specific weather conditions were found to affect temporal patterns in individual years. We suggest that the high similarity in environmental forcing observed between tree species can be explained by daily stem-size changes mainly reflecting tree water status rather than tree growth. Our results stress that correcting dendrometer series for reversible stem hydrological changes is of utmost importance to better quantify tree growth from dendrometers in future.
Tree Physiology arrow_drop_down Tree PhysiologyArticle . 2018 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routeshybrid 66 citations 66 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Tree Physiology arrow_drop_down Tree PhysiologyArticle . 2018 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020 GermanyPublisher:Wiley Funded by:DFGDFGAuthors: Martin Wilmking; Marieke van der Maaten‐Theunissen; Ernst van der Maaten; Tobias Scharnweber; +8 AuthorsMartin Wilmking; Marieke van der Maaten‐Theunissen; Ernst van der Maaten; Tobias Scharnweber; Allan Buras; Christine Biermann; Marina Gurskaya; Martin Hallinger; Jelena Lange; Rohan Shetti; Marko Smiljanic; Mario Trouillier;doi: 10.1111/gcb.15057
pmid: 32124523
AbstractTree‐ring records provide global high‐resolution information on tree‐species responses to global change, forest carbon and water dynamics, and past climate variability and extremes. The underlying assumption is a stationary (time‐stable), quasi‐linear relationship between tree growth and environment, which however conflicts with basic ecological and evolutionary theory. Indeed, our global assessment of the relevant tree‐ring literature demonstrates non‐stationarity in the majority of tested cases, not limited to specific proxies, environmental parameters, regions or species. Non‐stationarity likely represents the general nature of the relationship between tree‐growth proxies and environment. Studies assuming stationarity however score two times more citations influencing other fields of science and the science–policy interface. To reconcile ecological reality with the application of tree‐ring proxies for climate or environmental estimates, we provide a clarification of the stationarity concept, propose a simple confidence framework for the re‐evaluation of existing studies and recommend the use of a new statistical tool to detect non‐stationarity in tree‐ring proxies. Our contribution is meant to stimulate and facilitate discussion in light of our results to help increase confidence in tree‐ring‐based climate and environmental estimates for science, the public and policymakers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 170 citations 170 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2018Embargo end date: 22 Nov 2018Publisher:Wiley Funded by:EC | E3EC| E3Juergen Kreyling; Claudia Hartl; Franco Biondi; Renzo Motta; Annette Menzel; Tobias Scharnweber; Ionel Popa; Andrew D. Friend; Marco Conedera; Francçois Lebourgeois; Isabel Dorado Liñán; Robert Weigel; Andrew Hacket-Pain; Davide Ascoli; Christian Zang; Ernst van der Maaten; Martin Wilmking; Michael Grabner; Lena Muffler; Igor Drobyshev; Igor Drobyshev; Liam Cavin; Cătălin-Constantin Roibu; Giorgio Vacchiano; Marieke van der Maaten-Theunissen; Tom Levanič;pmid: 30230201
pmc: PMC6446945
handle: 10261/290710 , 20.500.12792/563 , 2434/616929 , 2318/1677066 , 1893/27941 , 11714/5419
pmid: 30230201
pmc: PMC6446945
handle: 10261/290710 , 20.500.12792/563 , 2434/616929 , 2318/1677066 , 1893/27941 , 11714/5419
AbstractClimatically controlled allocation to reproduction is a key mechanism by which climate influences tree growth and may explain lagged correlations between climate and growth. We used continent‐wide datasets of tree‐ring chronologies and annual reproductive effort in Fagus sylvatica from 1901 to 2015 to characterise relationships between climate, reproduction and growth. Results highlight that variable allocation to reproduction is a key factor for growth in this species, and that high reproductive effort (‘mast years’) is associated with stem growth reduction. Additionally, high reproductive effort is associated with previous summer temperature, creating lagged climate effects on growth. Consequently, understanding growth variability in forest ecosystems requires the incorporation of reproduction, which can be highly variable. Our results suggest that future response of growth dynamics to climate change in this species will be strongly influenced by the response of reproduction.
Archivio Istituziona... arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/1893/27941Data sources: Bielefeld Academic Search Engine (BASE)University of Nevada, Reno: ScholarWorks RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/11714/5419Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Resultados de Investigación del INIAArticle . 2018License: CC BY NC SAData sources: Repositorio de Resultados de Investigación del INIAPublikationenserver der Georg-August-Universität GöttingenArticle . 2019Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 116 citations 116 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/1893/27941Data sources: Bielefeld Academic Search Engine (BASE)University of Nevada, Reno: ScholarWorks RepositoryArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/11714/5419Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Resultados de Investigación del INIAArticle . 2018License: CC BY NC SAData sources: Repositorio de Resultados de Investigación del INIAPublikationenserver der Georg-August-Universität GöttingenArticle . 2019Institut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Springer Science and Business Media LLC Funded by:NSF | CAREER: Tree-Ring Based R..., UKRI | Assessing Individual And ..., UKRI | ForeSight: Predicting and...NSF| CAREER: Tree-Ring Based Reconstruction of Northern Hemisphere Jetstream Variability ,UKRI| Assessing Individual And Local Scale Forest Vulnerability To Mortality From The 2019 Extreme Drought In Central Europe ,UKRI| ForeSight: Predicting and monitoring drought-linked forest growth decline across EuropeDorado-Liñán, Isabel; Ayarzagüena, Blanca; Babst, Flurin; Xu, Guobao; Gil, Luis; Battipaglia, Giovanna; Buras, Allan; Čada, Vojtěch; Camarero, J Julio; Cavin, Liam; Claessens, Hugues; Drobyshev, Igor; Garamszegi, Balázs; Grabner, Michael; Hacket-Pain, Andrew; Hartl, Claudia; Hevia, Andrea; Janda, Pavel; Jump, Alistair S; Kazimirovic, Marko; Keren, Srdjan; Kreyling, Juergen; Land, Alexander; Latte, Nicolas; Levanič, Tom; van der Maaten, Ernst; van der Maaten-Theunissen, Marieke; Martínez-Sancho, Elisabet; Menzel, Annette; Mikoláš, Martin; Motta, Renzo; Muffler, Lena; Nola, Paola; Panayotov, Momchil; Petritan, Any Mary; Petritan, Ion Catalin; Popa, Ionel; Prislan, Peter; Roibu, Catalin-Constantin; Roibu, Catalin-Constantin; Rydval, Miloš; Sánchez-Salguero, Raul; Scharnweber, Tobias; Stajić, Branko; Svoboda, Miroslav; Tegel, Willy; Teodosiu, Marius; Toromani, Elvin; Trotsiuk, Volodymyr; Turcu, Daniel-Ond; Weigel, Robert; Wilmking, Martin; Zang, Christian; Zlatanov, Tzvetan; Trouet, Valerie;pmid: 35440102
pmc: PMC9018849
handle: 20.500.14352/72531 , 10261/358835 , 10272/21276 , 2268/290531 , 20.500.12556/DiRROS-15044 , 11591/472948 , 2318/1866306 , 11571/1458015 , 1893/34183
pmid: 35440102
pmc: PMC9018849
handle: 20.500.14352/72531 , 10261/358835 , 10272/21276 , 2268/290531 , 20.500.12556/DiRROS-15044 , 11591/472948 , 2318/1866306 , 11571/1458015 , 1893/34183
AbstractThe mechanistic pathways connecting ocean-atmosphere variability and terrestrial productivity are well-established theoretically, but remain challenging to quantify empirically. Such quantification will greatly improve the assessment and prediction of changes in terrestrial carbon sequestration in response to dynamically induced climatic extremes. The jet stream latitude (JSL) over the North Atlantic-European domain provides a synthetic and robust physical framework that integrates climate variability not accounted for by atmospheric circulation patterns alone. Surface climate impacts of north-south summer JSL displacements are not uniform across Europe, but rather create a northwestern-southeastern dipole in forest productivity and radial-growth anomalies. Summer JSL variability over the eastern North Atlantic-European domain (5-40E) exerts the strongest impact on European beech, inducing anomalies of up to 30% in modelled gross primary productivity and 50% in radial tree growth. The net effects of JSL movements on terrestrial carbon fluxes depend on forest density, carbon stocks, and productivity imbalances across biogeographic regions.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedFull-Text: https://doi.org/10.1038/s41467-022-29615-8Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2024 . Peer-reviewedFull-Text: https://doi.org/10.1038/s41467-022-29615-8Data sources: DIGITAL.CSICArias Montano, Repositorio Institucional de la Universidad de HuelvaArticle . 2022License: CC BY NC NDUniversity of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/226443Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1893/34183Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADigital repository of Slovenian research organizationsArticle . 2022License: CC BYData sources: Digital repository of Slovenian research organizationsGöttingen Research Online PublicationsArticle . 2022License: CC BYData sources: Göttingen Research Online PublicationsOmorika - Repository of the Faculty of Forestry, BelgradeArticle . 2022Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAIRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 41visibility views 41 download downloads 25 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedFull-Text: https://doi.org/10.1038/s41467-022-29615-8Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2024 . Peer-reviewedFull-Text: https://doi.org/10.1038/s41467-022-29615-8Data sources: DIGITAL.CSICArias Montano, Repositorio Institucional de la Universidad de HuelvaArticle . 2022License: CC BY NC NDUniversity of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/226443Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1893/34183Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADigital repository of Slovenian research organizationsArticle . 2022License: CC BYData sources: Digital repository of Slovenian research organizationsGöttingen Research Online PublicationsArticle . 2022License: CC BYData sources: Göttingen Research Online PublicationsOmorika - Repository of the Faculty of Forestry, BelgradeArticle . 2022Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAIRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Funded by:EC | MONOSTAREC| MONOSTARJevšenak, Jernej; Klisz, Marcin; Mašek, Jiří; Čada, Vojtěch; Janda, Pavel; Svoboda, Miroslav; Vostarek, Ondřej; Treml, Vaclav; van der Maaten, Ernst; Popa, Andrei; Popa, Ionel; van der Maaten-Theunissen, Marieke; Zlatanov, Tzvetan; Scharnweber, Tobias; Ahlgrimm, Svenja; Stolz, Juliane; Sochová, Irena; Roibu, Cătălin Constantin; Pretzsch, Hans; Schmied, Gerhard; Uhl, Enno; Kaczka, Ryszard; Wrzesiński, Piotr; Šenfeldr, Martin; Jakubowski, Marcin; Tumajer, Jan; Wilmking, Martin; Obojes, Nikolaus; Rybníček, Michal; Lévesque, Mathieu; Potapov, Aleksei; Basu, Soham; Stojanović, Marko; Stjepanović, Stefan; Vitas, Adomas; Arnič, Domen; Metslaid, Sandra; Neycken, Anna; Prislan, Peter; Hartl, Claudia; Ziche, Daniel; Horáček, Petr; Krejza, Jan; Mikhailov, Sergei; Světlík, Jan; Kalisty, Aleksandra; Kolář, Tomáš; Lavnyy, Vasyl; Hordo, Maris; Oberhuber, Walter; Levanič, Tom; Mészáros, Ilona; Schneider, Lea; Lehejček, Jiří; Shetti, Rohan; Bošeľa, Michal; Copini, Paul; Koprowski, Marcin; Sass-Klaassen, Ute; Izmir, Şule Ceyda; Bakys, Remigijus; Entner, Hannes; Esper, Jan; Janecka, Karolina; Martinez del Castillo, Edurne; Verbylaite, Rita; Árvai, Mátyás; de Sauvage, Justine Charlet; Čufar, Katarina; Finner, Markus; Hilmers, Torben; Kern, Zoltán; Novak, Klemen; Ponjarac, Radenko; Puchałka, Radosław; Schuldt, Bernhard; Škrk Dolar, Nina; Tanovski, Vladimir; Zang, Christian; Žmegač, Anja; Kuithan, Cornell; Metslaid, Marek; Thurm, Eric; Hafner, Polona; Krajnc, Luka; Bernabei, Mauro; Bojić, Stefan; Brus, Robert; Burger, Andreas; D'Andrea, Ettore; Đorem, Todor; Gławęda, Mariusz; Gričar, Jožica; Gutalj, Marko; Horváth, Emil; Kostić, Saša; Matović, Bratislav; Merela, Maks; Miletić, Boban; Morgós, András; Paluch, Rafał; Pilch, Kamil; Rezaie, Negar; Rieder, Julia; Schwab, Niels; Sewerniak, Piotr; Stojanović, Dejan; Ullmann, Tobias; Waszak, Nella; Zin, Ewa; Skudnik, Mitja; Oštir, Krištof; Rammig, Anja; Buras, Allan;pmid: 38160816
handle: 20.500.12831/19587 , 20.500.14178/2773 , 20.500.14243/502441
To enhance our understanding of forest carbon sequestration, climate change mitigation and drought impact on forest ecosystems, the availability of high-resolution annual forest growth maps based on tree-ring width (TRW) would provide a significant advancement to the field. Site-specific characteristics, which can be approximated by high-resolution Earth observation by satellites (EOS), emerge as crucial drivers of forest growth, influencing how climate translates into tree growth. EOS provides information on surface reflectance related to forest characteristics and thus can potentially improve the accuracy of forest growth models based on TRW. Through the modelling of TRW using EOS, climate and topography data, we showed that species-specific models can explain up to 52 % of model variance (Quercus petraea), while combining different species results in relatively poor model performance (R2 = 13 %). The integration of EOS into models based solely on climate and elevation data improved the explained variance by 6 % on average. Leveraging these insights, we successfully generated a map of annual TRW for the year 2021. We employed the area of applicability (AOA) approach to delineate the range in which our models are deemed valid. The calculated AOA for the established forest-type models was 73 % of the study region, indicating robust spatial applicability. Notably, unreliable predictions predominantly occurred in the climate margins of our dataset. In conclusion, our large-scale assessment underscores the efficacy of combining climate, EOS and topographic data to develop robust models for mapping annual TRW. This research not only fills a critical void in the current understanding of forest growth dynamics but also highlights the potential of integrated data sources for comprehensive ecosystem assessments.
IRIS Cnr arrow_drop_down IRIS CnrArticle . 2024License: CC BYFull-Text: https://iris.cnr.it/bitstream/20.500.14243/502441/1/1-s2.0-S0048969723083225-main_compressed.pdfData sources: IRIS CnrResearch@WURArticle . 2024License: CC BYFull-Text: https://edepot.wur.nl/646911Data sources: Research@WURThe Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefİstanbul University Cerrahpaşa Institutional RepositoryArticle . 2024Data sources: İstanbul University Cerrahpaşa Institutional RepositoryCU Research Publications RepositoryArticle . 2024License: CC BYData sources: CU Research Publications RepositoryUniversität Innsbruck ForschungsleistungsdokumentationArticle . 2024Data sources: Universität Innsbruck Forschungsleistungsdokumentationadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down IRIS CnrArticle . 2024License: CC BYFull-Text: https://iris.cnr.it/bitstream/20.500.14243/502441/1/1-s2.0-S0048969723083225-main_compressed.pdfData sources: IRIS CnrResearch@WURArticle . 2024License: CC BYFull-Text: https://edepot.wur.nl/646911Data sources: Research@WURThe Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefİstanbul University Cerrahpaşa Institutional RepositoryArticle . 2024Data sources: İstanbul University Cerrahpaşa Institutional RepositoryCU Research Publications RepositoryArticle . 2024License: CC BYData sources: CU Research Publications RepositoryUniversität Innsbruck ForschungsleistungsdokumentationArticle . 2024Data sources: Universität Innsbruck Forschungsleistungsdokumentationadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
