- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 Australia, Spain, SpainPublisher:Wiley Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP130102576Luke Collins; Ross A. Bradstock; Victor Resco de Dios; Remko A. Duursma; Sabrina Velasco; Matthias M. Boer;doi: 10.1111/gcb.14038
pmid: 29316074
AbstractRising atmospheric [CO2] and associated climate change are expected to modify primary productivity across a range of ecosystems globally. Increasing aridity is predicted to reduce grassland productivity, although rising [CO2] and associated increases in plant water use efficiency may partially offset the effect of drying on growth. Difficulties arise in predicting the direction and magnitude of future changes in ecosystem productivity, due to limited field experimentation investigating climate and CO2 interactions. We use repeat near‐surface digital photography to quantify the effects of water availability and experimentally manipulated elevated [CO2] (eCO2) on understorey live foliage cover and biomass over three growing seasons in a temperate grassy woodland in south‐eastern Australia. We hypothesised that (i) understorey herbaceous productivity is dependent upon soil water availability, and (ii) that eCO2 will increase productivity, with greatest stimulation occurring under conditions of low water availability. Soil volumetric water content (VWC) determined foliage cover and growth rates over the length of the growing season (August to March), with low VWC (<0.1 m3 m−3) reducing productivity. However, eCO2 did not increase herbaceous cover and biomass over the duration of the experiment, or mitigate the effects of low water availability on understorey growth rates and cover. Our findings suggest that projected increases in aridity in temperate woodlands are likely to lead to reduced understorey productivity, with little scope for eCO2 to offset these changes.
Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 SpainPublisher:Public Library of Science (PLoS) Funded by:NSF | Collaborative Research: E..., NSF | CNH-L: Dynamic Impacts of...NSF| Collaborative Research: Extreme Events and Ecological Acclimation: Scaling from Cells to Ecosystems ,NSF| CNH-L: Dynamic Impacts of Environmental Change and Biomass Harvesting on Woodland Ecosystems and Traditional LivelihoodsWilliam R. L. Anderegg; Adam Wolf; Adriana Arango-Velez; Brendan Choat; Daniel J. Chmura; Steven Jansen; Thomas Kolb; Shan Li; Frederick Meinzer; Pilar Pita; Víctor Resco de Dios; John S. Sperry; Brett T. Wolfe; Stephen Pacala;Climate change is expected to lead to increases in drought frequency and severity, with deleterious effects on many ecosystems. Stomatal responses to changing environmental conditions form the backbone of all ecosystem models, but are based on empirical relationships and are not well-tested during drought conditions. Here, we use a dataset of 34 woody plant species spanning global forest biomes to examine the effect of leaf water potential on stomatal conductance and test the predictive accuracy of three major stomatal models and a recently proposed model. We find that current leaf-level empirical models have consistent biases of over-prediction of stomatal conductance during dry conditions, particularly at low soil water potentials. Furthermore, the recently proposed stomatal conductance model yields increases in predictive capability compared to current models, and with particular improvement during drought conditions. Our results reveal that including stomatal sensitivity to declining water potential and consequent impairment of plant water transport will improve predictions during drought conditions and show that many biomes contain a diversity of plant stomatal strategies that range from risky to conservative stomatal regulation during water stress. Such improvements in stomatal simulation are greatly needed to help unravel and predict the response of ecosystems to future climate extremes.
PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0185481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0185481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United StatesPublisher:Wiley Funded by:ARC | Testing climatic, physiol..., ARC | Discovery Projects - Gran..., ARC | Woodland response to elev...ARC| Testing climatic, physiological and hydrological assumptions underpinning water yield from montane forests ,ARC| Discovery Projects - Grant ID: DP140103415 ,ARC| Woodland response to elevated CO2 in free air carbon dioxide enrichment: does phosphorus limit the sink for Carbon?Authors: Aspinwall, Michael J. (R17430); Loik, Michael E.; Resco de Dios, Victor (R16720); Tjoelker, Mark G. (R16688); +2 AuthorsAspinwall, Michael J. (R17430); Loik, Michael E.; Resco de Dios, Victor (R16720); Tjoelker, Mark G. (R16688); Payton, Paxton; Tissue, David T. (R11531);doi: 10.1111/pce.12424
pmid: 25132508
AbstractClimate change threatens the ability of agriculture and forestry to meet growing global demands for food, fibre and wood products. Information gathered from genotype‐by‐environment interactions (G × E), which demonstrate intraspecific variation in phenotypic plasticity (the ability of a genotype to alter its phenotype in response to environmental change), may prove important for bolstering agricultural and forest productivity under climate change. Nonetheless, very few studies have explicitly quantified genotype plasticity–productivity relationships in agriculture or forestry. Here, we conceptualize the importance of intraspecific variation in agricultural and forest species plasticity, and discuss the physiological and genetic factors contributing to intraspecific variation in phenotypic plasticity. Our discussion highlights the need for an integrated understanding of the mechanisms of G × E, more extensive assessments of genotypic responses to climate change under field conditions, and explicit testing of genotype plasticity–productivity relationships. Ultimately, further investigation of intraspecific variation in phenotypic plasticity in agriculture and forestry may prove important for identifying genotypes capable of increasing or sustaining productivity under more extreme climatic conditions.
Plant Cell & Environ... arrow_drop_down eScholarship - University of CaliforniaArticle . 2014Data sources: eScholarship - University of CaliforniaPlant Cell & EnvironmentArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Plant Cell & Environ... arrow_drop_down eScholarship - University of CaliforniaArticle . 2014Data sources: eScholarship - University of CaliforniaPlant Cell & EnvironmentArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Spain, United States, SpainPublisher:Wiley Authors: Resco de Dios, Victor (R16720); Loik, Michael E.; Smith, Renee A. (R15684); Aspinwall, Michael J. (R17430); +1 AuthorsResco de Dios, Victor (R16720); Loik, Michael E.; Smith, Renee A. (R15684); Aspinwall, Michael J. (R17430); Tissue, David T. (R11531);doi: 10.1111/pce.12598
pmid: 26147129
AbstractCircadian resonance, whereby a plant's endogenous rhythms are tuned to match environmental cues, has been repeatedly shown to be adaptive, although the underlying mechanisms remain elusive. Concomitantly, the adaptive value of nocturnal transpiration in C3 plants remains unknown because it occurs without carbon assimilation. These seemingly unrelated processes are interconnected because circadian regulation drives temporal patterns in nocturnal stomatal conductance, with maximum values occurring immediately before dawn for many species. We grew individuals of six Eucalyptus camaldulensis genotypes in naturally lit glasshouses and measured sunset, predawn and midday leaf gas exchange and whole‐plant biomass production. We tested whether sunrise anticipation by the circadian clock and subsequent increases in genotype predawn stomatal conductance led to rapid stomatal opening upon illumination, ultimately affecting genotype differences in carbon assimilation and growth. We observed faster stomatal responses to light inputs at sunrise in genotypes with higher predawn stomatal conductance. Moreover, early morning and midday stomatal conductance and carbon assimilation, leaf area and total plant biomass were all positively correlated with predawn stomatal conductance across genotypes. Our results lead to the novel hypothesis that genotypic variation in the circadian‐regulated capacity to anticipate sunrise could be an important factor underlying intraspecific variation in tree growth.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/98j055fhData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTAeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaPlant Cell & EnvironmentArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/98j055fhData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTAeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaPlant Cell & EnvironmentArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Embargo end date: 01 Jan 2016 Australia, United Kingdom, Spain, United States, Switzerland, Spain, Spain, SpainPublisher:Copernicus GmbH Funded by:EC | ECOWAXEC| ECOWAXWayne S. Meyer; Natascha Kljun; Anne Griebel; Anne Griebel; Stefan K. Arndt; Lindsay B. Hutley; Suzanne M. Prober; Cacilia Ewenz; Eva van Gorsel; Richard Silberstein; Bradley Evans; Trevor F. Keenan; Sebastian Wolf; Peter Isaac; Jason Beringer; Craig Macfarlane; James Cleverly; Ian McHugh; Elise Pendall; Vanessa Haverd; Víctor Resco de Dios;handle: 10459.1/58879 , 2328/37056 , 1959.7/uws:38219 , 2440/105613 , 1885/153292
Abstract. As a result of climate change warmer temperatures are projected through the 21st century and are already increasing above modelled predictions. Apart from increases in the mean, warm/hot temperature extremes are expected to become more prevalent in the future, along with an increase in the frequency of droughts. It is crucial to better understand the response of terrestrial ecosystems to such temperature extremes for predicting land-surface feedbacks in a changing climate. While land-surface feedbacks in drought conditions and during heat waves have been reported from Europe and the US, direct observations of the impact of such extremes on the carbon and water cycles in Australia have been lacking. During the 2012/2013 summer, Australia experienced a record-breaking heat wave with an exceptional spatial extent that lasted for several weeks. In this study we synthesised eddy-covariance measurements from seven woodlands and one forest site across three biogeographic regions in southern Australia. These observations were combined with model results from BIOS2 (Haverd et al., 2013a, b) to investigate the effect of the summer heat wave on the carbon and water exchange of terrestrial ecosystems which are known for their resilience toward hot and dry conditions. We found that water-limited woodland and energy-limited forest ecosystems responded differently to the heat wave. During the most intense part of the heat wave, the woodlands experienced decreased latent heat flux (23 % of background value), increased Bowen ratio (154 %) and reduced carbon uptake (60 %). At the same time the forest ecosystem showed increased latent heat flux (151 %), reduced Bowen ratio (19 %) and increased carbon uptake (112 %). Higher temperatures caused increased ecosystem respiration at all sites (up to 139 %). During daytime all ecosystems remained carbon sinks, but carbon uptake was reduced in magnitude. The number of hours during which the ecosystem acted as a carbon sink was also reduced, which switched the woodlands into a carbon source on a daily average. Precipitation occurred after the first, most intense part of the heat wave, and the subsequent cooler temperatures in the temperate woodlands led to recovery of the carbon sink, decreased the Bowen ratio (65 %) and hence increased evaporative cooling. Gross primary productivity in the woodlands recovered quickly with precipitation and cooler temperatures but respiration remained high. While the forest proved relatively resilient to this short-term heat extreme the response of the woodlands is the first direct evidence that the carbon sinks of large areas of Australia may not be sustainable in a future climate with an increased number, intensity and duration of heat waves.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/2kp5m577Data sources: Bielefeld Academic Search Engine (BASE)Flinders Academic Commons (FAC - Flinders University)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/2328/37056Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2016License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworkspost2013/2341Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/2440/105613Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/153292Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2016Full-Text: https://doi.org/10.5194/bg-13-5947-2016Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-13-5947-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/2kp5m577Data sources: Bielefeld Academic Search Engine (BASE)Flinders Academic Commons (FAC - Flinders University)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/2328/37056Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2016License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworkspost2013/2341Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/2440/105613Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/153292Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2016Full-Text: https://doi.org/10.5194/bg-13-5947-2016Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-13-5947-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 New Zealand, AustraliaPublisher:Wiley Funded by:ARC | Linkage Projects - Grant ..., ARC | Linkage Projects - Grant ...ARC| Linkage Projects - Grant ID: LP190100436 ,ARC| Linkage Projects - Grant ID: LP180100741Andy Leigh; Rachael H. Nolan; Rachael H. Nolan; Timothy J. Curran; Luke Collins; Luke Collins; Luke Collins; Thomas A. Fairman; Víctor Resco de Dios; Víctor Resco de Dios; Ross A. Bradstock; Mark K. J. Ooi; Mark K. J. Ooi;doi: 10.1111/pce.14176
pmid: 34453442
handle: 1959.4/unsworks_78964 , 11343/298995 , 1959.7/uws:62879 , 10182/14593
doi: 10.1111/pce.14176
pmid: 34453442
handle: 1959.4/unsworks_78964 , 11343/298995 , 1959.7/uws:62879 , 10182/14593
AbstractRecord‐breaking fire seasons in many regions across the globe raise important questions about plant community responses to shifting fire regimes (i.e., changing fire frequency, severity and seasonality). Here, we examine the impacts of climate‐driven shifts in fire regimes on vegetation communities, and likely responses to fire coinciding with severe drought, heatwaves and/or insect outbreaks. We present scenario‐based conceptual models on how overlapping disturbance events and shifting fire regimes interact differently to limit post‐fire resprouting and recruitment capacity. We demonstrate that, although many communities will remain resilient to changing fire regimes in the short‐term, longer‐term changes to vegetation structure, demography and species composition are likely, with a range of subsequent effects on ecosystem function. Resprouting species are likely to be most resilient to changing fire regimes. However, even these species are susceptible if exposed to repeated short‐interval fire in combination with other stressors. Post‐fire recruitment is highly vulnerable to increased fire frequency, particularly as climatic limitations on propagule availability intensify. Prediction of community responses to fire under climate change will be greatly improved by addressing knowledge gaps on how overlapping disturbances and climate change‐induced shifts in fire regime affect post‐fire resprouting, recruitment, growth rates, and species‐level adaptation capacity.
UNSWorks arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAPlant Cell & EnvironmentArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.14176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert UNSWorks arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAPlant Cell & EnvironmentArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.14176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV Funded by:EC | FirEUriskEC| FirEUriskJuan Martínez de Aragón; Javier Hedo; Rubén Díaz-Sierra; Matthias M. Boer; José Antonio Bonet; Prakash Thapa; Àngel Cunill Camprubí; Edurne Martínez del Castillo; Rodrigo Balaguer-Romano; Marta Yebra; Víctor Resco de Dios; Víctor Resco de Dios;Fuel moisture limits the availability of fuel to wildfires in many forest areas worldwide, but the effects of climate change on moisture constraints remain largely unknown. Here we addressed how climate affects fuel moisture in pine stands from Catalonia, NE Spain, and the potential effects of increasing climate aridity on burned area in the Pyrenees, a mesic mountainous area where fire is currently rare. We first quantified variation in fuel moisture in six sites distributed across an altitudinal gradient where the long-term mean annual temperature and precipitation vary by 6-15 °C and 395-933 mm, respectively. We observed significant spatial variation in live (78-162%) and dead (10-15%) fuel moisture across sites. The pattern of variation was negatively linked (r = |0.6|-|0.9|) to increases in vapor pressure deficit (VPD) and in the Aridity Index. Using seasonal fire records over 2006-2020, we observed that summer burned area in the Mediterranean forests of Northeast Spain and Southern France was strongly dependent on VPD (r = 0.93), the major driver (and predictor) of dead fuel moisture content (DFMC) at our sites. Based on the difference between VPD thresholds associated with large wildfire seasons in the Mediterranean (3.6 kPa) and the maximum VPD observed in surrounding Pyrenean mountains (3.1 kPa), we quantified the "safety margin" for Pyrenean forests (difference between actual VPD and that associated with large wildfires) at 0.5 kPa. The effects of live fuel moisture content (LFMC) on burned area were not significant under current conditions, a situation that may change with projected increases in climate aridity. Overall, our results indicate that DFMC in currently fire-free areas in Europe, like the Pyrenees, with vast amounts of fuel in many forest stands, may reach critical dryness thresholds beyond the safety margin and experience large wildfires after only mild increases in VPD, although LFMC can modulate the response.
Repositori Obert UdL arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe Science of The Total EnvironmentArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.149104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Repositori Obert UdL arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe Science of The Total EnvironmentArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.149104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 SpainPublisher:MDPI AG Authors: Víctor Resco de Dios; Michael E. Loik; Renee A. Smith; David T. Tissue;doi: 10.3390/f9060319
Nocturnal transpiration constitutes a significant yet poorly understood component of the global water cycle. Modeling nocturnal transpiration has been complicated by recent findings showing that stomata respond differently to environmental drivers over day- vs. night-time periods. Here, we propose that nocturnal stomatal conductance depends on antecedent daytime conditions. We tested this hypothesis across six genotypes of Eucalyptus camaldulensis Dehnh. growing under different CO2 concentrations (ambient vs. elevated) and exposed to contrasting temperatures (ambient vs. heat wave) for four days prior to the night of measurements, when all plants experienced ambient temperature conditions. We observed significant effects after the heat wave that led to 36% reductions in nocturnal stomatal conductance. The response was partly driven by changes in daytime stomatal behavior but additional factors may have come into play. We also observed significant differences in response to the heat wave across genotypes, likely driven by local adaptation to their climate of origin, but CO2 played no effect. Stomatal models may need to incorporate the role of antecedent effects to improve projections particularly after drastic changes in the environment such as heat waves.
Forests arrow_drop_down ForestsOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1999-4907/9/6/319/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaUniversity of Western Sydney (UWS): Research DirectArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f9060319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Forests arrow_drop_down ForestsOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1999-4907/9/6/319/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaUniversity of Western Sydney (UWS): Research DirectArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f9060319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Lin Lin; Jin Li; Obey Kudakwashe Zveushe; Ying Han; Hengxing Zhang; Yu Qin; Victor Resco de Dios; Lei Zhou; Xiangyu Xi; Wei Zhang; Yulian Zhao; Amal Mohamed Omer; Faqin Dong;pmid: 39874763
Soil cadmium (Cd) contamination is one of the major challenges in food production. This has led to above-maximum threshold accumulation of Cd in O. japonicus roots. This research identifies Pseudomonas tianjinensis S2 (PL), a newly isolated bacterium, and Corymbiglomus tortuosum (Ct), an arbuscular mycorrhizal fungus (AMF), as effective agents for reducing Cd concentration in the roots of O. japonicus. Compared to the control (CK) treatment, the root Cd levels decreased by 62.27 % and 46.13 %, respectively, significantly enhancing root biomass. We also noticed the involvement of -OH, -CH, and CC functional groups in Cd chelation in both treatments, and the formation of precipitates, including C2H2CdO4, C4H6CdO4, Cd(OH)2, and Cd3(PO4)2, in both PL and Ct treatments. Moreover, the proportion of residual Cd in soil increased by 21.21 % and 10.61 % for the PL and Ct treatments, respectively, compared to the CK. The findings suggest that P. tianjinensis S2 is more effective than C. tortuosum for high Cd-contaminated fields, while the fungal inoculant is suitable for lower contamination levels, offering valuable strategies for bioremediation. Therefore, we suggest further research to focus on elucidating the effect of a P. tianjinensis S2 and C. tortuosum combination on O. japonicus root growth and Cd accumulation.
Journal of Hazardous... arrow_drop_down Journal of Hazardous MaterialsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2025.137361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Journal of Hazardous... arrow_drop_down Journal of Hazardous MaterialsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2025.137361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Australia, Australia, France, Australia, Italy, France, Belgium, Spain, Spain, Australia, United Kingdom, Australia, Australia, SpainPublisher:Springer Science and Business Media LLC David T. Tissue; Markus Löw; Jeffrey M. Warren; Göran Wallin; Jonathan Bennie; Derek Eamus; Yusuke Onoda; Johan Uddling; David S. Ellsworth; Joana Zaragoza-Castells; Nicolas Martin-StPaul; Teis Nørgaard Mikkelsen; Craig V. M. Barton; Lucy Rowland; Maarten Op de Beeck; Jean-Marc Limousin; Patrick Meir; Han Wang; Maj-Lena Linderson; Oula Ghannoum; Jesse B. Nippert; Jeff W. G. Kelly; Alexandre Bosc; Alexandre Bosc; Kohei Koyama; Kohei Koyama; Teresa E. Gimeno; Troy W. Ocheltree; Sofia Baig; Qingmin Han; Lucas A. Cernusak; John E. Drake; Antonio Carlos Lola da Costa; Patrick J. Mitchell; Cate Macinins-Ng; Norma Salinas; Norma Salinas; Samantha A. Setterfield; Kouki Hikosaka; Lasse Tarvainen; M. S. J. Broadmeadow; Lisa Wingate; Remko A. Duursma; Lindsay B. Hutley; Víctor Resco de Dios; Alistair Rogers; Paolo De Angelis; Kihachiro Kikuzawa; Belinda E. Medlyn; Michael Freeman; Pasi Kolari; I. Colin Prentice; I. Colin Prentice; Damien Bonal; Sabine Tausz-Posch; Wei Sun; Yan-Shih Lin; Ana Rey;doi: 10.1038/nclimate2550
handle: 10261/121975 , 10067/1263790151162165141 , 1959.3/446914 , 10044/1/70519 , 10871/31361 , 2607/38138 , 2607/12120
doi: 10.1038/nclimate2550
handle: 10261/121975 , 10067/1263790151162165141 , 1959.3/446914 , 10044/1/70519 , 10871/31361 , 2607/38138 , 2607/12120
Stomatal conductance (gs) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model1 and the leaf and wood economics spectrum2, 3. We also demonstrate a global relationship with climate. These findings provide a robust theoretical framework for understanding and predicting the behaviour of gs across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate. This research was supported by the Australian Research Council (ARC MIA Discovery Project 1433500-2012-14). A.R. was financially supported in part by The Next-Generation Ecosystem Experiments (NGEE-Arctic) project, which is supported by the Office of Biological and Environmental Research in the Department of Energy, Office of Science, and through the United States Department of Energy contract No. DE-AC02-98CH10886 to Brookhaven National Laboratory. M.O.d.B. acknowledges that the Brassica data were obtained within a research project financed by the Belgian Science Policy (OFFQ, contract number SD/AF/02) and coordinated by K. Vandermeiren at the Open-Top Chamber research facilities of CODA-CERVA (Tervuren, Belgium).
Nature Climate Chang... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2015Data sources: Spiral - Imperial College Digital RepositoryINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverSwinburne University of Technology: Swinburne Research BankArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate2550&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Nature Climate Chang... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2015Data sources: Spiral - Imperial College Digital RepositoryINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverSwinburne University of Technology: Swinburne Research BankArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate2550&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 Australia, Spain, SpainPublisher:Wiley Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP130102576Luke Collins; Ross A. Bradstock; Victor Resco de Dios; Remko A. Duursma; Sabrina Velasco; Matthias M. Boer;doi: 10.1111/gcb.14038
pmid: 29316074
AbstractRising atmospheric [CO2] and associated climate change are expected to modify primary productivity across a range of ecosystems globally. Increasing aridity is predicted to reduce grassland productivity, although rising [CO2] and associated increases in plant water use efficiency may partially offset the effect of drying on growth. Difficulties arise in predicting the direction and magnitude of future changes in ecosystem productivity, due to limited field experimentation investigating climate and CO2 interactions. We use repeat near‐surface digital photography to quantify the effects of water availability and experimentally manipulated elevated [CO2] (eCO2) on understorey live foliage cover and biomass over three growing seasons in a temperate grassy woodland in south‐eastern Australia. We hypothesised that (i) understorey herbaceous productivity is dependent upon soil water availability, and (ii) that eCO2 will increase productivity, with greatest stimulation occurring under conditions of low water availability. Soil volumetric water content (VWC) determined foliage cover and growth rates over the length of the growing season (August to March), with low VWC (<0.1 m3 m−3) reducing productivity. However, eCO2 did not increase herbaceous cover and biomass over the duration of the experiment, or mitigate the effects of low water availability on understorey growth rates and cover. Our findings suggest that projected increases in aridity in temperate woodlands are likely to lead to reduced understorey productivity, with little scope for eCO2 to offset these changes.
Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 SpainPublisher:Public Library of Science (PLoS) Funded by:NSF | Collaborative Research: E..., NSF | CNH-L: Dynamic Impacts of...NSF| Collaborative Research: Extreme Events and Ecological Acclimation: Scaling from Cells to Ecosystems ,NSF| CNH-L: Dynamic Impacts of Environmental Change and Biomass Harvesting on Woodland Ecosystems and Traditional LivelihoodsWilliam R. L. Anderegg; Adam Wolf; Adriana Arango-Velez; Brendan Choat; Daniel J. Chmura; Steven Jansen; Thomas Kolb; Shan Li; Frederick Meinzer; Pilar Pita; Víctor Resco de Dios; John S. Sperry; Brett T. Wolfe; Stephen Pacala;Climate change is expected to lead to increases in drought frequency and severity, with deleterious effects on many ecosystems. Stomatal responses to changing environmental conditions form the backbone of all ecosystem models, but are based on empirical relationships and are not well-tested during drought conditions. Here, we use a dataset of 34 woody plant species spanning global forest biomes to examine the effect of leaf water potential on stomatal conductance and test the predictive accuracy of three major stomatal models and a recently proposed model. We find that current leaf-level empirical models have consistent biases of over-prediction of stomatal conductance during dry conditions, particularly at low soil water potentials. Furthermore, the recently proposed stomatal conductance model yields increases in predictive capability compared to current models, and with particular improvement during drought conditions. Our results reveal that including stomatal sensitivity to declining water potential and consequent impairment of plant water transport will improve predictions during drought conditions and show that many biomes contain a diversity of plant stomatal strategies that range from risky to conservative stomatal regulation during water stress. Such improvements in stomatal simulation are greatly needed to help unravel and predict the response of ecosystems to future climate extremes.
PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0185481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert PLoS ONE arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaUniversity of Western Sydney (UWS): Research DirectArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0185481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United StatesPublisher:Wiley Funded by:ARC | Testing climatic, physiol..., ARC | Discovery Projects - Gran..., ARC | Woodland response to elev...ARC| Testing climatic, physiological and hydrological assumptions underpinning water yield from montane forests ,ARC| Discovery Projects - Grant ID: DP140103415 ,ARC| Woodland response to elevated CO2 in free air carbon dioxide enrichment: does phosphorus limit the sink for Carbon?Authors: Aspinwall, Michael J. (R17430); Loik, Michael E.; Resco de Dios, Victor (R16720); Tjoelker, Mark G. (R16688); +2 AuthorsAspinwall, Michael J. (R17430); Loik, Michael E.; Resco de Dios, Victor (R16720); Tjoelker, Mark G. (R16688); Payton, Paxton; Tissue, David T. (R11531);doi: 10.1111/pce.12424
pmid: 25132508
AbstractClimate change threatens the ability of agriculture and forestry to meet growing global demands for food, fibre and wood products. Information gathered from genotype‐by‐environment interactions (G × E), which demonstrate intraspecific variation in phenotypic plasticity (the ability of a genotype to alter its phenotype in response to environmental change), may prove important for bolstering agricultural and forest productivity under climate change. Nonetheless, very few studies have explicitly quantified genotype plasticity–productivity relationships in agriculture or forestry. Here, we conceptualize the importance of intraspecific variation in agricultural and forest species plasticity, and discuss the physiological and genetic factors contributing to intraspecific variation in phenotypic plasticity. Our discussion highlights the need for an integrated understanding of the mechanisms of G × E, more extensive assessments of genotypic responses to climate change under field conditions, and explicit testing of genotype plasticity–productivity relationships. Ultimately, further investigation of intraspecific variation in phenotypic plasticity in agriculture and forestry may prove important for identifying genotypes capable of increasing or sustaining productivity under more extreme climatic conditions.
Plant Cell & Environ... arrow_drop_down eScholarship - University of CaliforniaArticle . 2014Data sources: eScholarship - University of CaliforniaPlant Cell & EnvironmentArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Plant Cell & Environ... arrow_drop_down eScholarship - University of CaliforniaArticle . 2014Data sources: eScholarship - University of CaliforniaPlant Cell & EnvironmentArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Spain, United States, SpainPublisher:Wiley Authors: Resco de Dios, Victor (R16720); Loik, Michael E.; Smith, Renee A. (R15684); Aspinwall, Michael J. (R17430); +1 AuthorsResco de Dios, Victor (R16720); Loik, Michael E.; Smith, Renee A. (R15684); Aspinwall, Michael J. (R17430); Tissue, David T. (R11531);doi: 10.1111/pce.12598
pmid: 26147129
AbstractCircadian resonance, whereby a plant's endogenous rhythms are tuned to match environmental cues, has been repeatedly shown to be adaptive, although the underlying mechanisms remain elusive. Concomitantly, the adaptive value of nocturnal transpiration in C3 plants remains unknown because it occurs without carbon assimilation. These seemingly unrelated processes are interconnected because circadian regulation drives temporal patterns in nocturnal stomatal conductance, with maximum values occurring immediately before dawn for many species. We grew individuals of six Eucalyptus camaldulensis genotypes in naturally lit glasshouses and measured sunset, predawn and midday leaf gas exchange and whole‐plant biomass production. We tested whether sunrise anticipation by the circadian clock and subsequent increases in genotype predawn stomatal conductance led to rapid stomatal opening upon illumination, ultimately affecting genotype differences in carbon assimilation and growth. We observed faster stomatal responses to light inputs at sunrise in genotypes with higher predawn stomatal conductance. Moreover, early morning and midday stomatal conductance and carbon assimilation, leaf area and total plant biomass were all positively correlated with predawn stomatal conductance across genotypes. Our results lead to the novel hypothesis that genotypic variation in the circadian‐regulated capacity to anticipate sunrise could be an important factor underlying intraspecific variation in tree growth.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/98j055fhData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTAeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaPlant Cell & EnvironmentArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/98j055fhData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTAeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaPlant Cell & EnvironmentArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Embargo end date: 01 Jan 2016 Australia, United Kingdom, Spain, United States, Switzerland, Spain, Spain, SpainPublisher:Copernicus GmbH Funded by:EC | ECOWAXEC| ECOWAXWayne S. Meyer; Natascha Kljun; Anne Griebel; Anne Griebel; Stefan K. Arndt; Lindsay B. Hutley; Suzanne M. Prober; Cacilia Ewenz; Eva van Gorsel; Richard Silberstein; Bradley Evans; Trevor F. Keenan; Sebastian Wolf; Peter Isaac; Jason Beringer; Craig Macfarlane; James Cleverly; Ian McHugh; Elise Pendall; Vanessa Haverd; Víctor Resco de Dios;handle: 10459.1/58879 , 2328/37056 , 1959.7/uws:38219 , 2440/105613 , 1885/153292
Abstract. As a result of climate change warmer temperatures are projected through the 21st century and are already increasing above modelled predictions. Apart from increases in the mean, warm/hot temperature extremes are expected to become more prevalent in the future, along with an increase in the frequency of droughts. It is crucial to better understand the response of terrestrial ecosystems to such temperature extremes for predicting land-surface feedbacks in a changing climate. While land-surface feedbacks in drought conditions and during heat waves have been reported from Europe and the US, direct observations of the impact of such extremes on the carbon and water cycles in Australia have been lacking. During the 2012/2013 summer, Australia experienced a record-breaking heat wave with an exceptional spatial extent that lasted for several weeks. In this study we synthesised eddy-covariance measurements from seven woodlands and one forest site across three biogeographic regions in southern Australia. These observations were combined with model results from BIOS2 (Haverd et al., 2013a, b) to investigate the effect of the summer heat wave on the carbon and water exchange of terrestrial ecosystems which are known for their resilience toward hot and dry conditions. We found that water-limited woodland and energy-limited forest ecosystems responded differently to the heat wave. During the most intense part of the heat wave, the woodlands experienced decreased latent heat flux (23 % of background value), increased Bowen ratio (154 %) and reduced carbon uptake (60 %). At the same time the forest ecosystem showed increased latent heat flux (151 %), reduced Bowen ratio (19 %) and increased carbon uptake (112 %). Higher temperatures caused increased ecosystem respiration at all sites (up to 139 %). During daytime all ecosystems remained carbon sinks, but carbon uptake was reduced in magnitude. The number of hours during which the ecosystem acted as a carbon sink was also reduced, which switched the woodlands into a carbon source on a daily average. Precipitation occurred after the first, most intense part of the heat wave, and the subsequent cooler temperatures in the temperate woodlands led to recovery of the carbon sink, decreased the Bowen ratio (65 %) and hence increased evaporative cooling. Gross primary productivity in the woodlands recovered quickly with precipitation and cooler temperatures but respiration remained high. While the forest proved relatively resilient to this short-term heat extreme the response of the woodlands is the first direct evidence that the carbon sinks of large areas of Australia may not be sustainable in a future climate with an increased number, intensity and duration of heat waves.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/2kp5m577Data sources: Bielefeld Academic Search Engine (BASE)Flinders Academic Commons (FAC - Flinders University)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/2328/37056Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2016License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworkspost2013/2341Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/2440/105613Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/153292Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2016Full-Text: https://doi.org/10.5194/bg-13-5947-2016Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-13-5947-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/2kp5m577Data sources: Bielefeld Academic Search Engine (BASE)Flinders Academic Commons (FAC - Flinders University)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/2328/37056Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2016License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworkspost2013/2341Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/2440/105613Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/153292Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2016Full-Text: https://doi.org/10.5194/bg-13-5947-2016Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-13-5947-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 New Zealand, AustraliaPublisher:Wiley Funded by:ARC | Linkage Projects - Grant ..., ARC | Linkage Projects - Grant ...ARC| Linkage Projects - Grant ID: LP190100436 ,ARC| Linkage Projects - Grant ID: LP180100741Andy Leigh; Rachael H. Nolan; Rachael H. Nolan; Timothy J. Curran; Luke Collins; Luke Collins; Luke Collins; Thomas A. Fairman; Víctor Resco de Dios; Víctor Resco de Dios; Ross A. Bradstock; Mark K. J. Ooi; Mark K. J. Ooi;doi: 10.1111/pce.14176
pmid: 34453442
handle: 1959.4/unsworks_78964 , 11343/298995 , 1959.7/uws:62879 , 10182/14593
doi: 10.1111/pce.14176
pmid: 34453442
handle: 1959.4/unsworks_78964 , 11343/298995 , 1959.7/uws:62879 , 10182/14593
AbstractRecord‐breaking fire seasons in many regions across the globe raise important questions about plant community responses to shifting fire regimes (i.e., changing fire frequency, severity and seasonality). Here, we examine the impacts of climate‐driven shifts in fire regimes on vegetation communities, and likely responses to fire coinciding with severe drought, heatwaves and/or insect outbreaks. We present scenario‐based conceptual models on how overlapping disturbance events and shifting fire regimes interact differently to limit post‐fire resprouting and recruitment capacity. We demonstrate that, although many communities will remain resilient to changing fire regimes in the short‐term, longer‐term changes to vegetation structure, demography and species composition are likely, with a range of subsequent effects on ecosystem function. Resprouting species are likely to be most resilient to changing fire regimes. However, even these species are susceptible if exposed to repeated short‐interval fire in combination with other stressors. Post‐fire recruitment is highly vulnerable to increased fire frequency, particularly as climatic limitations on propagule availability intensify. Prediction of community responses to fire under climate change will be greatly improved by addressing knowledge gaps on how overlapping disturbances and climate change‐induced shifts in fire regime affect post‐fire resprouting, recruitment, growth rates, and species‐level adaptation capacity.
UNSWorks arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAPlant Cell & EnvironmentArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.14176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert UNSWorks arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAPlant Cell & EnvironmentArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.14176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 SpainPublisher:Elsevier BV Funded by:EC | FirEUriskEC| FirEUriskJuan Martínez de Aragón; Javier Hedo; Rubén Díaz-Sierra; Matthias M. Boer; José Antonio Bonet; Prakash Thapa; Àngel Cunill Camprubí; Edurne Martínez del Castillo; Rodrigo Balaguer-Romano; Marta Yebra; Víctor Resco de Dios; Víctor Resco de Dios;Fuel moisture limits the availability of fuel to wildfires in many forest areas worldwide, but the effects of climate change on moisture constraints remain largely unknown. Here we addressed how climate affects fuel moisture in pine stands from Catalonia, NE Spain, and the potential effects of increasing climate aridity on burned area in the Pyrenees, a mesic mountainous area where fire is currently rare. We first quantified variation in fuel moisture in six sites distributed across an altitudinal gradient where the long-term mean annual temperature and precipitation vary by 6-15 °C and 395-933 mm, respectively. We observed significant spatial variation in live (78-162%) and dead (10-15%) fuel moisture across sites. The pattern of variation was negatively linked (r = |0.6|-|0.9|) to increases in vapor pressure deficit (VPD) and in the Aridity Index. Using seasonal fire records over 2006-2020, we observed that summer burned area in the Mediterranean forests of Northeast Spain and Southern France was strongly dependent on VPD (r = 0.93), the major driver (and predictor) of dead fuel moisture content (DFMC) at our sites. Based on the difference between VPD thresholds associated with large wildfire seasons in the Mediterranean (3.6 kPa) and the maximum VPD observed in surrounding Pyrenean mountains (3.1 kPa), we quantified the "safety margin" for Pyrenean forests (difference between actual VPD and that associated with large wildfires) at 0.5 kPa. The effects of live fuel moisture content (LFMC) on burned area were not significant under current conditions, a situation that may change with projected increases in climate aridity. Overall, our results indicate that DFMC in currently fire-free areas in Europe, like the Pyrenees, with vast amounts of fuel in many forest stands, may reach critical dryness thresholds beyond the safety margin and experience large wildfires after only mild increases in VPD, although LFMC can modulate the response.
Repositori Obert UdL arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe Science of The Total EnvironmentArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.149104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Repositori Obert UdL arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe Science of The Total EnvironmentArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.149104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 SpainPublisher:MDPI AG Authors: Víctor Resco de Dios; Michael E. Loik; Renee A. Smith; David T. Tissue;doi: 10.3390/f9060319
Nocturnal transpiration constitutes a significant yet poorly understood component of the global water cycle. Modeling nocturnal transpiration has been complicated by recent findings showing that stomata respond differently to environmental drivers over day- vs. night-time periods. Here, we propose that nocturnal stomatal conductance depends on antecedent daytime conditions. We tested this hypothesis across six genotypes of Eucalyptus camaldulensis Dehnh. growing under different CO2 concentrations (ambient vs. elevated) and exposed to contrasting temperatures (ambient vs. heat wave) for four days prior to the night of measurements, when all plants experienced ambient temperature conditions. We observed significant effects after the heat wave that led to 36% reductions in nocturnal stomatal conductance. The response was partly driven by changes in daytime stomatal behavior but additional factors may have come into play. We also observed significant differences in response to the heat wave across genotypes, likely driven by local adaptation to their climate of origin, but CO2 played no effect. Stomatal models may need to incorporate the role of antecedent effects to improve projections particularly after drastic changes in the environment such as heat waves.
Forests arrow_drop_down ForestsOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1999-4907/9/6/319/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaUniversity of Western Sydney (UWS): Research DirectArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f9060319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Forests arrow_drop_down ForestsOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1999-4907/9/6/319/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaUniversity of Western Sydney (UWS): Research DirectArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/f9060319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Lin Lin; Jin Li; Obey Kudakwashe Zveushe; Ying Han; Hengxing Zhang; Yu Qin; Victor Resco de Dios; Lei Zhou; Xiangyu Xi; Wei Zhang; Yulian Zhao; Amal Mohamed Omer; Faqin Dong;pmid: 39874763
Soil cadmium (Cd) contamination is one of the major challenges in food production. This has led to above-maximum threshold accumulation of Cd in O. japonicus roots. This research identifies Pseudomonas tianjinensis S2 (PL), a newly isolated bacterium, and Corymbiglomus tortuosum (Ct), an arbuscular mycorrhizal fungus (AMF), as effective agents for reducing Cd concentration in the roots of O. japonicus. Compared to the control (CK) treatment, the root Cd levels decreased by 62.27 % and 46.13 %, respectively, significantly enhancing root biomass. We also noticed the involvement of -OH, -CH, and CC functional groups in Cd chelation in both treatments, and the formation of precipitates, including C2H2CdO4, C4H6CdO4, Cd(OH)2, and Cd3(PO4)2, in both PL and Ct treatments. Moreover, the proportion of residual Cd in soil increased by 21.21 % and 10.61 % for the PL and Ct treatments, respectively, compared to the CK. The findings suggest that P. tianjinensis S2 is more effective than C. tortuosum for high Cd-contaminated fields, while the fungal inoculant is suitable for lower contamination levels, offering valuable strategies for bioremediation. Therefore, we suggest further research to focus on elucidating the effect of a P. tianjinensis S2 and C. tortuosum combination on O. japonicus root growth and Cd accumulation.
Journal of Hazardous... arrow_drop_down Journal of Hazardous MaterialsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2025.137361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Journal of Hazardous... arrow_drop_down Journal of Hazardous MaterialsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jhazmat.2025.137361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Australia, Australia, France, Australia, Italy, France, Belgium, Spain, Spain, Australia, United Kingdom, Australia, Australia, SpainPublisher:Springer Science and Business Media LLC David T. Tissue; Markus Löw; Jeffrey M. Warren; Göran Wallin; Jonathan Bennie; Derek Eamus; Yusuke Onoda; Johan Uddling; David S. Ellsworth; Joana Zaragoza-Castells; Nicolas Martin-StPaul; Teis Nørgaard Mikkelsen; Craig V. M. Barton; Lucy Rowland; Maarten Op de Beeck; Jean-Marc Limousin; Patrick Meir; Han Wang; Maj-Lena Linderson; Oula Ghannoum; Jesse B. Nippert; Jeff W. G. Kelly; Alexandre Bosc; Alexandre Bosc; Kohei Koyama; Kohei Koyama; Teresa E. Gimeno; Troy W. Ocheltree; Sofia Baig; Qingmin Han; Lucas A. Cernusak; John E. Drake; Antonio Carlos Lola da Costa; Patrick J. Mitchell; Cate Macinins-Ng; Norma Salinas; Norma Salinas; Samantha A. Setterfield; Kouki Hikosaka; Lasse Tarvainen; M. S. J. Broadmeadow; Lisa Wingate; Remko A. Duursma; Lindsay B. Hutley; Víctor Resco de Dios; Alistair Rogers; Paolo De Angelis; Kihachiro Kikuzawa; Belinda E. Medlyn; Michael Freeman; Pasi Kolari; I. Colin Prentice; I. Colin Prentice; Damien Bonal; Sabine Tausz-Posch; Wei Sun; Yan-Shih Lin; Ana Rey;doi: 10.1038/nclimate2550
handle: 10261/121975 , 10067/1263790151162165141 , 1959.3/446914 , 10044/1/70519 , 10871/31361 , 2607/38138 , 2607/12120
doi: 10.1038/nclimate2550
handle: 10261/121975 , 10067/1263790151162165141 , 1959.3/446914 , 10044/1/70519 , 10871/31361 , 2607/38138 , 2607/12120
Stomatal conductance (gs) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model1 and the leaf and wood economics spectrum2, 3. We also demonstrate a global relationship with climate. These findings provide a robust theoretical framework for understanding and predicting the behaviour of gs across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate. This research was supported by the Australian Research Council (ARC MIA Discovery Project 1433500-2012-14). A.R. was financially supported in part by The Next-Generation Ecosystem Experiments (NGEE-Arctic) project, which is supported by the Office of Biological and Environmental Research in the Department of Energy, Office of Science, and through the United States Department of Energy contract No. DE-AC02-98CH10886 to Brookhaven National Laboratory. M.O.d.B. acknowledges that the Brassica data were obtained within a research project financed by the Belgian Science Policy (OFFQ, contract number SD/AF/02) and coordinated by K. Vandermeiren at the Open-Top Chamber research facilities of CODA-CERVA (Tervuren, Belgium).
Nature Climate Chang... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2015Data sources: Spiral - Imperial College Digital RepositoryINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverSwinburne University of Technology: Swinburne Research BankArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate2550&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Nature Climate Chang... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2015Data sources: Spiral - Imperial College Digital RepositoryINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverSwinburne University of Technology: Swinburne Research BankArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nclimate2550&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu