
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Utilizing intraspecific variation in phenotypic plasticity to bolster agricultural and forest productivity under climate change

doi: 10.1111/pce.12424
pmid: 25132508
AbstractClimate change threatens the ability of agriculture and forestry to meet growing global demands for food, fibre and wood products. Information gathered from genotype‐by‐environment interactions (G × E), which demonstrate intraspecific variation in phenotypic plasticity (the ability of a genotype to alter its phenotype in response to environmental change), may prove important for bolstering agricultural and forest productivity under climate change. Nonetheless, very few studies have explicitly quantified genotype plasticity–productivity relationships in agriculture or forestry. Here, we conceptualize the importance of intraspecific variation in agricultural and forest species plasticity, and discuss the physiological and genetic factors contributing to intraspecific variation in phenotypic plasticity. Our discussion highlights the need for an integrated understanding of the mechanisms of G × E, more extensive assessments of genotypic responses to climate change under field conditions, and explicit testing of genotype plasticity–productivity relationships. Ultimately, further investigation of intraspecific variation in phenotypic plasticity in agriculture and forestry may prove important for identifying genotypes capable of increasing or sustaining productivity under more extreme climatic conditions.
- Western Sydney University Australia
- University of California System United States
- University of Lleida Spain
- Agricultural Research Service United States
- Cropping Systems Research Laboratory United States
Crops, Agricultural, Climate Change, Efficiency, Forests, 333, forests and forestry, XXXXXX - Unknown, agriculture, Genetic Variation, Agriculture, Forestry, Carbon Dioxide, Plants, Droughts, acclimatization, genetic variation, physiology
Crops, Agricultural, Climate Change, Efficiency, Forests, 333, forests and forestry, XXXXXX - Unknown, agriculture, Genetic Variation, Agriculture, Forestry, Carbon Dioxide, Plants, Droughts, acclimatization, genetic variation, physiology
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).77 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
