- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Paul H. Humble; Dustin D. Caldwell; Robert S. Wegeng; Robert A. Dagle; Ward E. TeGrotenhuis; Brad G. Fritz; Richard Zheng; Diver Richard B; R. J. Cameron;AbstractSolar-aided upgrade of the energy content of fossil fuels, such as natural gas, can provide a near-term transition path towards a future solar-fuel economy and reduce carbon dioxide emission from fossil fuel consumption. Both steam and dry reforming a methane-containing fuel stream have been studied with concentrated solar power as the energy input to drive the highly endothermic reactions but the concept has not been demonstrated at a commercial scale. Under a current project with the U.S. Department of Energy, PNNL is developing an integrated solar thermochemical reaction system that combines solar concentrators with micro- and meso-channel reactors and heat exchangers to accomplish more than 20% solar augment of methane higher heating value. The objective of our three-year project is to develop and prepare for commercialization such solar reforming system with a high enough efficiency to serve as the frontend of a conventional natural gas (or biogas) combined cycle power plant, producing power with a levelized cost of electricity less than 6¢/kWh, without subsidies, by the year 2020. In this paper, we present results from the first year of our project that demonstrated a solar-to-chemical energy conversion efficiency as high as 69% with a prototype reaction system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.03.204&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.03.204&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2003Publisher:ASMEDC Authors: Victoria S. Stenkamp; Ward E. Tegrotenhuis;Heat exchange has been successfully integrated with microchannel phase separation concepts to produce devices capable of simultaneous partial condensation and phase separation in reduced gravity. An air-cooled microchannel condenser has been tested on NASA’s KC-135 reduced gravity aircraft. The condenser was fed a mixture of air and water vapor at 70–95°C, which was cooled to below 40°C thereby generating water condensate. The condensate was successfully collected and removed as a separate stream over a range of operating conditions, thereby achieving simultaneous condensation and phase separation. Ambient air was used to cool in cross-flow with inches of water pressure drop. The microchannel device is presented along with an explanation of the principles of operation. Phase separation effectiveness and heat exchanger performance are reported for reduced gravity testing. Heat fluxes, effectiveness, and overall heat transfer coefficients are reported.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/icmm2003-1089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/icmm2003-1089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Yuxiang Rao; Feng Zheng; Rong Xing; Nathan L. Canfield; David W. Winiarski; Wei Liu; Ward E. TeGrotenhuis;Abstract Air conditioning consumes a very large amount of electricity globally. Energy efficiency of the conventional vapor compression cooling is low in warm and humid climates due to water condensation. Membrane separation is viewed as one efficient process for air dehumidification. In this paper, we report the development of a novel thin flat sheet zeolite membrane for the air dehumidification application. The membrane is prepared by deposition of an ultra-thin H2O-selective zeolite membrane film (~3 μm) on a thin (~50 μm) porous metal sheet support. Under separation temperature of 32 °C and feed air relative humidity (RH) of 90%, a quality membrane shows water permeance as high as 6.8×10−6 mol m−2 Pa−1 s−1, which is about 1 to 3 orders of magnitude higher than the previously reported in the literature, and a water vapor/air separation factor over 300. In addition, this zeolite/metal thin-sheet membrane exhibits excellent stability as no apparent decline of separation performances is observed during 8-day continuous testing with humid in-house air. To simulate various climate conditions, the membrane is tested over a range of separation conditions which include temperature, feed air RH, and permeate pressure. It is estimated that 50% or higher energy efficiency gain over the conventional vapor compression system can be obtained when the membrane separation factor is above 200. The results suggest the possibility to develop an on-line, compact membrane dehumidifier for significant enhancement of air conditioning energy efficiency.
Chemical Engineering... arrow_drop_down Chemical Engineering ScienceArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ces.2013.08.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Chemical Engineering... arrow_drop_down Chemical Engineering ScienceArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ces.2013.08.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Ward E. TeGrotenhuis; J. B. Sweeney; Paul H. Humble;Abstract Attaining high energy efficiency with adsorption heat pumps is challenging due to thermodynamic losses that occur when the sorbent beds are thermally cycled without effective heat recuperation. The multi-bed concept described here enables high efficiency by effectively transferring heat from beds being cooled to beds being heated. A simplified lumped-parameter model and detailed finite element analysis are used to simulate a sorption compressor, which is used to project the overall heat pump coefficient of performance. Results are presented for ammonia refrigerant and a nano-structured monolithic carbon sorbent specifically modified for the application. The effects of bed geometry and number of beds on system performance are explored, and the majority of the performance benefit is obtained with four beds. Results indicate that a COP of 1.24 based on heat input is feasible at AHRI standard test conditions for residential HVAC equipment. When compared on a basis of primary energy input, performance equivalent to SEER 13 or 14 are theoretically attainable with this system.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2011.11.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2011.11.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Robert S. Wegeng; Daryl R. Brown; Ward E. TeGrotenhuis; John C. Mankins;AbstractWith funding from the U.S. Department of Energy (DOE) and SolarThermoChemical LLC, PNNL is developing a solar-powered steam-methane reformer (SMR). The reformer sits at the focal point of a parabolic dish concentrator, with the concentrated solar energy providing the endothermic heat of reaction. The result is a syngas comprising mostly H2 and CO with a heating value approximately 27% higher than the entering natural gas.On-sun testing completed in 2013 achieved a solar-to-chemical energy conversion efficiency as high as 69%, based on the ratio of incremental chemical energy created to direct normal insolation striking the parabolic dish concentrator. Advanced designs are expected to improve upon this performance. Details regarding the design and performance of the solar reformer are presented elsewhere.This paper describes the projected economics of the parabolic dish SMR system. The key metrics are the levelized cost of electricity for a modified, combined-cycle power plant that operates with natural gas or syngas from the dish SMR, and the levelized cost of chemical energy based on the incremental chemical energy produced in the SMR. The latter can be compared to the levelized cost of natural gas over the life of the solar-powered system. Initial capital and annual maintenance cost estimates for each system component are also presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001Publisher:Auricle Global Society of Education and Research Authors: Robert S. Wegeng; Larry R. Pederson; Ward E. TeGrotenhuis; Greg A. Whyatt;One possible route to the development of compact fuel processing technology is through the application of microchannel technology. Also called micro chemical and thermal systems (micro-cats), microchannel technology is hardware that incorporates engineered microchannels that provide more rapid heat and mass transport, and therefore faster processing rates, than can be realised within systems employing conventional fluid passages. Hardware size is reduced without reducing the processing capacity of the system. Researchers at the US Department of Energy's (DOE's) Pacific Northwest National Laboratory (PNNL) are currently developing microchannel heat-exchangers, reactors and separators as components for compact hydrogen generators for fuel cells. This effort, funded by the DOE's Office of Transportation Technology, is now demonstrating high performance in compact units. Over the past year, the project team has concentrated most of its effort on the demonstration of an overall microchannel steam reforming system, including four microchannel steam reformers and more than 24 microchannel heat-exchangers, which as a system are intended to provide both high energy efficiencies and high power densities. Work is also under way on other microchannel components that may ultimately find value within an automotive fuel processing system or within distributed power systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s1464-2859(01)80001-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s1464-2859(01)80001-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2006Publisher:SAE International Authors: Ward E. TeGrotenhuis; Kriston P. Brooks;doi: 10.4271/2006-01-2267
Portable life support systems must be capable of performing thermal management in a wide variety of environments. Heat-actuated heat pumps may provide this flexibility, if they can be made small enough. Microchannel technologies represent a proven approach for reducing system volume and mass. The potential impact of adding a LiBr-H2O absorption cooler to increase the radiator temperature was considered. This study showed that such a heat pump can lift the radiator temperature from 15°C to 60°C with a coefficient of performance of 0.65 and that the radiator area can be reduced by up to 60%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2006-01-2267&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2006-01-2267&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Paul H. Humble; Dustin D. Caldwell; Robert S. Wegeng; Robert A. Dagle; Ward E. TeGrotenhuis; Brad G. Fritz; Richard Zheng; Diver Richard B; R. J. Cameron;AbstractSolar-aided upgrade of the energy content of fossil fuels, such as natural gas, can provide a near-term transition path towards a future solar-fuel economy and reduce carbon dioxide emission from fossil fuel consumption. Both steam and dry reforming a methane-containing fuel stream have been studied with concentrated solar power as the energy input to drive the highly endothermic reactions but the concept has not been demonstrated at a commercial scale. Under a current project with the U.S. Department of Energy, PNNL is developing an integrated solar thermochemical reaction system that combines solar concentrators with micro- and meso-channel reactors and heat exchangers to accomplish more than 20% solar augment of methane higher heating value. The objective of our three-year project is to develop and prepare for commercialization such solar reforming system with a high enough efficiency to serve as the frontend of a conventional natural gas (or biogas) combined cycle power plant, producing power with a levelized cost of electricity less than 6¢/kWh, without subsidies, by the year 2020. In this paper, we present results from the first year of our project that demonstrated a solar-to-chemical energy conversion efficiency as high as 69% with a prototype reaction system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.03.204&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.03.204&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2003Publisher:ASMEDC Authors: Victoria S. Stenkamp; Ward E. Tegrotenhuis;Heat exchange has been successfully integrated with microchannel phase separation concepts to produce devices capable of simultaneous partial condensation and phase separation in reduced gravity. An air-cooled microchannel condenser has been tested on NASA’s KC-135 reduced gravity aircraft. The condenser was fed a mixture of air and water vapor at 70–95°C, which was cooled to below 40°C thereby generating water condensate. The condensate was successfully collected and removed as a separate stream over a range of operating conditions, thereby achieving simultaneous condensation and phase separation. Ambient air was used to cool in cross-flow with inches of water pressure drop. The microchannel device is presented along with an explanation of the principles of operation. Phase separation effectiveness and heat exchanger performance are reported for reduced gravity testing. Heat fluxes, effectiveness, and overall heat transfer coefficients are reported.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/icmm2003-1089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/icmm2003-1089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Yuxiang Rao; Feng Zheng; Rong Xing; Nathan L. Canfield; David W. Winiarski; Wei Liu; Ward E. TeGrotenhuis;Abstract Air conditioning consumes a very large amount of electricity globally. Energy efficiency of the conventional vapor compression cooling is low in warm and humid climates due to water condensation. Membrane separation is viewed as one efficient process for air dehumidification. In this paper, we report the development of a novel thin flat sheet zeolite membrane for the air dehumidification application. The membrane is prepared by deposition of an ultra-thin H2O-selective zeolite membrane film (~3 μm) on a thin (~50 μm) porous metal sheet support. Under separation temperature of 32 °C and feed air relative humidity (RH) of 90%, a quality membrane shows water permeance as high as 6.8×10−6 mol m−2 Pa−1 s−1, which is about 1 to 3 orders of magnitude higher than the previously reported in the literature, and a water vapor/air separation factor over 300. In addition, this zeolite/metal thin-sheet membrane exhibits excellent stability as no apparent decline of separation performances is observed during 8-day continuous testing with humid in-house air. To simulate various climate conditions, the membrane is tested over a range of separation conditions which include temperature, feed air RH, and permeate pressure. It is estimated that 50% or higher energy efficiency gain over the conventional vapor compression system can be obtained when the membrane separation factor is above 200. The results suggest the possibility to develop an on-line, compact membrane dehumidifier for significant enhancement of air conditioning energy efficiency.
Chemical Engineering... arrow_drop_down Chemical Engineering ScienceArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ces.2013.08.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Chemical Engineering... arrow_drop_down Chemical Engineering ScienceArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ces.2013.08.061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Ward E. TeGrotenhuis; J. B. Sweeney; Paul H. Humble;Abstract Attaining high energy efficiency with adsorption heat pumps is challenging due to thermodynamic losses that occur when the sorbent beds are thermally cycled without effective heat recuperation. The multi-bed concept described here enables high efficiency by effectively transferring heat from beds being cooled to beds being heated. A simplified lumped-parameter model and detailed finite element analysis are used to simulate a sorption compressor, which is used to project the overall heat pump coefficient of performance. Results are presented for ammonia refrigerant and a nano-structured monolithic carbon sorbent specifically modified for the application. The effects of bed geometry and number of beds on system performance are explored, and the majority of the performance benefit is obtained with four beds. Results indicate that a COP of 1.24 based on heat input is feasible at AHRI standard test conditions for residential HVAC equipment. When compared on a basis of primary energy input, performance equivalent to SEER 13 or 14 are theoretically attainable with this system.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2011.11.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2011.11.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Robert S. Wegeng; Daryl R. Brown; Ward E. TeGrotenhuis; John C. Mankins;AbstractWith funding from the U.S. Department of Energy (DOE) and SolarThermoChemical LLC, PNNL is developing a solar-powered steam-methane reformer (SMR). The reformer sits at the focal point of a parabolic dish concentrator, with the concentrated solar energy providing the endothermic heat of reaction. The result is a syngas comprising mostly H2 and CO with a heating value approximately 27% higher than the entering natural gas.On-sun testing completed in 2013 achieved a solar-to-chemical energy conversion efficiency as high as 69%, based on the ratio of incremental chemical energy created to direct normal insolation striking the parabolic dish concentrator. Advanced designs are expected to improve upon this performance. Details regarding the design and performance of the solar reformer are presented elsewhere.This paper describes the projected economics of the parabolic dish SMR system. The key metrics are the levelized cost of electricity for a modified, combined-cycle power plant that operates with natural gas or syngas from the dish SMR, and the levelized cost of chemical energy based on the incremental chemical energy produced in the SMR. The latter can be compared to the levelized cost of natural gas over the life of the solar-powered system. Initial capital and annual maintenance cost estimates for each system component are also presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.03.203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001Publisher:Auricle Global Society of Education and Research Authors: Robert S. Wegeng; Larry R. Pederson; Ward E. TeGrotenhuis; Greg A. Whyatt;One possible route to the development of compact fuel processing technology is through the application of microchannel technology. Also called micro chemical and thermal systems (micro-cats), microchannel technology is hardware that incorporates engineered microchannels that provide more rapid heat and mass transport, and therefore faster processing rates, than can be realised within systems employing conventional fluid passages. Hardware size is reduced without reducing the processing capacity of the system. Researchers at the US Department of Energy's (DOE's) Pacific Northwest National Laboratory (PNNL) are currently developing microchannel heat-exchangers, reactors and separators as components for compact hydrogen generators for fuel cells. This effort, funded by the DOE's Office of Transportation Technology, is now demonstrating high performance in compact units. Over the past year, the project team has concentrated most of its effort on the demonstration of an overall microchannel steam reforming system, including four microchannel steam reformers and more than 24 microchannel heat-exchangers, which as a system are intended to provide both high energy efficiencies and high power densities. Work is also under way on other microchannel components that may ultimately find value within an automotive fuel processing system or within distributed power systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s1464-2859(01)80001-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s1464-2859(01)80001-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2006Publisher:SAE International Authors: Ward E. TeGrotenhuis; Kriston P. Brooks;doi: 10.4271/2006-01-2267
Portable life support systems must be capable of performing thermal management in a wide variety of environments. Heat-actuated heat pumps may provide this flexibility, if they can be made small enough. Microchannel technologies represent a proven approach for reducing system volume and mass. The potential impact of adding a LiBr-H2O absorption cooler to increase the radiator temperature was considered. This study showed that such a heat pump can lift the radiator temperature from 15°C to 60°C with a coefficient of performance of 0.65 and that the radiator area can be reduced by up to 60%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2006-01-2267&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2006-01-2267&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu