- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Authors: Loveridge, F; Powrie, W;Pile heat exchangers – where heat transfer pipes are cast into the building piled foundations – offer an opportunity to use ground energy systems without the additional construction costs related to the provision of special purpose heat exchangers. However, analysis methods for pile heat exchangers are still under development. In particular there is an absence of available methods and guidance for the amount of thermal interaction that may occur between adjacent pile heat exchangers and the corresponding reduction in available energy that this will cause. This is of particular importance as the locations of foundation piles are controlled by the structural demands of the building and cannot be optimised with respect to the thermal analysis. This paper presents a method for deriving G-functions for use with multiple pile heat exchangers. Example functions illustrate the primary importance of pile spacing in controlling available energy, followed by the number of piles within any given arrangement. Significantly it was found that the internal thermal behaviour of a pile is not influenced appreciably by adjacent piles.
e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.11.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.11.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Meibodi, SS; Loveridge, F;Energy geostructures are novel dual use engineering sub-structures that can be used for heat transfer and storage as well as original structural function. Their use is becoming increasingly popular in delivering cost-effective shallow geothermal energy. Currently, they are mostly used as a part of ground-source heat pump (GSHP) systems for supplying partial or full heating and cooling demands of different types of buildings. The recent introduction of fifth generation district heating and cooling (5GDHC) networks can pave the way for the exploitation of energy geostructures as ground-coupled low-temperature energy sources and stores for providing energy demands of a wider range of energy users in districts rather than single buildings. In this article, the capability and feasibility of the novel concept of integration of energy geostructures into the 5GDHC networks are evaluated through reviewing different aspects of thermal performance of operating energy geostructures and 5GDHC networks. The potential advantages and challenges along with the knowledge gaps in such integration are discussed, and some practical recommendations are provided concerning dealing with some implementation challenges. It is highlighted that the incorporation of energy geostructures in 5GDHC networks can enhance the sustainability, flexibility and resilience of the network. There is the potential to exploit a greater share of cost-effective geothermal energy, and the ability to act as both thermal energy sources and stores for efficiently supplying both heating and cooling demands. However, since the development of fifth generation thermal networks and energy geostructures, particularly energy walls and energy tunnels, are still in their infancy, further research is required to assess the magnitude of the opportunities and quantify the advantages of integrating energy geostructures into the 5GDHC networks.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.122481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.122481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Funded by:UKRI | Performance of Ground Ene...UKRI| Performance of Ground Energy Systems Installed in FoundationsAuthors: Loveridge, F; Powrie, W;Structural foundation piles are being used increasingly as heat exchangers to provide renewable heat for new buildings. To design such energy systems a steady state is assumed within the pile, which is conventionally characterised by constant thermal resistance. However, there has been little research regarding pile resistance and there are few published case studies. Numerical modelling results are presented here to provide typical values of pile resistance, depending on the details of the heat exchange pipes. Analysis suggests large diameter piles may take several days to reach steady state; in these cases a transient design approach may be more appropriate.
e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2014 . Peer-reviewedFull-Text: https://eprints.soton.ac.uk/357088/1/Loveridge%2526Powrie%2520pile%2520resistance%2520R2-1clean.pdfData sources: e-Prints Sotonadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geothermics.2013.09.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2014 . Peer-reviewedFull-Text: https://eprints.soton.ac.uk/357088/1/Loveridge%2526Powrie%2520pile%2520resistance%2520R2-1clean.pdfData sources: e-Prints Sotonadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geothermics.2013.09.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Funded by:UKRI | Integrated Infrastructure...UKRI| Integrated Infrastructure for Sustainable Thermal Energy Provision (IN-STEP)Authors: Saleh S. Meibodi; Simon Rees; Fleur Loveridge;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.130107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.130107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2013 United KingdomPublisher:Thomas Telford Ltd. Authors: Loveridge, F.A.; Powrie, W.;Thermal piles – that is structural foundation piles also used as heat exchangers as part of a ground energy system – are increasingly being adopted for their contribution to more sustainable energy strategies for new buildings. Despite over a quarter of a century having passed since the installation of the first thermal piles in northern Europe, uncertainties regarding their behaviour remain. This paper identifies the key factors which influence the heat transfer and thermal–mechanical interactions of such piles. In terms of heat output, pile aspect ratio is identified as an important parameter controlling the overall thermal performance. Temperature changes in the concrete and surrounding ground during thermal pile operation will lead to additional concrete stresses and displacements within the pile–soil system. Consequently designers must ensure that temperatures remain within acceptable limits, while the pile geotechnical analysis should demonstrate that any adverse thermal stresses are within design safety factors and that any additional displacements do not affect the serviceability of the structure.
e-Prints Soton arrow_drop_down Proceedings of the Institution of Civil Engineers - Geotechnical EngineeringArticleData sources: UnpayWallProceedings of the Institution of Civil Engineers - Geotechnical EngineeringArticle . 2013 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1680/geng.11.00042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert e-Prints Soton arrow_drop_down Proceedings of the Institution of Civil Engineers - Geotechnical EngineeringArticleData sources: UnpayWallProceedings of the Institution of Civil Engineers - Geotechnical EngineeringArticle . 2013 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1680/geng.11.00042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 France, ItalyPublisher:Elsevier BV Funded by:ANR | TEC XXI, UKRI | Integrated Infrastructure...ANR| TEC XXI ,UKRI| Integrated Infrastructure for Sustainable Thermal Energy Provision (IN-STEP)Authors: Alice Di Donna; Fleur Loveridge; Miriam Piemontese; Marco Barla;handle: 11583/2972698
Geotechnical structures are being increasingly employed, in Europe as all around the world, to exchange heat with the ground and supply thermal energy for heating and cooling of buildings and de-icing of infrastructure. Most current practical applications are related to energy piles, but embedded retaining walls are now also being adopted. However, analysis and design methods for these new dual use foundations and ground heat exchangers are currently lacking, making it hard to provide estimates of energy availability without recourse to full numerical simulation. This paper helps to fill this gap by using coupled thermo-hydro finite element analysis to develop charts of energy capacity that could be applied at the outline design stage for energy walls. In particular, the influence of ground properties (hydraulic and thermal conductivities), and ground conditions, (groundwater temperature and flow velocity) are investigated with the results showing that the hydrogeological conditions and the temperature difference between the ground source and application temperature are especially important in determining the performance of the energy wall.
CORE arrow_drop_down Publications Open Repository TOrinoArticle . 2021License: CC BYData sources: Publications Open Repository TOrinoGeomechanics for Energy and the EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gete.2020.100199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert CORE arrow_drop_down Publications Open Repository TOrinoArticle . 2021License: CC BYData sources: Publications Open Repository TOrinoGeomechanics for Energy and the EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gete.2020.100199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Italy, United Kingdom, Italy, ItalyPublisher:Elsevier BV Funded by:EC | HOTBRICKSEC| HOTBRICKSAuthors: Cecinato, Francesco; Loveridge, F.;handle: 2434/616261 , 11572/101161
Energy piles have recently emerged as a viable alternative to borehole heat exchangers, but their energy efficiency has so far seen little research. In this work, a finite element numerical model is developed for the accurate 3D analysis of transient diffusive and convective heat exchange phenomena taking place in geothermal structures. The model is validated by reproducing both the outcome of a thermal response test carried out on a test pile, and the average response of the linear heat source analytical solution. Then, the model is employed to carry out a parametric analysis to identify the key factors in maximising the pile energy efficiency. It is shown that the most influential design parameter is the number of pipes, which can be more conveniently increased, within a reasonable range, compared to increasing the pile dimensions. The influence of changing pile length, concrete conductivity, pile diameter and concrete cover are also discussed in light of their energetic implications. Counter to engineering intuition, the fluid flowrate does not emerge as important in energy efficiency, provided it is sufficient to ensure turbulent flow. The model presented in this paper can be easily adapted to the detailed study of other types of geothermal structures.
Archivio Istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Archivio Istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Funded by:UKRI | Integrated Infrastructure...UKRI| Integrated Infrastructure for Sustainable Thermal Energy Provision (IN-STEP)I. Shafagh; P. Shepley; W. Shepherd; F. Loveridge; A. Schellart; S. Tait; S.J. Rees;Decarbonisation of heating is essential to meet national and international greenhouse gas emissions targets. This will require adoption of a range of solutions including ground source heat pump and district heating technologies. A novel route to these solutions includes dual use of buried infrastructure for heat transfer and storage in addition to its primary function. Water supply and wastewater collection pipes may be well suited for thermal energy applications being present in all urban areas in networks already in proximity to heat users. However, greater understanding of their potential interactions with surrounding heat sources and sinks is required before full assessment of the energy potential of such buried pipe networks can be obtained. This paper presents an investigation into the thermal interactions associated with shallow, buried water filled pipes. Using the results of large scale experiments and numerical simulation it is shown that soil surface ambient conditions and adjacent pipes can both act as sources or sinks of heat. While conduction is the main mechanism of heat transfer in the soil directly surrounding any pipe, any adjacent water filled pipes may lead to convection becoming important locally. In the test case, the thermal sphere of influence of the water filled pipe was also shown to be large, at in excess of 4 m over a timescale of 4 months. Taken together, these points suggest that design and analysis approaches when using water supply and wastewater collection networks for heat exchange and storage need careful consideration of environmental interactions, heat losses and gains to adjacent pipes or other infrastructure, and in ground conditions for a number of pipe diameters from any buried pipe.
CORE arrow_drop_down Geomechanics for Energy and the EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gete.2021.100273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert CORE arrow_drop_down Geomechanics for Energy and the EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gete.2021.100273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Performance of Ground Ene...UKRI| Performance of Ground Energy Systems Installed in FoundationsAuthors: Loveridge, F; Powrie, W; Nicholson, D;Thermal response tests (TRTs) are regularly used to characterise the thermal resistance of borehole heat exchangers and to assess the thermal conductivity of the surrounding ground. It is becoming common to apply the same in situ testing technique to pile heat exchangers, despite international guidance suggesting that TRTs should be limited to hole diameters of 152 mm (6 in.). This size restriction arises from the increased thermal inertia of larger diameter heat exchangers, which invalidates the assumption of a steady state within the concrete needed to interpret the test data by traditional line source analysis techniques. However, new methods of analysis for pile heat exchangers have recently been developed that take account of the transient behaviour of the pile concrete. This paper applies these new methods to data from a multi-stage TRT conducted on a small diameter test pile. The thermal conductivity and thermal resistance determined using this method are then compared with those from traditional analytical approaches based on a line source analysis. Differences between the approaches are discussed, along with the observation that the thermal resistance may not be constant over the different test stages.
e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11440-014-0306-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11440-014-0306-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Italy, United Kingdom, Malta, Cyprus, NetherlandsPublisher:Elsevier BV Authors: Figueira, João S.; García Gil, Alejandro; Vieira, Ana; Michopoulos, Apostolos K.; +13 AuthorsFigueira, João S.; García Gil, Alejandro; Vieira, Ana; Michopoulos, Apostolos K.; Boon, David P.; Loveridge, Fleur; Cecinato, Francesco; Götzl, Gregor; Epting, Jannis; Zosseder, Kai; Bloemendal, Martin; Woods, Michael; Christodoulides, Paul; Vardon, Philip J.; Borg, Simon Paul; Erbs Poulsen, Søren; Andersen, Theis Raaschou;handle: 2434/1124259 , 20.500.14279/33457
Heating and Cooling constitute a major part of society's final energy use and a significant contributor to greenhouse gas emissions. The world society ought to mitigate climate change through decarbonisation, which must include the transition to low-temperature, sustainable and renewable heating and cooling technologies. Shallow Geothermal Energy is one of the most energy efficient and least greenhouse gas emitting available alternatives to provide space heating and cooling. The decarbonisation of the heating and cooling sector may have to comprise both individual systems and shared electrified heating and cooling systems from renewable sources of energy, where economies of scale and synergies between different types of consumers can be exploited. To this end, the focus of this paper is on the integration of shallow geothermal energy technologies into district heating and cooling systems. A key contribution of this work is the illustration of a number of practical case studies, highlighting the potential of existing shallow geothermal systems for DHC networks, which, as front runners in adopting such technologies, serve as paradigms for future development. Follows a discussion providing an outlook over the next 25 years. All in all, the future of utilizing shallow geothermal energy for district heating and cooling seems to be promising to play a pivotal role in sustainable urban development and decarbonizing the heating and cooling sector.
NERC Open Research A... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.121436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert NERC Open Research A... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.121436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Authors: Loveridge, F; Powrie, W;Pile heat exchangers – where heat transfer pipes are cast into the building piled foundations – offer an opportunity to use ground energy systems without the additional construction costs related to the provision of special purpose heat exchangers. However, analysis methods for pile heat exchangers are still under development. In particular there is an absence of available methods and guidance for the amount of thermal interaction that may occur between adjacent pile heat exchangers and the corresponding reduction in available energy that this will cause. This is of particular importance as the locations of foundation piles are controlled by the structural demands of the building and cannot be optimised with respect to the thermal analysis. This paper presents a method for deriving G-functions for use with multiple pile heat exchangers. Example functions illustrate the primary importance of pile spacing in controlling available energy, followed by the number of piles within any given arrangement. Significantly it was found that the internal thermal behaviour of a pile is not influenced appreciably by adjacent piles.
e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.11.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.11.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Meibodi, SS; Loveridge, F;Energy geostructures are novel dual use engineering sub-structures that can be used for heat transfer and storage as well as original structural function. Their use is becoming increasingly popular in delivering cost-effective shallow geothermal energy. Currently, they are mostly used as a part of ground-source heat pump (GSHP) systems for supplying partial or full heating and cooling demands of different types of buildings. The recent introduction of fifth generation district heating and cooling (5GDHC) networks can pave the way for the exploitation of energy geostructures as ground-coupled low-temperature energy sources and stores for providing energy demands of a wider range of energy users in districts rather than single buildings. In this article, the capability and feasibility of the novel concept of integration of energy geostructures into the 5GDHC networks are evaluated through reviewing different aspects of thermal performance of operating energy geostructures and 5GDHC networks. The potential advantages and challenges along with the knowledge gaps in such integration are discussed, and some practical recommendations are provided concerning dealing with some implementation challenges. It is highlighted that the incorporation of energy geostructures in 5GDHC networks can enhance the sustainability, flexibility and resilience of the network. There is the potential to exploit a greater share of cost-effective geothermal energy, and the ability to act as both thermal energy sources and stores for efficiently supplying both heating and cooling demands. However, since the development of fifth generation thermal networks and energy geostructures, particularly energy walls and energy tunnels, are still in their infancy, further research is required to assess the magnitude of the opportunities and quantify the advantages of integrating energy geostructures into the 5GDHC networks.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.122481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.122481&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Funded by:UKRI | Performance of Ground Ene...UKRI| Performance of Ground Energy Systems Installed in FoundationsAuthors: Loveridge, F; Powrie, W;Structural foundation piles are being used increasingly as heat exchangers to provide renewable heat for new buildings. To design such energy systems a steady state is assumed within the pile, which is conventionally characterised by constant thermal resistance. However, there has been little research regarding pile resistance and there are few published case studies. Numerical modelling results are presented here to provide typical values of pile resistance, depending on the details of the heat exchange pipes. Analysis suggests large diameter piles may take several days to reach steady state; in these cases a transient design approach may be more appropriate.
e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2014 . Peer-reviewedFull-Text: https://eprints.soton.ac.uk/357088/1/Loveridge%2526Powrie%2520pile%2520resistance%2520R2-1clean.pdfData sources: e-Prints Sotonadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geothermics.2013.09.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2014 . Peer-reviewedFull-Text: https://eprints.soton.ac.uk/357088/1/Loveridge%2526Powrie%2520pile%2520resistance%2520R2-1clean.pdfData sources: e-Prints Sotonadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geothermics.2013.09.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Funded by:UKRI | Integrated Infrastructure...UKRI| Integrated Infrastructure for Sustainable Thermal Energy Provision (IN-STEP)Authors: Saleh S. Meibodi; Simon Rees; Fleur Loveridge;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.130107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.130107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2013 United KingdomPublisher:Thomas Telford Ltd. Authors: Loveridge, F.A.; Powrie, W.;Thermal piles – that is structural foundation piles also used as heat exchangers as part of a ground energy system – are increasingly being adopted for their contribution to more sustainable energy strategies for new buildings. Despite over a quarter of a century having passed since the installation of the first thermal piles in northern Europe, uncertainties regarding their behaviour remain. This paper identifies the key factors which influence the heat transfer and thermal–mechanical interactions of such piles. In terms of heat output, pile aspect ratio is identified as an important parameter controlling the overall thermal performance. Temperature changes in the concrete and surrounding ground during thermal pile operation will lead to additional concrete stresses and displacements within the pile–soil system. Consequently designers must ensure that temperatures remain within acceptable limits, while the pile geotechnical analysis should demonstrate that any adverse thermal stresses are within design safety factors and that any additional displacements do not affect the serviceability of the structure.
e-Prints Soton arrow_drop_down Proceedings of the Institution of Civil Engineers - Geotechnical EngineeringArticleData sources: UnpayWallProceedings of the Institution of Civil Engineers - Geotechnical EngineeringArticle . 2013 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1680/geng.11.00042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert e-Prints Soton arrow_drop_down Proceedings of the Institution of Civil Engineers - Geotechnical EngineeringArticleData sources: UnpayWallProceedings of the Institution of Civil Engineers - Geotechnical EngineeringArticle . 2013 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1680/geng.11.00042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 France, ItalyPublisher:Elsevier BV Funded by:ANR | TEC XXI, UKRI | Integrated Infrastructure...ANR| TEC XXI ,UKRI| Integrated Infrastructure for Sustainable Thermal Energy Provision (IN-STEP)Authors: Alice Di Donna; Fleur Loveridge; Miriam Piemontese; Marco Barla;handle: 11583/2972698
Geotechnical structures are being increasingly employed, in Europe as all around the world, to exchange heat with the ground and supply thermal energy for heating and cooling of buildings and de-icing of infrastructure. Most current practical applications are related to energy piles, but embedded retaining walls are now also being adopted. However, analysis and design methods for these new dual use foundations and ground heat exchangers are currently lacking, making it hard to provide estimates of energy availability without recourse to full numerical simulation. This paper helps to fill this gap by using coupled thermo-hydro finite element analysis to develop charts of energy capacity that could be applied at the outline design stage for energy walls. In particular, the influence of ground properties (hydraulic and thermal conductivities), and ground conditions, (groundwater temperature and flow velocity) are investigated with the results showing that the hydrogeological conditions and the temperature difference between the ground source and application temperature are especially important in determining the performance of the energy wall.
CORE arrow_drop_down Publications Open Repository TOrinoArticle . 2021License: CC BYData sources: Publications Open Repository TOrinoGeomechanics for Energy and the EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gete.2020.100199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert CORE arrow_drop_down Publications Open Repository TOrinoArticle . 2021License: CC BYData sources: Publications Open Repository TOrinoGeomechanics for Energy and the EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gete.2020.100199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Italy, United Kingdom, Italy, ItalyPublisher:Elsevier BV Funded by:EC | HOTBRICKSEC| HOTBRICKSAuthors: Cecinato, Francesco; Loveridge, F.;handle: 2434/616261 , 11572/101161
Energy piles have recently emerged as a viable alternative to borehole heat exchangers, but their energy efficiency has so far seen little research. In this work, a finite element numerical model is developed for the accurate 3D analysis of transient diffusive and convective heat exchange phenomena taking place in geothermal structures. The model is validated by reproducing both the outcome of a thermal response test carried out on a test pile, and the average response of the linear heat source analytical solution. Then, the model is employed to carry out a parametric analysis to identify the key factors in maximising the pile energy efficiency. It is shown that the most influential design parameter is the number of pipes, which can be more conveniently increased, within a reasonable range, compared to increasing the pile dimensions. The influence of changing pile length, concrete conductivity, pile diameter and concrete cover are also discussed in light of their energetic implications. Counter to engineering intuition, the fluid flowrate does not emerge as important in energy efficiency, provided it is sufficient to ensure turbulent flow. The model presented in this paper can be easily adapted to the detailed study of other types of geothermal structures.
Archivio Istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Archivio Istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Funded by:UKRI | Integrated Infrastructure...UKRI| Integrated Infrastructure for Sustainable Thermal Energy Provision (IN-STEP)I. Shafagh; P. Shepley; W. Shepherd; F. Loveridge; A. Schellart; S. Tait; S.J. Rees;Decarbonisation of heating is essential to meet national and international greenhouse gas emissions targets. This will require adoption of a range of solutions including ground source heat pump and district heating technologies. A novel route to these solutions includes dual use of buried infrastructure for heat transfer and storage in addition to its primary function. Water supply and wastewater collection pipes may be well suited for thermal energy applications being present in all urban areas in networks already in proximity to heat users. However, greater understanding of their potential interactions with surrounding heat sources and sinks is required before full assessment of the energy potential of such buried pipe networks can be obtained. This paper presents an investigation into the thermal interactions associated with shallow, buried water filled pipes. Using the results of large scale experiments and numerical simulation it is shown that soil surface ambient conditions and adjacent pipes can both act as sources or sinks of heat. While conduction is the main mechanism of heat transfer in the soil directly surrounding any pipe, any adjacent water filled pipes may lead to convection becoming important locally. In the test case, the thermal sphere of influence of the water filled pipe was also shown to be large, at in excess of 4 m over a timescale of 4 months. Taken together, these points suggest that design and analysis approaches when using water supply and wastewater collection networks for heat exchange and storage need careful consideration of environmental interactions, heat losses and gains to adjacent pipes or other infrastructure, and in ground conditions for a number of pipe diameters from any buried pipe.
CORE arrow_drop_down Geomechanics for Energy and the EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gete.2021.100273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert CORE arrow_drop_down Geomechanics for Energy and the EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gete.2021.100273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Performance of Ground Ene...UKRI| Performance of Ground Energy Systems Installed in FoundationsAuthors: Loveridge, F; Powrie, W; Nicholson, D;Thermal response tests (TRTs) are regularly used to characterise the thermal resistance of borehole heat exchangers and to assess the thermal conductivity of the surrounding ground. It is becoming common to apply the same in situ testing technique to pile heat exchangers, despite international guidance suggesting that TRTs should be limited to hole diameters of 152 mm (6 in.). This size restriction arises from the increased thermal inertia of larger diameter heat exchangers, which invalidates the assumption of a steady state within the concrete needed to interpret the test data by traditional line source analysis techniques. However, new methods of analysis for pile heat exchangers have recently been developed that take account of the transient behaviour of the pile concrete. This paper applies these new methods to data from a multi-stage TRT conducted on a small diameter test pile. The thermal conductivity and thermal resistance determined using this method are then compared with those from traditional analytical approaches based on a line source analysis. Differences between the approaches are discussed, along with the observation that the thermal resistance may not be constant over the different test stages.
e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11440-014-0306-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11440-014-0306-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Italy, United Kingdom, Malta, Cyprus, NetherlandsPublisher:Elsevier BV Authors: Figueira, João S.; García Gil, Alejandro; Vieira, Ana; Michopoulos, Apostolos K.; +13 AuthorsFigueira, João S.; García Gil, Alejandro; Vieira, Ana; Michopoulos, Apostolos K.; Boon, David P.; Loveridge, Fleur; Cecinato, Francesco; Götzl, Gregor; Epting, Jannis; Zosseder, Kai; Bloemendal, Martin; Woods, Michael; Christodoulides, Paul; Vardon, Philip J.; Borg, Simon Paul; Erbs Poulsen, Søren; Andersen, Theis Raaschou;handle: 2434/1124259 , 20.500.14279/33457
Heating and Cooling constitute a major part of society's final energy use and a significant contributor to greenhouse gas emissions. The world society ought to mitigate climate change through decarbonisation, which must include the transition to low-temperature, sustainable and renewable heating and cooling technologies. Shallow Geothermal Energy is one of the most energy efficient and least greenhouse gas emitting available alternatives to provide space heating and cooling. The decarbonisation of the heating and cooling sector may have to comprise both individual systems and shared electrified heating and cooling systems from renewable sources of energy, where economies of scale and synergies between different types of consumers can be exploited. To this end, the focus of this paper is on the integration of shallow geothermal energy technologies into district heating and cooling systems. A key contribution of this work is the illustration of a number of practical case studies, highlighting the potential of existing shallow geothermal systems for DHC networks, which, as front runners in adopting such technologies, serve as paradigms for future development. Follows a discussion providing an outlook over the next 25 years. All in all, the future of utilizing shallow geothermal energy for district heating and cooling seems to be promising to play a pivotal role in sustainable urban development and decarbonizing the heating and cooling sector.
NERC Open Research A... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.121436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert NERC Open Research A... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.121436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu