
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Influences on the thermal efficiency of energy piles
handle: 2434/616261 , 11572/101161
Energy piles have recently emerged as a viable alternative to borehole heat exchangers, but their energy efficiency has so far seen little research. In this work, a finite element numerical model is developed for the accurate 3D analysis of transient diffusive and convective heat exchange phenomena taking place in geothermal structures. The model is validated by reproducing both the outcome of a thermal response test carried out on a test pile, and the average response of the linear heat source analytical solution. Then, the model is employed to carry out a parametric analysis to identify the key factors in maximising the pile energy efficiency. It is shown that the most influential design parameter is the number of pipes, which can be more conveniently increased, within a reasonable range, compared to increasing the pile dimensions. The influence of changing pile length, concrete conductivity, pile diameter and concrete cover are also discussed in light of their energetic implications. Counter to engineering intuition, the fluid flowrate does not emerge as important in energy efficiency, provided it is sufficient to ensure turbulent flow. The model presented in this paper can be easily adapted to the detailed study of other types of geothermal structures.
- University of Trento Italy
- University of Southampton United Kingdom
- White Rose Consortium: University of Leeds; University of Sheffield; University of York United Kingdom
- University of Trento Italy
- University of Milan Italy
690, 550, Settore ICAR/07 - Geotecnica, 624, Energy piles, Geothermal, Thermal efficiency, Thermal response test, Numerical modelling, Convection-diffusion, Energy piles; Geothermal; Thermal efficiency; Thermal response test; Numerical modelling; Convection-diffusion
690, 550, Settore ICAR/07 - Geotecnica, 624, Energy piles, Geothermal, Thermal efficiency, Thermal response test, Numerical modelling, Convection-diffusion, Energy piles; Geothermal; Thermal efficiency; Thermal response test; Numerical modelling; Convection-diffusion
