- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Fritz Kirscht; Fabien Gibaja; Christian Möller; Kevin Lauer; Til Bartel;AbstractIron-acceptor (FeAc) pair association has been studied in compensated n-type silicon. A dynamic approach, based on the charge carrier recombination rates over the Fei trap level, leads to an explanation of the observed FeAc pairing reaction in compensated n-type silicon and extends the understanding of FeAc pairing kinetics. Association kinetics was used to measure a height dependent acceptor concentration profile. Even in compensated n-type silicon good agreement with expected concentrations is found.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.08.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.08.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Singapore, United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Blum, A.L.; Swirhun, J.S.; Sinton, R.A.; Yan, F.; Herasimenka, S.; Roth, T.; Lauer, K.; Haunschild, J.; Lim, B.; Bothe, K.; Hameiri, Z.; Seipel, B.; Xiong, R.; Dhamrin, M.; Murphy, J.D.;Excess-carrier recombination lifetime is a key parameter in silicon solar cell design and production. With the vast international use and recent standardization (SEMI PV13) of eddy-current wafer and brick silicon lifetime test instruments, it is important to quantify the inter- and intralaboratory repeatability. This paper presents the results of an international interlaboratory study conducted with 24 participants to determine the precision of the SEMI PV13 eddy-current carrier lifetime measurement test method. Overall, the carrier recombination lifetime between-laboratory reproducibility was found to be within ±11% for the quasi-steady-state mode and ±8% for transient mode for wafer samples, and within ±4% for bulk samples.
Oxford University Re... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2013.2284375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Oxford University Re... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2013.2284375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Kristin Neckermann; Kevin Lauer; Sylke Meyer; Stefanie Wahl; Christian Möller; Christian Hagendorf; Alexander Molchanov;Abstract There is a strong need for low-cost silicon for solar cells and accordingly, there is an on-going debate about what are the acceptable contamination levels within the purified silicon feedstock to specify the material as solar grade silicon. Impurities in silicon can drastically modify the material properties relevant for solar cells. Transition metal impurities such as iron, copper and chromium are known to enhance the net recombination of minority carriers within the bulk material or negatively influence the emitter region and thus are detrimental for the cell efficiency. The knowledge about the level of metals and dopants, which are present in solar cell material, is of utmost interest for the use of alternative feedstock materials such as upgraded metallurgical silicon (UMG-Si) feedstock and for the improvement of actual industrial materials for solar cell production. Whereas most previous studies used artificial high contamination levels to investigate their influence on the solar cells efficiency, this work presents data using recent industrial feedstock material. For the first time, sensitive and direct chemical analyses of silicon before and after crystallisation were performed and correlated with final solar cell results.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2014.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2014.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Christian Möller; Kevin Lauer;AbstractIn this work the temperature of a silicon sample excited by a laser during a time dependent microwave-detected photoconductance decay (MWPCD) measurement was logged. 2°C temperature increase on the backside of the wafer was observed. Temperature dependent charge carrier lifetime calculations using the determined temperature characteristic are compared to time dependent MWPCD measurements of a boron-doped wafer with high oxygen content. The time duration to reach the final temperature fits well with the time scale of the fast forming recombination center of the boron-oxygen related defect. Charge carrier lifetime variation due to temperature increase is discussed in view of different defect parameters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.07.262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.07.262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 GermanyPublisher:Elsevier BV Lauer, K.; Möller, C.; Neckermann, K.; Blech, M.; Herms, M.; Mchedlidze, T.; Weber, J.; Meyer, S.;AbstractThe impact of the three main process steps during p-type solar cell processing, namely phosphorus diffusion, anti- reflection coating and contact formation, on the electrical quality of Cz silicon is investigated. Adjacent wafers from the middle and tail part of three Czochralski grown silicon ingots of varying quality were treated by the process steps as well as process step combinations. The impact of the thermal budget during the process steps without the application of phosphorus dopant, ammonia and silan gases and metal contact pastes on the Cz silicon was examined. The excess charge carrier lifetime and the interstitial iron content were measured separately for each step. Besides other effects, phosphorus diffusion gettering was found to be very efficient in removing interstitial iron from the Cz silicon. The antireflection coating step as well as the contact formation step were found to be most detrimental to the Cz silicon quality. Changes observed in the Cz silicon quality were discussed within the frame of recent models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.07.321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.07.321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Kevin Lauer; Mario Bähr;AbstractA laboratory type PID-test system was used to measure degradation curves of the shunt resistance during the stress test. It was found that these curves feature typically an initial plateau without significant changes and a mono-exponential decay, both having temperature depended time constants: The plateau length as well as the decay time constant behave Arrhenius-like. Performing these degradation measurements under various temperatures enable the identification of PID relevant activation energies. A solar module compound made of industrial-type crystalline silicon solar cells was investigated and an activation energy of the decay was determined to (0,95 ± 0,14) eV.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV J. Lich; Til Bartel; Matthias Heuer; Jan Bauer; Fabien Gibaja; Kevin Lauer; M. Kaes; Fritz Kirscht; M. Walerysiak;AbstractState of the art Silicon feedstock refined by the metallurgical route readily achieves impurity and dopant concentrations well below 1 ppmw. To avoid costly excessive feedstock refinement, relevant threshold concentrations need to be established for impurities known to have a deleterious effect on the cell performance and reliability. Since compensation may reduce the recombination activity of some impurities, this study evaluates the impact of two important contaminants, Aluminum and Iron, in compensated Silicon. For this, model materials based on electronic grade feedstock are produced and processed to solar cells. The feedstock is co-doped with B (0.25 ppmw) and P (0.43 ppmw) to simulate compensated material, the feedstock was additionally contaminated with Al and Fe and cast to p-type multicrystalline ingots. In cells processed from these materials, Fe has been effectively gettered and the tolerance to Al contamination is found to be much higher than expected from theoretical extrapolations in the literature: for 1 ppmw Al, the efficiency is reduced by about 3% relative. Further, Al doped ingots show weaker light induced degradation than the reference ingots. This is explained by a preferential formation of Al-O complexes in competition with the B-O complex. Breakdown behavior of the pn-junction is influenced by Al doping. No interaction is observed between Al and Fe. Based on the results a threshold concentration close to 0.5 ppmw Al in compensated silicon feedstock is concluded as a safe level in terms of cell performance and reliability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.07.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.07.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Christian Möller; Til Bartel; Fritz Kirscht; Kevin Lauer;AbstractLow-temperature FTIR spectroscopy is further developed to be applicable to measure the aluminum concentration in solar-grade silicon in concentrations up to 4 × 1016 atoms/cm3. Absorption spectra of multicrystalline silicon samples doped with varying aluminum content are measured at 10 K and correlated to the dopant density obtained by four point probe resistivity measurements. Calibration factors for absorption peaks of unpaired substitutional aluminum at 443, 472, 516+524 and 867 cm-1 as well as for a Fano anti-resonance at 962 cm-1 are reported.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.08.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.08.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Felix Dreckschmidt; Christian Möller; Anett Grochocki; Jens Neusel; Oleksij Gybin; Viktor Osinniy; Martin Herms; Kevin Lauer; Maksims Kirpo;AbstractWindmill-like structures in as-grown Cz-Si wafers were characterised by several electrical and optical methods, such as 4PP resistivity, FTIR, SIRD and microwave PCD techniques. All these methods revealed the similar shape and size of the observed structure. Additionally, those windmill-like structures could be reproduced in the temperature distribution at the solidification interface numerically simulated in a certain time window using parameters being typical for the Czochralski process. The dependence of the minority carrier lifetime on resistivity in the investigated slices can be well fitted in the frame of the extended SHR theory using trap energies of EV,C ± (200-300) meV and a large asymmetry in the capture cross sections. Such defects may be oxygen-related double thermal donors with trap energies higher than EC – 200 meV. The FTIR map approves an enhanced concentration of Oi needed for an enhanced thermal donor formation in the windmill cogs and is well-correlated to the shear stress distribution obtained by SIRD Thus, we conclude that a windmill-like structure is formed mainly due to a non-ring-like distribution of oxygen at the solid-liquid interface.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.07.252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.07.252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Kevin Lauer; Christian Möller;AbstractThe observation of light-induced degradation (LID) in indium-doped silicon has led to the idea of an ASi-Sii-defect responsible for LID. Generation of silicon self interstitials (Sii) leads, in consequence of the ASi-Sii-defect model, to an enhancement or activation of LID, respectively. This was observed several decades ago at the beginning of solar cell investigation for space application. Boron-doped float-zone (FZ) silicon solar cells show LID after electron irradiation, gallium-doped FZ solar cells do not. The literature data is summarized and interpreted in view of the ASi-Sii-defect model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.08.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.08.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Fritz Kirscht; Fabien Gibaja; Christian Möller; Kevin Lauer; Til Bartel;AbstractIron-acceptor (FeAc) pair association has been studied in compensated n-type silicon. A dynamic approach, based on the charge carrier recombination rates over the Fei trap level, leads to an explanation of the observed FeAc pairing reaction in compensated n-type silicon and extends the understanding of FeAc pairing kinetics. Association kinetics was used to measure a height dependent acceptor concentration profile. Even in compensated n-type silicon good agreement with expected concentrations is found.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.08.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.08.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Singapore, United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Blum, A.L.; Swirhun, J.S.; Sinton, R.A.; Yan, F.; Herasimenka, S.; Roth, T.; Lauer, K.; Haunschild, J.; Lim, B.; Bothe, K.; Hameiri, Z.; Seipel, B.; Xiong, R.; Dhamrin, M.; Murphy, J.D.;Excess-carrier recombination lifetime is a key parameter in silicon solar cell design and production. With the vast international use and recent standardization (SEMI PV13) of eddy-current wafer and brick silicon lifetime test instruments, it is important to quantify the inter- and intralaboratory repeatability. This paper presents the results of an international interlaboratory study conducted with 24 participants to determine the precision of the SEMI PV13 eddy-current carrier lifetime measurement test method. Overall, the carrier recombination lifetime between-laboratory reproducibility was found to be within ±11% for the quasi-steady-state mode and ±8% for transient mode for wafer samples, and within ±4% for bulk samples.
Oxford University Re... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2013.2284375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Oxford University Re... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2013.2284375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Kristin Neckermann; Kevin Lauer; Sylke Meyer; Stefanie Wahl; Christian Möller; Christian Hagendorf; Alexander Molchanov;Abstract There is a strong need for low-cost silicon for solar cells and accordingly, there is an on-going debate about what are the acceptable contamination levels within the purified silicon feedstock to specify the material as solar grade silicon. Impurities in silicon can drastically modify the material properties relevant for solar cells. Transition metal impurities such as iron, copper and chromium are known to enhance the net recombination of minority carriers within the bulk material or negatively influence the emitter region and thus are detrimental for the cell efficiency. The knowledge about the level of metals and dopants, which are present in solar cell material, is of utmost interest for the use of alternative feedstock materials such as upgraded metallurgical silicon (UMG-Si) feedstock and for the improvement of actual industrial materials for solar cell production. Whereas most previous studies used artificial high contamination levels to investigate their influence on the solar cells efficiency, this work presents data using recent industrial feedstock material. For the first time, sensitive and direct chemical analyses of silicon before and after crystallisation were performed and correlated with final solar cell results.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2014.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2014.04.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Christian Möller; Kevin Lauer;AbstractIn this work the temperature of a silicon sample excited by a laser during a time dependent microwave-detected photoconductance decay (MWPCD) measurement was logged. 2°C temperature increase on the backside of the wafer was observed. Temperature dependent charge carrier lifetime calculations using the determined temperature characteristic are compared to time dependent MWPCD measurements of a boron-doped wafer with high oxygen content. The time duration to reach the final temperature fits well with the time scale of the fast forming recombination center of the boron-oxygen related defect. Charge carrier lifetime variation due to temperature increase is discussed in view of different defect parameters.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.07.262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.07.262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 GermanyPublisher:Elsevier BV Lauer, K.; Möller, C.; Neckermann, K.; Blech, M.; Herms, M.; Mchedlidze, T.; Weber, J.; Meyer, S.;AbstractThe impact of the three main process steps during p-type solar cell processing, namely phosphorus diffusion, anti- reflection coating and contact formation, on the electrical quality of Cz silicon is investigated. Adjacent wafers from the middle and tail part of three Czochralski grown silicon ingots of varying quality were treated by the process steps as well as process step combinations. The impact of the thermal budget during the process steps without the application of phosphorus dopant, ammonia and silan gases and metal contact pastes on the Cz silicon was examined. The excess charge carrier lifetime and the interstitial iron content were measured separately for each step. Besides other effects, phosphorus diffusion gettering was found to be very efficient in removing interstitial iron from the Cz silicon. The antireflection coating step as well as the contact formation step were found to be most detrimental to the Cz silicon quality. Changes observed in the Cz silicon quality were discussed within the frame of recent models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.07.321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.07.321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Kevin Lauer; Mario Bähr;AbstractA laboratory type PID-test system was used to measure degradation curves of the shunt resistance during the stress test. It was found that these curves feature typically an initial plateau without significant changes and a mono-exponential decay, both having temperature depended time constants: The plateau length as well as the decay time constant behave Arrhenius-like. Performing these degradation measurements under various temperatures enable the identification of PID relevant activation energies. A solar module compound made of industrial-type crystalline silicon solar cells was investigated and an activation energy of the decay was determined to (0,95 ± 0,14) eV.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV J. Lich; Til Bartel; Matthias Heuer; Jan Bauer; Fabien Gibaja; Kevin Lauer; M. Kaes; Fritz Kirscht; M. Walerysiak;AbstractState of the art Silicon feedstock refined by the metallurgical route readily achieves impurity and dopant concentrations well below 1 ppmw. To avoid costly excessive feedstock refinement, relevant threshold concentrations need to be established for impurities known to have a deleterious effect on the cell performance and reliability. Since compensation may reduce the recombination activity of some impurities, this study evaluates the impact of two important contaminants, Aluminum and Iron, in compensated Silicon. For this, model materials based on electronic grade feedstock are produced and processed to solar cells. The feedstock is co-doped with B (0.25 ppmw) and P (0.43 ppmw) to simulate compensated material, the feedstock was additionally contaminated with Al and Fe and cast to p-type multicrystalline ingots. In cells processed from these materials, Fe has been effectively gettered and the tolerance to Al contamination is found to be much higher than expected from theoretical extrapolations in the literature: for 1 ppmw Al, the efficiency is reduced by about 3% relative. Further, Al doped ingots show weaker light induced degradation than the reference ingots. This is explained by a preferential formation of Al-O complexes in competition with the B-O complex. Breakdown behavior of the pn-junction is influenced by Al doping. No interaction is observed between Al and Fe. Based on the results a threshold concentration close to 0.5 ppmw Al in compensated silicon feedstock is concluded as a safe level in terms of cell performance and reliability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.07.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.07.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Christian Möller; Til Bartel; Fritz Kirscht; Kevin Lauer;AbstractLow-temperature FTIR spectroscopy is further developed to be applicable to measure the aluminum concentration in solar-grade silicon in concentrations up to 4 × 1016 atoms/cm3. Absorption spectra of multicrystalline silicon samples doped with varying aluminum content are measured at 10 K and correlated to the dopant density obtained by four point probe resistivity measurements. Calibration factors for absorption peaks of unpaired substitutional aluminum at 443, 472, 516+524 and 867 cm-1 as well as for a Fano anti-resonance at 962 cm-1 are reported.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.08.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.08.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Felix Dreckschmidt; Christian Möller; Anett Grochocki; Jens Neusel; Oleksij Gybin; Viktor Osinniy; Martin Herms; Kevin Lauer; Maksims Kirpo;AbstractWindmill-like structures in as-grown Cz-Si wafers were characterised by several electrical and optical methods, such as 4PP resistivity, FTIR, SIRD and microwave PCD techniques. All these methods revealed the similar shape and size of the observed structure. Additionally, those windmill-like structures could be reproduced in the temperature distribution at the solidification interface numerically simulated in a certain time window using parameters being typical for the Czochralski process. The dependence of the minority carrier lifetime on resistivity in the investigated slices can be well fitted in the frame of the extended SHR theory using trap energies of EV,C ± (200-300) meV and a large asymmetry in the capture cross sections. Such defects may be oxygen-related double thermal donors with trap energies higher than EC – 200 meV. The FTIR map approves an enhanced concentration of Oi needed for an enhanced thermal donor formation in the windmill cogs and is well-correlated to the shear stress distribution obtained by SIRD Thus, we conclude that a windmill-like structure is formed mainly due to a non-ring-like distribution of oxygen at the solid-liquid interface.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.07.252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.07.252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Kevin Lauer; Christian Möller;AbstractThe observation of light-induced degradation (LID) in indium-doped silicon has led to the idea of an ASi-Sii-defect responsible for LID. Generation of silicon self interstitials (Sii) leads, in consequence of the ASi-Sii-defect model, to an enhancement or activation of LID, respectively. This was observed several decades ago at the beginning of solar cell investigation for space application. Boron-doped float-zone (FZ) silicon solar cells show LID after electron irradiation, gallium-doped FZ solar cells do not. The literature data is summarized and interpreted in view of the ASi-Sii-defect model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.08.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.08.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu