- home
- Advanced Search
Filters
Year range
-chevron_right GOField of Science
Funder
SDG [Beta]
Country
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United KingdomPublisher:Springer Science and Business Media LLC Authors: Stef Bokhorst; Peter Convey; Angélica Casanova-Katny; Rien Aerts;AbstractThe Antarctic Peninsula is under pressure from non-native plants and this risk is expected to increase under climate warming. Establishment and subsequent range expansion of non-native plants depend in part on germination ability under Antarctic conditions, but quantifying these processes has yet to receive detailed study. Viability testing and plant growth responses under simulated Antarctic soil surface conditions over an annual cycle show that 16 non-native species, including grasses, herbs, rushes and a succulent, germinated and continued development under a warming scenario. Thermal germination requirement (degree day sum) was calculated for each species and field soil-temperature recordings indicate that this is satisfied as far south as 72° S. Here, we show that the establishment potential of non-native species, in number and geographical range, is considerably greater than currently suggested by species distribution modelling approaches, with important implications for risk assessments of non-native species along the Antarctic Peninsula.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s42003-021-01951-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 8 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s42003-021-01951-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 United KingdomPublisher:Elsevier BV Terry V. Callaghan; Terry V. Callaghan; Jerry M. Melillo; Gareth K. Phoenix; Jarle W. Bjerke; Stef Bokhorst;Arctic climate change is expected to lead to a greater frequency of extreme winter warming events. During these events, temperatures rapidly increase to well above 0 degrees C for a number of days, which can lead to snow melt at the landscape scale, loss of insulating snow cover and warming of soils. However, upon return of cold ambient temperatures, soils can freeze deeper and may experience more freeze-thaw cycles due to the absence of a buffering snow layer. Such loss of snow cover and changes in soil temperatures may be critical for litter decomposition since a stable soil microclimate during winter (facilitated by snow cover) allows activity of soil organisms. Indeed, a substantial part of fresh litter decomposition may occur in winter. However, the impacts of extreme winter warming events on soil processes such as decomposition have never before been investigated. With this study we quantify the impacts of winter warming events on fresh litter decomposition using field simulations and lab studies. Winter warming events were simulated in sub-Arctic heathland using infrared heating lamps and soil warming cables during March (typically the period of maximum snow depth) in three consecutive years of 2007, 2008, and 2009. During the winters of 2008 and 2009, simulations were also run in January (typically a period of shallow snow cover) on separate plots. The lab study included soil cores with and without fresh litter subjected to winter-warming simulations in climate chambers. Litter decomposition of common plant species was unaffected by winter warming events simulated either in the lab (litter of Betula pubescens ssp. czerepanovii), or field (litter of Vaccinium vitis-idaea, and B. pubescens ssp. czerepanovii) with the exception of Vaccinium myrtillus (a common deciduous dwarf shrub) that showed less mass loss in response to winter warming events. Soil CO2 efflux measured in the lab study was (as expected) highly responsive to winter warming events but surprisingly fresh litter decomposition was not. Most fresh litter mass loss in the lab occurred during the first 3-4 weeks (simulating the period after litter fall). In contrast to past understanding, this suggests that winter decomposition of fresh litter is almost nonexistent and observations of substantial mass loss across the cold season seen here and in other studies may result from leaching in autumn, prior to the onset of "true" winter. Further, our findings surprisingly suggest that extreme winter warming events do not affect fresh litter decomposition. Crown Copyright (c) 2009 Published by Elsevier Ltd. All rights reserved.
Soil Biology and Bio... arrow_drop_down Soil Biology and BiochemistryArticle . 2010Data sources: DANS (Data Archiving and Networked Services)Soil Biology and BiochemistryArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2009.12.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 73 citations 73 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Soil Biology and Bio... arrow_drop_down Soil Biology and BiochemistryArticle . 2010Data sources: DANS (Data Archiving and Networked Services)Soil Biology and BiochemistryArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2009.12.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 France, United KingdomPublisher:Springer Science and Business Media LLC Funded by:NWO | Effects of environmental ...NWO| Effects of environmental change on carbon and nitrogen Fluxes in Antarctic Terrestrial Ecosystems (FATE)Bokhorst, Stef; Huiskes, Ad H.L.; Convey, Peter; Sinclair, Brent J.; Lebouvier, Marc; van de Vijver, Bart; Wall, Diana H.;Passive chambers are used to examine the impacts of summer warming in Antarctica but, so far, impacts occurring outside the growing season, or related to extreme temperatures, have not been reported, despite their potentially large biological significance. In this review, we synthesise and discuss the microclimate impacts of passive warming chambers (closed, ventilated and Open Top Chamber-OTC) commonly used in Antarctic terrestrial habitats, paying special attention to seasonal warming, during the growing season and outside, extreme temperatures and freeze-thaw events. Both temperature increases and decreases were recorded throughout the year. Closed chambers caused earlier spring soil thaw (8-28 days) while OTCs delayed soil thaw (3-13 days). Smaller closed chamber types recorded the largest temperature extremes (up to 20 degrees C higher than ambient) and longest periods (up to 11 h) of above ambient extreme temperatures, and even OTCs had above ambient temperature extremes over up to 5 consecutive hours. The frequency of freeze-thaw events was reduced by similar to 25%. All chamber types experienced extreme temperature ranges that could negatively affect biological responses, while warming during winter could result in depletion of limited metabolic resources. The effects outside the growing season could be as important in driving biological responses as the mean summer warming. We make suggestions for improving season-specific warming simulations and propose that seasonal and changed temperature patterns achieved under climate manipulations should be recognised explicitly in descriptions of treatment effects.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2011Data sources: INRIA a CCSD electronic archive serverNatural Environment Research Council: NERC Open Research ArchiveArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-011-0997-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 75 citations 75 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2011Data sources: INRIA a CCSD electronic archive serverNatural Environment Research Council: NERC Open Research ArchiveArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-011-0997-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Embargo end date: 01 Jan 2022 Germany, United Kingdom, Qatar, Denmark, Germany, Spain, United Kingdom, United Kingdom, Switzerland, Italy, Italy, Italy, United Kingdom, Italy, Norway, Spain, Norway, Netherlands, Qatar, Spain, France, Italy, United States, Norway, United Kingdom, GermanyPublisher:Wiley Funded by:UKRI | UK Status, Change and Pro..., AKA | Atmosphere and Climate Co..., DFG | EarthShape: Earth Surface... +28 projectsUKRI| UK Status, Change and Projections of the Environment (UK-SCaPE) ,AKA| Atmosphere and Climate Competence Center (ACCC) ,DFG| EarthShape: Earth Surface Shaping by Biota ,EC| AfricanBioServices ,NSF| Integrating species traits into species pools: A multi-scale approach to understanding community assembly ,EC| ECLAIRE ,SNSF| ICOS-CH Phase 2 ,EC| SUPER-G ,NWO| Specialists at work: how decomposers break down plant litter ,EC| SustainSAHEL ,ARC| Discovery Early Career Researcher Award - Grant ID: DE180100570 ,UKRI| E3 - Edinburgh Earth and Environment - Doctoral Training Partnership ,EC| FORMICA ,RCN| Effects of herbivory and warming on tundra plant communities ,EC| PERMTHAW ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,ARC| Discovery Early Career Researcher Award - Grant ID: DE140101611 ,RSF| The anatomical and physiological response of Scots pine xylem formation to variable water availability ,RCN| The role of Functional group interactions in mediating climate change impacts on the Carbon dynamics and Biodiversity of alpine ecosystems ,ANR| ODYSSEE ,ANR| IMPRINT ,RCN| The effect of snow depth and snow melt timing on arctic terrestrial ecosystems. ,ANR| ASICS ,EC| ICOS ,EC| NICH ,EC| LEAP-AGRI ,EC| AIAS ,EC| DESIRA ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with data ,NSERC ,EC| eLTER PLUSLembrechts, Jonas J; Van Den Hoogen, Johan; Aalto, Juha; Ashcroft, Michael B; De Frenne, Pieter; Kemppinen, Julia; Kopecký, Martin; Luoto, Miska; Maclean, Ilya MD; Crowther, Thomas W; Bailey, Joseph J; Haesen, Stef; Klinges, David H; Niittynen, Pekka; Scheffers, Brett R; Van Meerbeek, Koenraad; Aartsma, Peter; Abdalaze, Otar; Abedi, Mehdi; Aerts, Rien; Ahmadian, Negar; Ahrends, Antje; Alatalo, Juha M; Alexander, Jake M; Allonsius, Camille Nina; Altman, Jan; Ammann, Christof; Andres, Christian; Andrews, Christopher; Ardö, Jonas; Arriga, Nicola; Arzac, Alberto; Aschero, Valeria; Assis, Rafael L; Assmann, Jakob Johann; Bader, Maaike Y; Bahalkeh, Khadijeh; Barančok, Peter; Barrio, Isabel C; Barros, Agustina; Barthel, Matti; Basham, Edmund W; Bauters, Marijn; Bazzichetto, Manuele; Marchesini, Luca Belelli; Bell, Michael C; Benavides, Juan C; Benito Alonso, José Luis; Berauer, Bernd J; Bjerke, Jarle W; Björk, Robert G; Björkman, Mats P; Björnsdóttir, Katrin; Blonder, Benjamin; Boeckx, Pascal; Boike, Julia; Bokhorst, Stef; Brum, Bárbara NS; Brůna, Josef; Buchmann, Nina; Buysse, Pauline; Camargo, José Luís; Campoe, Otávio C; Candan, Onur; Canessa, Rafaella; Cannone, Nicoletta; Carbognani, Michele; Carnicer, Jofre; Casanova-Katny, Angélica; Cesarz, Simone; Chojnicki, Bogdan; Choler, Philippe; Chown, Steven L; Cifuentes, Edgar F; Čiliak, Marek; Contador, Tamara; Convey, Peter; Cooper, Elisabeth J; Cremonese, Edoardo; Curasi, Salvatore R; Curtis, Robin; Cutini, Maurizio; Dahlberg, C Johan; Daskalova, Gergana N; De Pablo, Miguel Angel; Della Chiesa, Stefano; Dengler, Jürgen; Deronde, Bart; Descombes, Patrice; Di Cecco, Valter; Di Musciano, Michele; Dick, Jan; Dimarco, Romina D; Dolezal, Jiri; Dorrepaal, Ellen; Dušek, Jiří; Eisenhauer, Nico; Eklundh, Lars; Erickson, Todd E; Erschbamer, Brigitta; Eugster, Werner; Ewers, Robert M; Exton, Dan A; Fanin, Nicolas; Fazlioglu, Fatih; Feigenwinter, Iris; Fenu, Giuseppe; Ferlian, Olga; Fernández Calzado, M Rosa; Fernández-Pascual, Eduardo; Finckh, Manfred; Higgens, Rebecca Finger; Forte, T'ai GW; Freeman, Erika C; Frei, Esther R; Fuentes-Lillo, Eduardo; García, Rafael A; García, María B; Géron, Charly; Gharun, Mana; Ghosn, Dany; Gigauri, Khatuna; Gobin, Anne; Goded, Ignacio; Goeckede, Mathias; Gottschall, Felix; Goulding, Keith; Govaert, Sanne; Graae, Bente Jessen; Greenwood, Sarah; Greiser, Caroline; Grelle, Achim; Guénard, Benoit; Guglielmin, Mauro; Guillemot, Joannès; Haase, Peter; Haider, Sylvia; Halbritter, Aud H; Hamid, Maroof; Hammerle, Albin; Hampe, Arndt; Haugum, Siri V; Hederová, Lucia; Heinesch, Bernard; Helfter, Carole; Hepenstrick, Daniel; Herberich, Maximiliane; Herbst, Mathias; Hermanutz, Luise; Hik, David S; Hoffrén, Raúl; Homeier, Jürgen; Hörtnagl, Lukas; Høye, Toke T; Hrbacek, Filip; Hylander, Kristoffer; Iwata, Hiroki; Jackowicz-Korczynski, Marcin Antoni; Jactel, Hervé; Järveoja, Järvi; Jastrzębowski, Szymon; Jentsch, Anke; Jiménez, Juan J; Jónsdóttir, Ingibjörg S; Jucker, Tommaso; Jump, Alistair S; Juszczak, Radoslaw; Kanka, Róbert; Kašpar, Vít; Kazakis, George; Kelly, Julia; Khuroo, Anzar A; Klemedtsson, Leif; Klisz, Marcin; Kljun, Natascha; Knohl, Alexander; Kobler, Johannes; Kollár, Jozef; Kotowska, Martyna M; Kovács, Bence; Kreyling, Juergen; Lamprecht, Andrea; Lang, Simone I; Larson, Christian; Larson, Keith; Laska, Kamil; Le Maire, Guerric; Leihy, Rachel I; Lens, Luc; Liljebladh, Bengt; Lohila, Annalea; Lorite, Juan; Loubet, Benjamin; Lynn, Joshua; Macek, Martin; Mackenzie, Roy; Magliulo, Enzo; Maier, Regine; Malfasi, Francesco; Máliš, František;doi: 10.1111/gcb.16060 , 10.32942/osf.io/pksqw , 10.3929/ethz-b-000523670 , 10.5445/ir/1000143688 , 10.21256/zhaw-24832 , 10.17863/cam.81331
pmc: PMC9303923
AbstractResearch in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1‐km2resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1‐km2pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse‐grained air temperature estimates from ERA5‐Land (an atmospheric reanalysis by the European Centre for Medium‐Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome‐specific offsets emphasize that the projected impacts of climate and climate change on near‐surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil‐related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
CORE arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/74200Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BY NCFull-Text: http://urn.nb.no/URN:NBN:no-94234Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BY NCFull-Text: https://hdl.handle.net/11250/2983746Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2022License: CC BY NCFull-Text: http://zaguan.unizar.es/record/125734Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/1893/33794Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.32942/osf.i...Article . 2021 . Peer-reviewedLicense: CC BY SAData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BY NCData sources: idUS. Depósito de Investigación Universidad de SevillaWageningen Staff PublicationsArticle . 2022License: CC BY NCData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 159 citations 159 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 485visibility views 485 download downloads 334 Powered bymore_vert CORE arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/74200Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BY NCFull-Text: http://urn.nb.no/URN:NBN:no-94234Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BY NCFull-Text: https://hdl.handle.net/11250/2983746Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2022License: CC BY NCFull-Text: http://zaguan.unizar.es/record/125734Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/1893/33794Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.32942/osf.i...Article . 2021 . Peer-reviewedLicense: CC BY SAData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BY NCData sources: idUS. Depósito de Investigación Universidad de SevillaWageningen Staff PublicationsArticle . 2022License: CC BY NCData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Oxford University Press (OUP) Funded by:NWO | Effects of global warming...NWO| Effects of global warming on cryptogam- and microbial diversity and ecosystem functioning in Antarctic ecosystems Project I: Effects of global warming on cryptogam diversity and water use in Antarctic ecosystems Project II: Global-warming induced effectYergeau, E.; Bokhorst, S.F.; Kang, S.; Jizhong, Z.; Greer, C.W.; Aerts, M.A.P.A.; Kowalchuk, G.A.;pmid: 21938020
pmc: PMC3282189
Abstract Because of severe abiotic limitations, Antarctic soils represent simplified systems, where microorganisms are the principal drivers of nutrient cycling. This relative simplicity makes these ecosystems particularly vulnerable to perturbations, like global warming, and the Antarctic Peninsula is among the most rapidly warming regions on the planet. However, the consequences of the ongoing warming of Antarctica on microorganisms and the processes they mediate are unknown. Here, using 16S rRNA gene pyrosequencing and qPCR, we report highly consistent responses in microbial communities across disparate sub-Antarctic and Antarctic environments in response to 3 years of experimental field warming (+0.5 to 2 °C). Specifically, we found significant increases in the abundance of fungi and bacteria and in the Alphaproteobacteria-to-Acidobacteria ratio, which could result in an increase in soil respiration. Furthermore, shifts toward generalist bacterial communities following warming weakened the linkage between the bacterial taxonomic and functional richness. GeoChip microarray analyses also revealed significant warming effects on functional communities, specifically in the N-cycling microorganisms. Our results demonstrate that soil microorganisms across a range of sub-Antarctic and Antarctic environments can respond consistently and rapidly to increasing temperatures.
The ISME Journal arrow_drop_down The ISME JournalArticle . 2011 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ismej.2011.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 256 citations 256 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The ISME Journal arrow_drop_down The ISME JournalArticle . 2011 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ismej.2011.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Wiley Hans Tømmervik; Terry V. Callaghan; Terry V. Callaghan; Jarle W. Bjerke; Stef Bokhorst; Gareth K. Phoenix;Summary 1. The Arctic is experiencing considerable change in climate, particularly in winter, and a greater frequency of extreme climatic events is expected. However, the impacts of winter climate change and extreme events have received far less attention than the impacts of season‐long summer warming. Here we report findings from observations following a natural event and from experimental studies to show that short (<10 days) extreme winter warming events can cause major damage to sub‐Arctic plant communities at landscape scales. 2. In the landscape observations, impacts were assessed following an extreme winter warming event that occurred in December 2007 in northern Scandinavia. During this event, temperatures rose up to 7 °C resulting in loss of snow cover and exposure of vegetation to firstly warm and then returning cold temperatures. 3. In the following summer, extensive areas of damaged dwarf shrub vegetation could be observed. Ground observations showed damaged areas to have a 16 times greater frequency of dead shoots of the dominant shrub Empetrum hermaphroditum, resulting in 87% less summer growth compared to neighbouring undamaged areas. The landscape scale extent of this damage was confirmed by satellite‐derived Normalized Differential Vegetation Index values that showed a considerable 26% reduction (comparing July 2007 with July 2008 values) over an area of 1424 km2. This reduction indicates a significant decline in either leaf area or photosynthetic capacity or efficiency at the landscape scale. 4. Strikingly similar damage was also observed in a field manipulation experiment using heating lamps and soil warming cables to simulate such extreme events in sub‐Arctic heathland over two winters. Here, an up to 21 times greater frequency of dead shoots and 47% less shoot growth of E. hermaphroditum was observed in plots exposed to simulated winter warming events compared to unmanipulated controls. 5. Synthesis. These combined landscape observations and experimental findings provide compelling evidence that winter warming events can cause considerable damage to sub‐Arctic vegetation. With increasing winter temperatures predicted, any increase in such damage may have major consequences for productivity and diversity of these sub‐Arctic ecosystems, in contrast to the greening of parts of the Arctic currently attributed to summer warming.
Journal of Ecology arrow_drop_down Journal of EcologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2745.2009.01554.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 243 citations 243 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Ecology arrow_drop_down Journal of EcologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2745.2009.01554.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Wiley Lorna E. Street; Terry V. Callaghan; Terry V. Callaghan; Gareth K. Phoenix; Stef Bokhorst; Jarle W. Bjerke;AbstractExtreme weather events can have strong negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme, short‐lived, winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (for instance, 2–10 °C for 2–14 days) but upon return to normal winter climate exposes the ecosystem to much colder temperatures due to the loss of insulating snow. Single events have been shown to reduce plant reproduction and increase shoot mortality, but impacts of multiple events are little understood as are the broader impacts on community structure, growth, carbon balance, and nutrient cycling. To address these issues, we simulated week‐long extreme winter warming events – using infrared heating lamps and soil warming cables – for 3 consecutive years in a sub‐Arctic heathland dominated by the dwarf shrubsEmpetrum hermaphroditum, Vaccinium vitis‐idaea(both evergreen) andVaccinium myrtillus(deciduous). During the growing seasons after the second and third winter event, spring bud burst was delayed by up to a week forE. hermaphroditumandV. myrtillus, and berry production reduced by 11–75% and 52–95% forE. hermaphroditumandV. myrtillus, respectively. Greater shoot mortality occurred inE. hermaphroditum(up to 52%),V. vitis‐idaea(51%), andV. myrtillus(80%). Root growth was reduced by more than 25% but soil nutrient availability remained unaffected. Gross primary productivity was reduced by more than 50% in the summer following the third simulation. Overall, the extent of damage was considerable, and critically plant responses were opposite in direction to the increased growth seen in long‐term summer warming simulations and the ‘greening’ seen for some arctic regions. Given the Arctic is warming more in winter than summer, and extreme events are predicted to become more frequent, this generates large uncertainty in our current understanding of arctic ecosystem responses to climate change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2011.02424.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 164 citations 164 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2011.02424.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Informa UK Limited Bjerke, Jarle Werner; Bokhorst, Stef; Callaghan, Terry V.; Zielke, Matthias; Phoenix, Gareth K.;Background: Arctic lichens and mosses are covered by snow for more than half the year and are generally considered as being dormant for most of this period. However, enhanced frequency of winter warming events due to climate change can cause increased disturbance of their protective subnivean environment. Aim: To further understand cryptogamic responses to midwinter warming we compared the ecophysiological performance of one lichen and one moss species during a simulated warming event. Methods: We measured photosynthesis and dark respiration in samples of the moss Hylocomium splendens and the lichen Peltigera aphthosa removed from under snow, and on natural refreezing after the warming event, which was simulated by using infrared heaters suspended above the ground. Results: The moss exposed to light at +5 °C immediately after removal from their subnivean environment and from warmed plots showed positive net gas exchange within 332 s; the lichen required 1238 s. Photosynthesis and nitrogen fixation rates w...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17550874.2013.771712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17550874.2013.771712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Wiley Jerry M. Melillo; Gareth K. Phoenix; F. W. Bowles; Jarle W. Bjerke; Terry V. Callaghan; Terry V. Callaghan; Stef Bokhorst;AbstractClimate change scenarios predict an increased frequency of extreme climatic events. In Arctic regions, one of the most profound of these are extreme and sudden winter warming events in which temperatures increase rapidly to above freezing, often causing snow melt across whole landscapes and exposure of ecosystems to warm temperatures. Following warming, vegetation and soils no longer insulated below snow are then exposed to rapidly returning extreme cold. Using a new experimental facility established in sub‐Arctic dwarf shrub heathland in northern Sweden, we simulated an extreme winter warming event in the field and report findings on growth, phenology and reproduction during the subsequent growing season. A 1‐week long extreme winter warming event was simulated in early March using infrared heating lamps run with or without soil warming cables. Both single short events delayed bud development of Vaccinium myrtillus by up to 3 weeks in the following spring (June) and reduced flower production by more than 80%: this also led to a near‐complete elimination of berry production in mid‐summer. Empetrum hermaphroditum also showed delayed bud development. In contrast, Vaccinium vitis‐idaea showed no delay in bud development, but instead appeared to produce a greater number of actively growing vegetative buds within plots warmed by heating lamps only. Again, there was evidence of reduced flowering and berry production in this species. While bud break was delayed, growing season measurements of growth and photosynthesis did not reveal a differential response in the warmed plants for any of the species. These results demonstrate that a single, short, extreme winter warming event can have considerable impact on bud production, phenology and reproductive effort of dominant plant species within sub‐Arctic dwarf shrub heathland. Furthermore, large interspecific differences in sensitivity are seen. These findings are of considerable concern, because they suggest that repeated events may potentially impact on the biodiversity and productivity of these systems should these extreme events increase in frequency as a result of global change. Although climate change may lengthen the growing season by earlier spring snow melt, there is a profound danger for these high‐latitude ecosystems if extreme, short‐lived warming in winter exposes plants to initial warm temperatures, but then extreme cold for the rest of the winter. Work is ongoing to determine the longer term and wider impacts of these events.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2008.01689.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 166 citations 166 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2008.01689.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Wiley Jarle W. Bjerke; Jarle W. Bjerke; Gareth K. Phoenix; Terry V. Callaghan; Terry V. Callaghan; Stef Bokhorst; Francis W. Bowles; Matthias Zielke;Summary1. Climate change in northern high latitudes is predicted to be greater in winter rather than summer, yet little is known about the effects of winter climate change on northern ecosystems. Among the unknowns are the effects of an increasing frequency of acute, short‐lasting winter warming events. Such events can damage higher plants exposed to warm, then returning cold, temperatures after snow melt, and it is not known how bryophytes and lichens, which are of considerable ecological importance in high‐latitude ecosystems, are affected by such warming events. However, even physiological adaptations of these cryptogams to winter environments in general are poorly understood.2. Here we describe findings from a novel field experiment that uses heating from infrared lamps and soil warming cables to simulate acute mid‐winter warming events in a sub‐Arctic heath. In particular, we report the growing season responses of the dominant lichen, Peltigera aphthosa, and bryophyte, Hylocomium splendens, to warming events in three consecutive winters.3. While summertime photosynthetic performance of P. aphthosa was unaffected by the winter warming treatments, H. splendens showed significant reductions in net photosynthetic rates and growth rates (of up to 48% and 52%, respectively). Negative effects were evident already during the summer following the first winter warming event.4. While the lichen develops without going through critical phenological stages during which vulnerable organs are produced, the moss has a seasonal rhythm, which includes initiation of growth of young, freeze‐susceptible shoot apices in the early growing season; these might be damaged by breaking of dormancy during warm winter events.5. Synthesis. Different sensitivities of the bryophyte and lichen species were unexpected, and illustrate that very little is known about the winter ecology of bryophytes and lichens from cold biomes in general. In sharp contrast to summer warming experiments that show increased vascular plant biomass and reduced lichen biomass, these results demonstrate that acute climate events in mid‐winter may be readily tolerated by lichens, in contrast to previously observed sensitivity of co‐occurring dwarf shrubs, suggesting winter climate change may compensate for (or even reverse) predicted lichen declines resulting from summer warming.
Journal of Ecology arrow_drop_down Journal of EcologyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2745.2011.01859.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 71 citations 71 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Ecology arrow_drop_down Journal of EcologyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2745.2011.01859.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United KingdomPublisher:Springer Science and Business Media LLC Authors: Stef Bokhorst; Peter Convey; Angélica Casanova-Katny; Rien Aerts;AbstractThe Antarctic Peninsula is under pressure from non-native plants and this risk is expected to increase under climate warming. Establishment and subsequent range expansion of non-native plants depend in part on germination ability under Antarctic conditions, but quantifying these processes has yet to receive detailed study. Viability testing and plant growth responses under simulated Antarctic soil surface conditions over an annual cycle show that 16 non-native species, including grasses, herbs, rushes and a succulent, germinated and continued development under a warming scenario. Thermal germination requirement (degree day sum) was calculated for each species and field soil-temperature recordings indicate that this is satisfied as far south as 72° S. Here, we show that the establishment potential of non-native species, in number and geographical range, is considerably greater than currently suggested by species distribution modelling approaches, with important implications for risk assessments of non-native species along the Antarctic Peninsula.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s42003-021-01951-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 8 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s42003-021-01951-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 United KingdomPublisher:Elsevier BV Terry V. Callaghan; Terry V. Callaghan; Jerry M. Melillo; Gareth K. Phoenix; Jarle W. Bjerke; Stef Bokhorst;Arctic climate change is expected to lead to a greater frequency of extreme winter warming events. During these events, temperatures rapidly increase to well above 0 degrees C for a number of days, which can lead to snow melt at the landscape scale, loss of insulating snow cover and warming of soils. However, upon return of cold ambient temperatures, soils can freeze deeper and may experience more freeze-thaw cycles due to the absence of a buffering snow layer. Such loss of snow cover and changes in soil temperatures may be critical for litter decomposition since a stable soil microclimate during winter (facilitated by snow cover) allows activity of soil organisms. Indeed, a substantial part of fresh litter decomposition may occur in winter. However, the impacts of extreme winter warming events on soil processes such as decomposition have never before been investigated. With this study we quantify the impacts of winter warming events on fresh litter decomposition using field simulations and lab studies. Winter warming events were simulated in sub-Arctic heathland using infrared heating lamps and soil warming cables during March (typically the period of maximum snow depth) in three consecutive years of 2007, 2008, and 2009. During the winters of 2008 and 2009, simulations were also run in January (typically a period of shallow snow cover) on separate plots. The lab study included soil cores with and without fresh litter subjected to winter-warming simulations in climate chambers. Litter decomposition of common plant species was unaffected by winter warming events simulated either in the lab (litter of Betula pubescens ssp. czerepanovii), or field (litter of Vaccinium vitis-idaea, and B. pubescens ssp. czerepanovii) with the exception of Vaccinium myrtillus (a common deciduous dwarf shrub) that showed less mass loss in response to winter warming events. Soil CO2 efflux measured in the lab study was (as expected) highly responsive to winter warming events but surprisingly fresh litter decomposition was not. Most fresh litter mass loss in the lab occurred during the first 3-4 weeks (simulating the period after litter fall). In contrast to past understanding, this suggests that winter decomposition of fresh litter is almost nonexistent and observations of substantial mass loss across the cold season seen here and in other studies may result from leaching in autumn, prior to the onset of "true" winter. Further, our findings surprisingly suggest that extreme winter warming events do not affect fresh litter decomposition. Crown Copyright (c) 2009 Published by Elsevier Ltd. All rights reserved.
Soil Biology and Bio... arrow_drop_down Soil Biology and BiochemistryArticle . 2010Data sources: DANS (Data Archiving and Networked Services)Soil Biology and BiochemistryArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2009.12.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 73 citations 73 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Soil Biology and Bio... arrow_drop_down Soil Biology and BiochemistryArticle . 2010Data sources: DANS (Data Archiving and Networked Services)Soil Biology and BiochemistryArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2009.12.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 France, United KingdomPublisher:Springer Science and Business Media LLC Funded by:NWO | Effects of environmental ...NWO| Effects of environmental change on carbon and nitrogen Fluxes in Antarctic Terrestrial Ecosystems (FATE)Bokhorst, Stef; Huiskes, Ad H.L.; Convey, Peter; Sinclair, Brent J.; Lebouvier, Marc; van de Vijver, Bart; Wall, Diana H.;Passive chambers are used to examine the impacts of summer warming in Antarctica but, so far, impacts occurring outside the growing season, or related to extreme temperatures, have not been reported, despite their potentially large biological significance. In this review, we synthesise and discuss the microclimate impacts of passive warming chambers (closed, ventilated and Open Top Chamber-OTC) commonly used in Antarctic terrestrial habitats, paying special attention to seasonal warming, during the growing season and outside, extreme temperatures and freeze-thaw events. Both temperature increases and decreases were recorded throughout the year. Closed chambers caused earlier spring soil thaw (8-28 days) while OTCs delayed soil thaw (3-13 days). Smaller closed chamber types recorded the largest temperature extremes (up to 20 degrees C higher than ambient) and longest periods (up to 11 h) of above ambient extreme temperatures, and even OTCs had above ambient temperature extremes over up to 5 consecutive hours. The frequency of freeze-thaw events was reduced by similar to 25%. All chamber types experienced extreme temperature ranges that could negatively affect biological responses, while warming during winter could result in depletion of limited metabolic resources. The effects outside the growing season could be as important in driving biological responses as the mean summer warming. We make suggestions for improving season-specific warming simulations and propose that seasonal and changed temperature patterns achieved under climate manipulations should be recognised explicitly in descriptions of treatment effects.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2011Data sources: INRIA a CCSD electronic archive serverNatural Environment Research Council: NERC Open Research ArchiveArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-011-0997-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 75 citations 75 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2011Data sources: INRIA a CCSD electronic archive serverNatural Environment Research Council: NERC Open Research ArchiveArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-011-0997-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Embargo end date: 01 Jan 2022 Germany, United Kingdom, Qatar, Denmark, Germany, Spain, United Kingdom, United Kingdom, Switzerland, Italy, Italy, Italy, United Kingdom, Italy, Norway, Spain, Norway, Netherlands, Qatar, Spain, France, Italy, United States, Norway, United Kingdom, GermanyPublisher:Wiley Funded by:UKRI | UK Status, Change and Pro..., AKA | Atmosphere and Climate Co..., DFG | EarthShape: Earth Surface... +28 projectsUKRI| UK Status, Change and Projections of the Environment (UK-SCaPE) ,AKA| Atmosphere and Climate Competence Center (ACCC) ,DFG| EarthShape: Earth Surface Shaping by Biota ,EC| AfricanBioServices ,NSF| Integrating species traits into species pools: A multi-scale approach to understanding community assembly ,EC| ECLAIRE ,SNSF| ICOS-CH Phase 2 ,EC| SUPER-G ,NWO| Specialists at work: how decomposers break down plant litter ,EC| SustainSAHEL ,ARC| Discovery Early Career Researcher Award - Grant ID: DE180100570 ,UKRI| E3 - Edinburgh Earth and Environment - Doctoral Training Partnership ,EC| FORMICA ,RCN| Effects of herbivory and warming on tundra plant communities ,EC| PERMTHAW ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,ARC| Discovery Early Career Researcher Award - Grant ID: DE140101611 ,RSF| The anatomical and physiological response of Scots pine xylem formation to variable water availability ,RCN| The role of Functional group interactions in mediating climate change impacts on the Carbon dynamics and Biodiversity of alpine ecosystems ,ANR| ODYSSEE ,ANR| IMPRINT ,RCN| The effect of snow depth and snow melt timing on arctic terrestrial ecosystems. ,ANR| ASICS ,EC| ICOS ,EC| NICH ,EC| LEAP-AGRI ,EC| AIAS ,EC| DESIRA ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with data ,NSERC ,EC| eLTER PLUSLembrechts, Jonas J; Van Den Hoogen, Johan; Aalto, Juha; Ashcroft, Michael B; De Frenne, Pieter; Kemppinen, Julia; Kopecký, Martin; Luoto, Miska; Maclean, Ilya MD; Crowther, Thomas W; Bailey, Joseph J; Haesen, Stef; Klinges, David H; Niittynen, Pekka; Scheffers, Brett R; Van Meerbeek, Koenraad; Aartsma, Peter; Abdalaze, Otar; Abedi, Mehdi; Aerts, Rien; Ahmadian, Negar; Ahrends, Antje; Alatalo, Juha M; Alexander, Jake M; Allonsius, Camille Nina; Altman, Jan; Ammann, Christof; Andres, Christian; Andrews, Christopher; Ardö, Jonas; Arriga, Nicola; Arzac, Alberto; Aschero, Valeria; Assis, Rafael L; Assmann, Jakob Johann; Bader, Maaike Y; Bahalkeh, Khadijeh; Barančok, Peter; Barrio, Isabel C; Barros, Agustina; Barthel, Matti; Basham, Edmund W; Bauters, Marijn; Bazzichetto, Manuele; Marchesini, Luca Belelli; Bell, Michael C; Benavides, Juan C; Benito Alonso, José Luis; Berauer, Bernd J; Bjerke, Jarle W; Björk, Robert G; Björkman, Mats P; Björnsdóttir, Katrin; Blonder, Benjamin; Boeckx, Pascal; Boike, Julia; Bokhorst, Stef; Brum, Bárbara NS; Brůna, Josef; Buchmann, Nina; Buysse, Pauline; Camargo, José Luís; Campoe, Otávio C; Candan, Onur; Canessa, Rafaella; Cannone, Nicoletta; Carbognani, Michele; Carnicer, Jofre; Casanova-Katny, Angélica; Cesarz, Simone; Chojnicki, Bogdan; Choler, Philippe; Chown, Steven L; Cifuentes, Edgar F; Čiliak, Marek; Contador, Tamara; Convey, Peter; Cooper, Elisabeth J; Cremonese, Edoardo; Curasi, Salvatore R; Curtis, Robin; Cutini, Maurizio; Dahlberg, C Johan; Daskalova, Gergana N; De Pablo, Miguel Angel; Della Chiesa, Stefano; Dengler, Jürgen; Deronde, Bart; Descombes, Patrice; Di Cecco, Valter; Di Musciano, Michele; Dick, Jan; Dimarco, Romina D; Dolezal, Jiri; Dorrepaal, Ellen; Dušek, Jiří; Eisenhauer, Nico; Eklundh, Lars; Erickson, Todd E; Erschbamer, Brigitta; Eugster, Werner; Ewers, Robert M; Exton, Dan A; Fanin, Nicolas; Fazlioglu, Fatih; Feigenwinter, Iris; Fenu, Giuseppe; Ferlian, Olga; Fernández Calzado, M Rosa; Fernández-Pascual, Eduardo; Finckh, Manfred; Higgens, Rebecca Finger; Forte, T'ai GW; Freeman, Erika C; Frei, Esther R; Fuentes-Lillo, Eduardo; García, Rafael A; García, María B; Géron, Charly; Gharun, Mana; Ghosn, Dany; Gigauri, Khatuna; Gobin, Anne; Goded, Ignacio; Goeckede, Mathias; Gottschall, Felix; Goulding, Keith; Govaert, Sanne; Graae, Bente Jessen; Greenwood, Sarah; Greiser, Caroline; Grelle, Achim; Guénard, Benoit; Guglielmin, Mauro; Guillemot, Joannès; Haase, Peter; Haider, Sylvia; Halbritter, Aud H; Hamid, Maroof; Hammerle, Albin; Hampe, Arndt; Haugum, Siri V; Hederová, Lucia; Heinesch, Bernard; Helfter, Carole; Hepenstrick, Daniel; Herberich, Maximiliane; Herbst, Mathias; Hermanutz, Luise; Hik, David S; Hoffrén, Raúl; Homeier, Jürgen; Hörtnagl, Lukas; Høye, Toke T; Hrbacek, Filip; Hylander, Kristoffer; Iwata, Hiroki; Jackowicz-Korczynski, Marcin Antoni; Jactel, Hervé; Järveoja, Järvi; Jastrzębowski, Szymon; Jentsch, Anke; Jiménez, Juan J; Jónsdóttir, Ingibjörg S; Jucker, Tommaso; Jump, Alistair S; Juszczak, Radoslaw; Kanka, Róbert; Kašpar, Vít; Kazakis, George; Kelly, Julia; Khuroo, Anzar A; Klemedtsson, Leif; Klisz, Marcin; Kljun, Natascha; Knohl, Alexander; Kobler, Johannes; Kollár, Jozef; Kotowska, Martyna M; Kovács, Bence; Kreyling, Juergen; Lamprecht, Andrea; Lang, Simone I; Larson, Christian; Larson, Keith; Laska, Kamil; Le Maire, Guerric; Leihy, Rachel I; Lens, Luc; Liljebladh, Bengt; Lohila, Annalea; Lorite, Juan; Loubet, Benjamin; Lynn, Joshua; Macek, Martin; Mackenzie, Roy; Magliulo, Enzo; Maier, Regine; Malfasi, Francesco; Máliš, František;doi: 10.1111/gcb.16060 , 10.32942/osf.io/pksqw , 10.3929/ethz-b-000523670 , 10.5445/ir/1000143688 , 10.21256/zhaw-24832 , 10.17863/cam.81331
pmc: PMC9303923
AbstractResearch in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1‐km2resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1‐km2pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse‐grained air temperature estimates from ERA5‐Land (an atmospheric reanalysis by the European Centre for Medium‐Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome‐specific offsets emphasize that the projected impacts of climate and climate change on near‐surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil‐related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
CORE arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/74200Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BY NCFull-Text: http://urn.nb.no/URN:NBN:no-94234Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BY NCFull-Text: https://hdl.handle.net/11250/2983746Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2022License: CC BY NCFull-Text: http://zaguan.unizar.es/record/125734Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/1893/33794Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.32942/osf.i...Article . 2021 . Peer-reviewedLicense: CC BY SAData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BY NCData sources: idUS. Depósito de Investigación Universidad de SevillaWageningen Staff PublicationsArticle . 2022License: CC BY NCData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 159 citations 159 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 485visibility views 485 download downloads 334 Powered bymore_vert CORE arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/74200Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BY NCFull-Text: http://urn.nb.no/URN:NBN:no-94234Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BY NCFull-Text: https://hdl.handle.net/11250/2983746Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2022License: CC BY NCFull-Text: https://hal.science/hal-03518443Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2022License: CC BY NCFull-Text: http://zaguan.unizar.es/record/125734Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/1893/33794Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.32942/osf.i...Article . 2021 . Peer-reviewedLicense: CC BY SAData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2022License: CC BY NCData sources: idUS. Depósito de Investigación Universidad de SevillaWageningen Staff PublicationsArticle . 2022License: CC BY NCData sources: Wageningen Staff PublicationsMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Oxford University Press (OUP) Funded by:NWO | Effects of global warming...NWO| Effects of global warming on cryptogam- and microbial diversity and ecosystem functioning in Antarctic ecosystems Project I: Effects of global warming on cryptogam diversity and water use in Antarctic ecosystems Project II: Global-warming induced effectYergeau, E.; Bokhorst, S.F.; Kang, S.; Jizhong, Z.; Greer, C.W.; Aerts, M.A.P.A.; Kowalchuk, G.A.;pmid: 21938020
pmc: PMC3282189
Abstract Because of severe abiotic limitations, Antarctic soils represent simplified systems, where microorganisms are the principal drivers of nutrient cycling. This relative simplicity makes these ecosystems particularly vulnerable to perturbations, like global warming, and the Antarctic Peninsula is among the most rapidly warming regions on the planet. However, the consequences of the ongoing warming of Antarctica on microorganisms and the processes they mediate are unknown. Here, using 16S rRNA gene pyrosequencing and qPCR, we report highly consistent responses in microbial communities across disparate sub-Antarctic and Antarctic environments in response to 3 years of experimental field warming (+0.5 to 2 °C). Specifically, we found significant increases in the abundance of fungi and bacteria and in the Alphaproteobacteria-to-Acidobacteria ratio, which could result in an increase in soil respiration. Furthermore, shifts toward generalist bacterial communities following warming weakened the linkage between the bacterial taxonomic and functional richness. GeoChip microarray analyses also revealed significant warming effects on functional communities, specifically in the N-cycling microorganisms. Our results demonstrate that soil microorganisms across a range of sub-Antarctic and Antarctic environments can respond consistently and rapidly to increasing temperatures.
The ISME Journal arrow_drop_down The ISME JournalArticle . 2011 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ismej.2011.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 256 citations 256 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The ISME Journal arrow_drop_down The ISME JournalArticle . 2011 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ismej.2011.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Wiley Hans Tømmervik; Terry V. Callaghan; Terry V. Callaghan; Jarle W. Bjerke; Stef Bokhorst; Gareth K. Phoenix;Summary 1. The Arctic is experiencing considerable change in climate, particularly in winter, and a greater frequency of extreme climatic events is expected. However, the impacts of winter climate change and extreme events have received far less attention than the impacts of season‐long summer warming. Here we report findings from observations following a natural event and from experimental studies to show that short (<10 days) extreme winter warming events can cause major damage to sub‐Arctic plant communities at landscape scales. 2. In the landscape observations, impacts were assessed following an extreme winter warming event that occurred in December 2007 in northern Scandinavia. During this event, temperatures rose up to 7 °C resulting in loss of snow cover and exposure of vegetation to firstly warm and then returning cold temperatures. 3. In the following summer, extensive areas of damaged dwarf shrub vegetation could be observed. Ground observations showed damaged areas to have a 16 times greater frequency of dead shoots of the dominant shrub Empetrum hermaphroditum, resulting in 87% less summer growth compared to neighbouring undamaged areas. The landscape scale extent of this damage was confirmed by satellite‐derived Normalized Differential Vegetation Index values that showed a considerable 26% reduction (comparing July 2007 with July 2008 values) over an area of 1424 km2. This reduction indicates a significant decline in either leaf area or photosynthetic capacity or efficiency at the landscape scale. 4. Strikingly similar damage was also observed in a field manipulation experiment using heating lamps and soil warming cables to simulate such extreme events in sub‐Arctic heathland over two winters. Here, an up to 21 times greater frequency of dead shoots and 47% less shoot growth of E. hermaphroditum was observed in plots exposed to simulated winter warming events compared to unmanipulated controls. 5. Synthesis. These combined landscape observations and experimental findings provide compelling evidence that winter warming events can cause considerable damage to sub‐Arctic vegetation. With increasing winter temperatures predicted, any increase in such damage may have major consequences for productivity and diversity of these sub‐Arctic ecosystems, in contrast to the greening of parts of the Arctic currently attributed to summer warming.
Journal of Ecology arrow_drop_down Journal of EcologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2745.2009.01554.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 243 citations 243 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Ecology arrow_drop_down Journal of EcologyArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2745.2009.01554.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Wiley Lorna E. Street; Terry V. Callaghan; Terry V. Callaghan; Gareth K. Phoenix; Stef Bokhorst; Jarle W. Bjerke;AbstractExtreme weather events can have strong negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme, short‐lived, winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (for instance, 2–10 °C for 2–14 days) but upon return to normal winter climate exposes the ecosystem to much colder temperatures due to the loss of insulating snow. Single events have been shown to reduce plant reproduction and increase shoot mortality, but impacts of multiple events are little understood as are the broader impacts on community structure, growth, carbon balance, and nutrient cycling. To address these issues, we simulated week‐long extreme winter warming events – using infrared heating lamps and soil warming cables – for 3 consecutive years in a sub‐Arctic heathland dominated by the dwarf shrubsEmpetrum hermaphroditum, Vaccinium vitis‐idaea(both evergreen) andVaccinium myrtillus(deciduous). During the growing seasons after the second and third winter event, spring bud burst was delayed by up to a week forE. hermaphroditumandV. myrtillus, and berry production reduced by 11–75% and 52–95% forE. hermaphroditumandV. myrtillus, respectively. Greater shoot mortality occurred inE. hermaphroditum(up to 52%),V. vitis‐idaea(51%), andV. myrtillus(80%). Root growth was reduced by more than 25% but soil nutrient availability remained unaffected. Gross primary productivity was reduced by more than 50% in the summer following the third simulation. Overall, the extent of damage was considerable, and critically plant responses were opposite in direction to the increased growth seen in long‐term summer warming simulations and the ‘greening’ seen for some arctic regions. Given the Arctic is warming more in winter than summer, and extreme events are predicted to become more frequent, this generates large uncertainty in our current understanding of arctic ecosystem responses to climate change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2011.02424.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 164 citations 164 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2011.02424.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Informa UK Limited Bjerke, Jarle Werner; Bokhorst, Stef; Callaghan, Terry V.; Zielke, Matthias; Phoenix, Gareth K.;Background: Arctic lichens and mosses are covered by snow for more than half the year and are generally considered as being dormant for most of this period. However, enhanced frequency of winter warming events due to climate change can cause increased disturbance of their protective subnivean environment. Aim: To further understand cryptogamic responses to midwinter warming we compared the ecophysiological performance of one lichen and one moss species during a simulated warming event. Methods: We measured photosynthesis and dark respiration in samples of the moss Hylocomium splendens and the lichen Peltigera aphthosa removed from under snow, and on natural refreezing after the warming event, which was simulated by using infrared heaters suspended above the ground. Results: The moss exposed to light at +5 °C immediately after removal from their subnivean environment and from warmed plots showed positive net gas exchange within 332 s; the lichen required 1238 s. Photosynthesis and nitrogen fixation rates w...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17550874.2013.771712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17550874.2013.771712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Wiley Jerry M. Melillo; Gareth K. Phoenix; F. W. Bowles; Jarle W. Bjerke; Terry V. Callaghan; Terry V. Callaghan; Stef Bokhorst;AbstractClimate change scenarios predict an increased frequency of extreme climatic events. In Arctic regions, one of the most profound of these are extreme and sudden winter warming events in which temperatures increase rapidly to above freezing, often causing snow melt across whole landscapes and exposure of ecosystems to warm temperatures. Following warming, vegetation and soils no longer insulated below snow are then exposed to rapidly returning extreme cold. Using a new experimental facility established in sub‐Arctic dwarf shrub heathland in northern Sweden, we simulated an extreme winter warming event in the field and report findings on growth, phenology and reproduction during the subsequent growing season. A 1‐week long extreme winter warming event was simulated in early March using infrared heating lamps run with or without soil warming cables. Both single short events delayed bud development of Vaccinium myrtillus by up to 3 weeks in the following spring (June) and reduced flower production by more than 80%: this also led to a near‐complete elimination of berry production in mid‐summer. Empetrum hermaphroditum also showed delayed bud development. In contrast, Vaccinium vitis‐idaea showed no delay in bud development, but instead appeared to produce a greater number of actively growing vegetative buds within plots warmed by heating lamps only. Again, there was evidence of reduced flowering and berry production in this species. While bud break was delayed, growing season measurements of growth and photosynthesis did not reveal a differential response in the warmed plants for any of the species. These results demonstrate that a single, short, extreme winter warming event can have considerable impact on bud production, phenology and reproductive effort of dominant plant species within sub‐Arctic dwarf shrub heathland. Furthermore, large interspecific differences in sensitivity are seen. These findings are of considerable concern, because they suggest that repeated events may potentially impact on the biodiversity and productivity of these systems should these extreme events increase in frequency as a result of global change. Although climate change may lengthen the growing season by earlier spring snow melt, there is a profound danger for these high‐latitude ecosystems if extreme, short‐lived warming in winter exposes plants to initial warm temperatures, but then extreme cold for the rest of the winter. Work is ongoing to determine the longer term and wider impacts of these events.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2008.01689.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 166 citations 166 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2008 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2008.01689.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Wiley Jarle W. Bjerke; Jarle W. Bjerke; Gareth K. Phoenix; Terry V. Callaghan; Terry V. Callaghan; Stef Bokhorst; Francis W. Bowles; Matthias Zielke;Summary1. Climate change in northern high latitudes is predicted to be greater in winter rather than summer, yet little is known about the effects of winter climate change on northern ecosystems. Among the unknowns are the effects of an increasing frequency of acute, short‐lasting winter warming events. Such events can damage higher plants exposed to warm, then returning cold, temperatures after snow melt, and it is not known how bryophytes and lichens, which are of considerable ecological importance in high‐latitude ecosystems, are affected by such warming events. However, even physiological adaptations of these cryptogams to winter environments in general are poorly understood.2. Here we describe findings from a novel field experiment that uses heating from infrared lamps and soil warming cables to simulate acute mid‐winter warming events in a sub‐Arctic heath. In particular, we report the growing season responses of the dominant lichen, Peltigera aphthosa, and bryophyte, Hylocomium splendens, to warming events in three consecutive winters.3. While summertime photosynthetic performance of P. aphthosa was unaffected by the winter warming treatments, H. splendens showed significant reductions in net photosynthetic rates and growth rates (of up to 48% and 52%, respectively). Negative effects were evident already during the summer following the first winter warming event.4. While the lichen develops without going through critical phenological stages during which vulnerable organs are produced, the moss has a seasonal rhythm, which includes initiation of growth of young, freeze‐susceptible shoot apices in the early growing season; these might be damaged by breaking of dormancy during warm winter events.5. Synthesis. Different sensitivities of the bryophyte and lichen species were unexpected, and illustrate that very little is known about the winter ecology of bryophytes and lichens from cold biomes in general. In sharp contrast to summer warming experiments that show increased vascular plant biomass and reduced lichen biomass, these results demonstrate that acute climate events in mid‐winter may be readily tolerated by lichens, in contrast to previously observed sensitivity of co‐occurring dwarf shrubs, suggesting winter climate change may compensate for (or even reverse) predicted lichen declines resulting from summer warming.
Journal of Ecology arrow_drop_down Journal of EcologyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2745.2011.01859.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 71 citations 71 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Ecology arrow_drop_down Journal of EcologyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2745.2011.01859.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu