- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2012 BelgiumPublisher:Springer Science and Business Media LLC Authors: Aspinwall, Michael J. (R17430); McKeand, Steven E.; King, John S.;handle: 10067/1021740151162165141
Abstract: Highly productive, widely deployed genetically improved loblolly pine (Pinus taeda L.) may play an important role in mitigating rising atmospheric CO2 via carbon (C) sequestration. To understand the role of loblolly pine genetic improvement in future C sequestration strategies, we examined the historical (1968-2007) impact of operationally deploying improved families of loblolly pine on productivity and C sequestration across the southeast United States. Since 1977, nearly 100% of loblolly pine plantations in the southeast United States have been established with genetically improved loblolly pine. In recent years, more than 400,000 ha of genetically improved loblolly pine are planted annually. Between 1968 and 2007, we estimate that genetically improved loblolly pine plantations have produced a total of 25.6 billion m(3) of stemwood volume and have sequestered 9,865 Tg C in live and dead biomass. Our estimates also indicate that genetic improvement has resulted in an additional 3.7 billion m(3) (17% increase) and 1,100 Tg C (13%) of volume production and C sequestration, respectively, relative to volume production and C sequestration with no genetic improvement. We expect that loblolly pine plantation C sequestration will increase as more productive families and clones are deployed and as currently deployed genetic material continues to mature. Together, genetic improvement, intensive silvicultural, and longer rotations aimed at producing long-lived wood products will be important tools for maximizing C sequestration in loblolly pine plantations. FOR. SCI. 58(5):446-456.
Forest Science arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5849/forsci.11-058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Forest Science arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5849/forsci.11-058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United StatesPublisher:Wiley Funded by:ARC | Testing climatic, physiol..., ARC | Discovery Projects - Gran..., ARC | Woodland response to elev...ARC| Testing climatic, physiological and hydrological assumptions underpinning water yield from montane forests ,ARC| Discovery Projects - Grant ID: DP140103415 ,ARC| Woodland response to elevated CO2 in free air carbon dioxide enrichment: does phosphorus limit the sink for Carbon?Authors: Aspinwall, Michael J. (R17430); Loik, Michael E.; Resco de Dios, Victor (R16720); Tjoelker, Mark G. (R16688); +2 AuthorsAspinwall, Michael J. (R17430); Loik, Michael E.; Resco de Dios, Victor (R16720); Tjoelker, Mark G. (R16688); Payton, Paxton; Tissue, David T. (R11531);doi: 10.1111/pce.12424
pmid: 25132508
AbstractClimate change threatens the ability of agriculture and forestry to meet growing global demands for food, fibre and wood products. Information gathered from genotype‐by‐environment interactions (G × E), which demonstrate intraspecific variation in phenotypic plasticity (the ability of a genotype to alter its phenotype in response to environmental change), may prove important for bolstering agricultural and forest productivity under climate change. Nonetheless, very few studies have explicitly quantified genotype plasticity–productivity relationships in agriculture or forestry. Here, we conceptualize the importance of intraspecific variation in agricultural and forest species plasticity, and discuss the physiological and genetic factors contributing to intraspecific variation in phenotypic plasticity. Our discussion highlights the need for an integrated understanding of the mechanisms of G × E, more extensive assessments of genotypic responses to climate change under field conditions, and explicit testing of genotype plasticity–productivity relationships. Ultimately, further investigation of intraspecific variation in phenotypic plasticity in agriculture and forestry may prove important for identifying genotypes capable of increasing or sustaining productivity under more extreme climatic conditions.
Plant Cell & Environ... arrow_drop_down eScholarship - University of CaliforniaArticle . 2014Data sources: eScholarship - University of CaliforniaPlant Cell & EnvironmentArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Plant Cell & Environ... arrow_drop_down eScholarship - University of CaliforniaArticle . 2014Data sources: eScholarship - University of CaliforniaPlant Cell & EnvironmentArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Spain, United States, SpainPublisher:Wiley Authors: Resco de Dios, Victor (R16720); Loik, Michael E.; Smith, Renee A. (R15684); Aspinwall, Michael J. (R17430); +1 AuthorsResco de Dios, Victor (R16720); Loik, Michael E.; Smith, Renee A. (R15684); Aspinwall, Michael J. (R17430); Tissue, David T. (R11531);doi: 10.1111/pce.12598
pmid: 26147129
AbstractCircadian resonance, whereby a plant's endogenous rhythms are tuned to match environmental cues, has been repeatedly shown to be adaptive, although the underlying mechanisms remain elusive. Concomitantly, the adaptive value of nocturnal transpiration in C3 plants remains unknown because it occurs without carbon assimilation. These seemingly unrelated processes are interconnected because circadian regulation drives temporal patterns in nocturnal stomatal conductance, with maximum values occurring immediately before dawn for many species. We grew individuals of six Eucalyptus camaldulensis genotypes in naturally lit glasshouses and measured sunset, predawn and midday leaf gas exchange and whole‐plant biomass production. We tested whether sunrise anticipation by the circadian clock and subsequent increases in genotype predawn stomatal conductance led to rapid stomatal opening upon illumination, ultimately affecting genotype differences in carbon assimilation and growth. We observed faster stomatal responses to light inputs at sunrise in genotypes with higher predawn stomatal conductance. Moreover, early morning and midday stomatal conductance and carbon assimilation, leaf area and total plant biomass were all positively correlated with predawn stomatal conductance across genotypes. Our results lead to the novel hypothesis that genotypic variation in the circadian‐regulated capacity to anticipate sunrise could be an important factor underlying intraspecific variation in tree growth.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/98j055fhData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTAeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaPlant Cell & EnvironmentArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/98j055fhData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTAeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaPlant Cell & EnvironmentArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:Wiley Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP140103415Peter B. Reich; Peter B. Reich; Michael J. Aspinwall; David T. Tissue; Courtney E. Campany; Mark G. Tjoelker; Angelica Vårhammar; John E. Drake; Oula Ghannoum;Summary Understanding physiological acclimation of photosynthesis and respiration is important in elucidating the metabolic performance of trees in a changing climate. Does physiological acclimation to climate warming mirror acclimation to seasonal temperature changes? We grew Eucalyptus tereticornis trees in the field for 14 months inside 9‐m tall whole‐tree chambers tracking ambient air temperature (Tair) or ambient Tair + 3°C (i.e. ‘warmed’). We measured light‐ and CO2‐saturated net photosynthesis (Amax) and night‐time dark respiration (R) each month at 25°C to quantify acclimation. Tree growth was measured, and leaf nitrogen (N) and total nonstructural carbohydrate (TNC) concentrations were determined to investigate mechanisms of acclimation. Warming reduced Amax and R measured at 25°C compared to ambient‐grown trees. Both traits also declined as mean daily Tair increased, and did so in a similar way across temperature treatments. Amax and R (at 25°C) both increased as TNC concentrations increased seasonally; these relationships appeared to arise from source–sink imbalances, suggesting potential substrate regulation of thermal acclimation. We found that photosynthesis and respiration each acclimated equivalently to experimental warming and seasonal temperature change of a similar magnitude, reflecting a common, nearly homeostatic constraint on leaf carbon exchange that will be important in governing tree responses to climate warming.
New Phytologist arrow_drop_down New PhytologistArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.14035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert New Phytologist arrow_drop_down New PhytologistArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.14035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 United KingdomPublisher:Oxford University Press (OUP) Funded by:ARC | Discovery Early Career Re..., UKRI | Ghosts from summers past:..., ARC | Discovery Projects - Gran...ARC| Discovery Early Career Researcher Award - Grant ID: DE160101484 ,UKRI| Ghosts from summers past: quantifying the role of vegetation legacy to climatic extremes ,ARC| Discovery Projects - Grant ID: DP140103415Dushan P Kumarathunge; Belinda E Medlyn; John E Drake; Martin G De Kauwe; Mark G Tjoelker; Michael J Aspinwall; Craig V M Barton; Courtney E Campany; Kristine Y Crous; Jinyan Yang; Mingkai Jiang;pmid: 39418321
pmc: PMC11585359
Abstract Understanding how canopy-scale photosynthesis responds to temperature is of paramount importance for realistic prediction of the likely impact of climate change on forest growth. The effects of temperature on leaf-scale photosynthesis have been extensively documented but data demonstrating the temperature response of canopy-scale photosynthesis are relatively rare, and the mechanisms that determine the response are not well quantified. Here, we compared leaf- and canopy-scale photosynthesis responses to temperature measured in a whole-tree chamber experiment and tested mechanisms that could explain the difference between leaf and crown scale temperature optima for photosynthesis. We hypothesized that (i) there is a large contribution of non-light saturated leaves to total crown photosynthesis, (ii) photosynthetic component processes vary vertically through the canopy following the gradient in incident light and (iii) seasonal temperature acclimation of photosynthetic biochemistry has a significant role in determining the overall temperature response of canopy photosynthesis. We tested these hypotheses using three models of canopy radiation interception and photosynthesis parameterized with leaf-level physiological data and estimates of canopy leaf area. Our results identified the influence of non-light saturated leaves as a key determinant of the lower temperature optimum of canopy photosynthesis, which reduced the temperature optimum of canopy photosynthesis by 6–8 °C compared with the leaf scale. Further, we demonstrate the importance of accounting for within-canopy variation and seasonal temperature acclimation of photosynthetic biochemistry in determining the magnitude of canopy photosynthesis. Overall, our study identifies key processes that need to be incorporated in terrestrial biosphere models to accurately predict temperature responses of whole-tree photosynthesis.
Tree Physiology arrow_drop_down University of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpae135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Tree Physiology arrow_drop_down University of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpae135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United StatesPublisher:Wiley Philip A. Fay; Michael J. Aspinwall; Harold P. Collins; Anne E. Gibson; Richard H. Gill; Robert B. Jackson; Virginia L. Jin; Albina R. Khasanova; Lara G. Reichmann; H. Wayne Polley;doi: 10.1111/gcb.14032
pmid: 29282824
AbstractContinuing enrichment of atmospheric CO2 may change plant community composition, in part by altering the availability of other limiting resources including soil water, nutrients, or light. The combined effects of CO2 enrichment and altered resource availability on species flowering remain poorly understood. We quantified flowering culm and ramet production and biomass allocation to flowering culms/ramets for 10 years in C4‐dominated grassland communities on contrasting soils along a CO2 concentration gradient spanning pre‐industrial to expected mid‐21st century levels (250–500 μl/L). CO2 enrichment explained up to 77% of the variation in flowering culm count across soils for three of the five species, and was correlated with flowering culm count on at least one soil for four of five species. In contrast, allocation to flowering culms was only weakly correlated with CO2 enrichment for two species. Flowering culm counts were strongly correlated with species aboveground biomass (AGB; R2 = .34–.74), a measure of species abundance. CO2 enrichment also increased soil moisture and decreased light levels within the canopy but did not affect soil inorganic nitrogen availability. Structural equation models fit across the soils suggested species‐specific controls on flowering in two general forms: (1) CO2 effects on flowering culm count mediated by canopy light level and relative species AGB (species AGB/total AGB) or by soil moisture effects on flowering culm count; (2) effects of canopy light level or soil inorganic nitrogen on flowering and/or relative species AGB, but with no significant CO2 effect. Understanding the heterogeneity in species responses to CO2 enrichment in plant communities across soils in edaphically variable landscapes is critical to predict CO2 effects on flowering and other plant fitness components, and species potential to adapt to future environmental changes.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of North Florida (UNF): Digital CommonsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of North Florida (UNF): Digital CommonsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Australia, United Kingdom, FrancePublisher:Wiley Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP140103415Dushan Kumarathunge; Craig V. M. Barton; Kristine Y. Crous; David T. Tissue; Remko A. Duursma; Peter B. Reich; Peter B. Reich; John E. Drake; John E. Drake; Chris J. Blackman; Belinda E. Medlyn; Sebastian Pfautsch; Mingkai Jiang; Adrienne B. Nicotra; Rosana López; Rosana López; Michael J. Aspinwall; Michael J. Aspinwall; Mark G. Tjoelker; Brendan Choat; Martin G. De Kauwe; Andrea Leigh; Angelica Vårhammar; Owen K. Atkin;doi: 10.1111/gcb.14037
pmid: 29316093
AbstractHeatwaves are likely to increase in frequency and intensity with climate change, which may impair tree function and forest C uptake. However, we have little information regarding the impact of extreme heatwaves on the physiological performance of large trees in the field. Here, we grew Eucalyptus parramattensis trees for 1 year with experimental warming (+3°C) in a field setting, until they were greater than 6 m tall. We withheld irrigation for 1 month to dry the surface soils and then implemented an extreme heatwave treatment of 4 consecutive days with air temperatures exceeding 43°C, while monitoring whole‐canopy exchange of CO2 and H2O, leaf temperatures, leaf thermal tolerance, and leaf and branch hydraulic status. The heatwave reduced midday canopy photosynthesis to near zero but transpiration persisted, maintaining canopy cooling. A standard photosynthetic model was unable to capture the observed decoupling between photosynthesis and transpiration at high temperatures, suggesting that climate models may underestimate a moderating feedback of vegetation on heatwave intensity. The heatwave also triggered a rapid increase in leaf thermal tolerance, such that leaf temperatures observed during the heatwave were maintained within the thermal limits of leaf function. All responses were equivalent for trees with a prior history of ambient and warmed (+3°C) temperatures, indicating that climate warming conferred no added tolerance of heatwaves expected in the future. This coordinated physiological response utilizing latent cooling and adjustment of thermal thresholds has implications for tree tolerance of future climate extremes as well as model predictions of future heatwave intensity at landscape and global scales.
Australian National ... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Australian National ... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 FrancePublisher:Wiley Authors: Aspinwall, Michael J. (R17430); King, John S.; Domec, Jean-Christophe; McKeand, Steven E.; +1 AuthorsAspinwall, Michael J. (R17430); King, John S.; Domec, Jean-Christophe; McKeand, Steven E.; Isik, Fikret;doi: 10.1002/eco.197
AbstractPhysiological uniformity and genetic effects on canopy‐level gas‐exchange and hydraulic function could impact loblolly pine (Pinus taedaL.) plantation sustainability and ecosystem dynamics under projected changes in climate. Over a 1‐year period, we examined genetic effects on mean and maximum mid‐day canopy conductance (Gs,Gsmax) and transpiration (E, max‐E) within a juvenile loblolly pine plantation composed of ‘genotypes’ (e.g. different genetic entries) from each of the three different genetic groups (clones, full‐sibs, open‐pollinated). We also compared reference canopy conductance (Gs−reforGsat a vapour pressure deficit (D) = 1 kPa), maximumE(Emax) in response toD, stomatal sensitivity toD, specific hydraulic conductivity (ks), and cavitation resistance among genotypes. Based on genetic and physiological principles, we hypothesized that (1) within genotypes, physiological uniformity will increase as inherent genetic diversity decreases and (2) genotypes with greaterksand higher canopy‐level gas‐exchange rates will be more sensitive to increases inD, and more susceptible to loss ofks. In our results, high‐ and low‐genetic diversity genotypes showed no differences inEandGsuniformity over time. However,Eand max‐Ewere significantly different among genotypes, and genotypes showed significant seasonal variability inGsandGsmax. Additionally, there were significant differences inEmax,Gs−ref,Gssensitivity toD, and the pressure at which 50% loss ofksoccurs (P50) among individual genotypes. We found no relationship between mean hydraulic conductivity parameters and overallGs−reforGssensitivity. However, the genotype full embolism point (P88) and loss ofksrate (LCrate) both showed a significant positive relationship with genotypeGs−refduring the spring, indicating that genotypes with higherGswere less resistant to cavitation. Overall, genetic effects on canopy‐level gas‐exchange and cavitation resistance were significant, implying that physiological differences among genotypes might affect stand water use, carbon gain, drought tolerance, and hydrologic processes. Contrary to our expectations, uniformity in physiological process rates did not increase as inherent genetic diversity decreased, suggesting that clonal genotypes exhibit high physiological plasticity under plantation conditions. Lastly, our results imply that genotypes with higher spring‐time gas‐exchange rates may be more susceptible to catastrophic loss ofks. With changes in climate expected to continue, physiological differences among genotypes may affect loblolly pine plantation carbon and water cycling. Copyright © 2011 John Wiley & Sons, Ltd.
Hyper Article en Lig... arrow_drop_down EcohydrologyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eco.197&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down EcohydrologyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eco.197&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 BelgiumPublisher:Elsevier BV Bronson P. Bullock; Michael J. Aspinwall; Steven E. McKeand; John S. King; John S. King;handle: 10067/907620151162165141
Abstract Genetic differences in stand-level above- and belowground dry mass production in loblolly pine (Pinus taeda L.) may influence southern pine plantation productivity, sustainability and carbon (C) sequestration. Furthermore, deployment of more or less genetically homogeneous individuals could impact stand uniformity and ecosystem processes. In this study, we aimed to compare stand uniformity and above- and belowground dry mass production among loblolly pine genotypes of contrasting inherent genetic homogeneity. We hypothesized that stand-level uniformity would increase as within-genotype inherent genetic variation decreased (open-pollinated (half-sib) > full-sib > clone). To examine genetic effects on stand uniformity and productivity, we grew ten different genotypes (three open-pollinated families, three full-sib families, three clones, and one seed orchard mix variety) in a plantation setting for 4 years, at two different planting densities (∼539 and 1077 trees ha−1), and used allometric relationships to estimate standing dry mass and annual dry mass production. In the low planting density treatment, age 3 total standing dry mass of the most productive genotype (5824 kg ha−1) was 82% higher than that of the least productive genotype (3207 kg ha−1). In the high planting density treatment, age 3 total standing dry mass of the most productive genotype (11,393 kg ha−1) was 110% higher than that of the least productive genotype (5427 kg ha−1). Genetic differences in annual dry mass production were of a similar magnitude with peak rates during the third year as high as 4221 and 8198 kg ha−1 yr−1 in the low and high planting density treatments, respectively. More genetically homogeneous genotypes did not show greater stand-level uniformity under operational management conditions. Over time, genotypes showed no consistent differences in the coefficient of variation (CV) for ground-level diameter; however, two full-sib and two half-sib families showed significantly lower CV’s for total tree height than all three clones. Moreover, genotypes with lower CV’s for height growth displayed greater stand-level dry mass production which supports the premise that greater stand uniformity will lead to enhanced productivity. Since uniformity and stand-level productivity of loblolly pine clones will be principally governed by environmental heterogeneity, our results highlight the need for silvicultural prescriptions that maximize site uniformity. In addition, our results demonstrate how the deployment of highly productive loblolly pine genotypes may provide a means of enhancing southern pine ecosystem sustainability by sequestering C in both harvestable aboveground biomass and woody belowground biomass.
Forest Ecology and M... arrow_drop_down Forest Ecology and ManagementArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefForest Ecology and ManagementArticle . 2011Data sources: Institutional Repository Universiteit AntwerpenUniversity of Western Sydney (UWS): Research DirectArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2011.04.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Forest Ecology and M... arrow_drop_down Forest Ecology and ManagementArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefForest Ecology and ManagementArticle . 2011Data sources: Institutional Repository Universiteit AntwerpenUniversity of Western Sydney (UWS): Research DirectArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2011.04.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSF | The Physiological Genomic...NSF| The Physiological Genomics of Panicum: Exploring Switchgrass Responses to Climate ChangeAuthors: Lowry, David B.; Taylor, Samuel H.; Bonnette, Jason; Aspinwall, Michael J. (R17430); +4 AuthorsLowry, David B.; Taylor, Samuel H.; Bonnette, Jason; Aspinwall, Michael J. (R17430); Asmus, Ashley L.; Keitt, Tim H.; Tobias, Chistian M.; Juenger, Thomas E.;Genetic and genomic resources have recently been developed for the bioenergy crop switchgrass (Panicum virgatum). Despite these advances, little research has been focused on identifying genetic loci involved in natural variation of important bioenergy traits, including biomass. Quantitative trait locus (QTL) mapping is typically used to discover loci that contribute to trait variation. Once identified, QTLs can be used to improve agronomically important traits through marker-assisted selection. In this study, we conducted QTL mapping in Austin, TX, USA, with a full-sib mapping population derived from a cross between tetraploid clones of two major switchgrass cultivars (Alamo-A4 and Kanlow-K5). We observed significant among-genotype variation for the vast majority of growth, morphological, and phenological traits measured on the mapping population. Overall, we discovered 27 significant QTLs across 23 traits. QTLs for biomass production colocalized on linkage group 9b across years, as well as with a major biomass QTL discovered in another recent switchgrass QTL study. The experiment was conducted under a rainout shelter, which allowed us to examine the effects of differential irrigation on trait values. We found very minimal effects of the reduced watering treatment on traits, with no significant effect on biomass production. Overall, the results of our study set the stage for future crop improvement through marker-assisted selection breeding.
BioEnergy Research arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-015-9629-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert BioEnergy Research arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-015-9629-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2012 BelgiumPublisher:Springer Science and Business Media LLC Authors: Aspinwall, Michael J. (R17430); McKeand, Steven E.; King, John S.;handle: 10067/1021740151162165141
Abstract: Highly productive, widely deployed genetically improved loblolly pine (Pinus taeda L.) may play an important role in mitigating rising atmospheric CO2 via carbon (C) sequestration. To understand the role of loblolly pine genetic improvement in future C sequestration strategies, we examined the historical (1968-2007) impact of operationally deploying improved families of loblolly pine on productivity and C sequestration across the southeast United States. Since 1977, nearly 100% of loblolly pine plantations in the southeast United States have been established with genetically improved loblolly pine. In recent years, more than 400,000 ha of genetically improved loblolly pine are planted annually. Between 1968 and 2007, we estimate that genetically improved loblolly pine plantations have produced a total of 25.6 billion m(3) of stemwood volume and have sequestered 9,865 Tg C in live and dead biomass. Our estimates also indicate that genetic improvement has resulted in an additional 3.7 billion m(3) (17% increase) and 1,100 Tg C (13%) of volume production and C sequestration, respectively, relative to volume production and C sequestration with no genetic improvement. We expect that loblolly pine plantation C sequestration will increase as more productive families and clones are deployed and as currently deployed genetic material continues to mature. Together, genetic improvement, intensive silvicultural, and longer rotations aimed at producing long-lived wood products will be important tools for maximizing C sequestration in loblolly pine plantations. FOR. SCI. 58(5):446-456.
Forest Science arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5849/forsci.11-058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Forest Science arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5849/forsci.11-058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United StatesPublisher:Wiley Funded by:ARC | Testing climatic, physiol..., ARC | Discovery Projects - Gran..., ARC | Woodland response to elev...ARC| Testing climatic, physiological and hydrological assumptions underpinning water yield from montane forests ,ARC| Discovery Projects - Grant ID: DP140103415 ,ARC| Woodland response to elevated CO2 in free air carbon dioxide enrichment: does phosphorus limit the sink for Carbon?Authors: Aspinwall, Michael J. (R17430); Loik, Michael E.; Resco de Dios, Victor (R16720); Tjoelker, Mark G. (R16688); +2 AuthorsAspinwall, Michael J. (R17430); Loik, Michael E.; Resco de Dios, Victor (R16720); Tjoelker, Mark G. (R16688); Payton, Paxton; Tissue, David T. (R11531);doi: 10.1111/pce.12424
pmid: 25132508
AbstractClimate change threatens the ability of agriculture and forestry to meet growing global demands for food, fibre and wood products. Information gathered from genotype‐by‐environment interactions (G × E), which demonstrate intraspecific variation in phenotypic plasticity (the ability of a genotype to alter its phenotype in response to environmental change), may prove important for bolstering agricultural and forest productivity under climate change. Nonetheless, very few studies have explicitly quantified genotype plasticity–productivity relationships in agriculture or forestry. Here, we conceptualize the importance of intraspecific variation in agricultural and forest species plasticity, and discuss the physiological and genetic factors contributing to intraspecific variation in phenotypic plasticity. Our discussion highlights the need for an integrated understanding of the mechanisms of G × E, more extensive assessments of genotypic responses to climate change under field conditions, and explicit testing of genotype plasticity–productivity relationships. Ultimately, further investigation of intraspecific variation in phenotypic plasticity in agriculture and forestry may prove important for identifying genotypes capable of increasing or sustaining productivity under more extreme climatic conditions.
Plant Cell & Environ... arrow_drop_down eScholarship - University of CaliforniaArticle . 2014Data sources: eScholarship - University of CaliforniaPlant Cell & EnvironmentArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Plant Cell & Environ... arrow_drop_down eScholarship - University of CaliforniaArticle . 2014Data sources: eScholarship - University of CaliforniaPlant Cell & EnvironmentArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12424&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Spain, United States, SpainPublisher:Wiley Authors: Resco de Dios, Victor (R16720); Loik, Michael E.; Smith, Renee A. (R15684); Aspinwall, Michael J. (R17430); +1 AuthorsResco de Dios, Victor (R16720); Loik, Michael E.; Smith, Renee A. (R15684); Aspinwall, Michael J. (R17430); Tissue, David T. (R11531);doi: 10.1111/pce.12598
pmid: 26147129
AbstractCircadian resonance, whereby a plant's endogenous rhythms are tuned to match environmental cues, has been repeatedly shown to be adaptive, although the underlying mechanisms remain elusive. Concomitantly, the adaptive value of nocturnal transpiration in C3 plants remains unknown because it occurs without carbon assimilation. These seemingly unrelated processes are interconnected because circadian regulation drives temporal patterns in nocturnal stomatal conductance, with maximum values occurring immediately before dawn for many species. We grew individuals of six Eucalyptus camaldulensis genotypes in naturally lit glasshouses and measured sunset, predawn and midday leaf gas exchange and whole‐plant biomass production. We tested whether sunrise anticipation by the circadian clock and subsequent increases in genotype predawn stomatal conductance led to rapid stomatal opening upon illumination, ultimately affecting genotype differences in carbon assimilation and growth. We observed faster stomatal responses to light inputs at sunrise in genotypes with higher predawn stomatal conductance. Moreover, early morning and midday stomatal conductance and carbon assimilation, leaf area and total plant biomass were all positively correlated with predawn stomatal conductance across genotypes. Our results lead to the novel hypothesis that genotypic variation in the circadian‐regulated capacity to anticipate sunrise could be an important factor underlying intraspecific variation in tree growth.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/98j055fhData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTAeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaPlant Cell & EnvironmentArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/98j055fhData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTAeScholarship - University of CaliforniaArticle . 2015Data sources: eScholarship - University of CaliforniaPlant Cell & EnvironmentArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pce.12598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:Wiley Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP140103415Peter B. Reich; Peter B. Reich; Michael J. Aspinwall; David T. Tissue; Courtney E. Campany; Mark G. Tjoelker; Angelica Vårhammar; John E. Drake; Oula Ghannoum;Summary Understanding physiological acclimation of photosynthesis and respiration is important in elucidating the metabolic performance of trees in a changing climate. Does physiological acclimation to climate warming mirror acclimation to seasonal temperature changes? We grew Eucalyptus tereticornis trees in the field for 14 months inside 9‐m tall whole‐tree chambers tracking ambient air temperature (Tair) or ambient Tair + 3°C (i.e. ‘warmed’). We measured light‐ and CO2‐saturated net photosynthesis (Amax) and night‐time dark respiration (R) each month at 25°C to quantify acclimation. Tree growth was measured, and leaf nitrogen (N) and total nonstructural carbohydrate (TNC) concentrations were determined to investigate mechanisms of acclimation. Warming reduced Amax and R measured at 25°C compared to ambient‐grown trees. Both traits also declined as mean daily Tair increased, and did so in a similar way across temperature treatments. Amax and R (at 25°C) both increased as TNC concentrations increased seasonally; these relationships appeared to arise from source–sink imbalances, suggesting potential substrate regulation of thermal acclimation. We found that photosynthesis and respiration each acclimated equivalently to experimental warming and seasonal temperature change of a similar magnitude, reflecting a common, nearly homeostatic constraint on leaf carbon exchange that will be important in governing tree responses to climate warming.
New Phytologist arrow_drop_down New PhytologistArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.14035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert New Phytologist arrow_drop_down New PhytologistArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nph.14035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 United KingdomPublisher:Oxford University Press (OUP) Funded by:ARC | Discovery Early Career Re..., UKRI | Ghosts from summers past:..., ARC | Discovery Projects - Gran...ARC| Discovery Early Career Researcher Award - Grant ID: DE160101484 ,UKRI| Ghosts from summers past: quantifying the role of vegetation legacy to climatic extremes ,ARC| Discovery Projects - Grant ID: DP140103415Dushan P Kumarathunge; Belinda E Medlyn; John E Drake; Martin G De Kauwe; Mark G Tjoelker; Michael J Aspinwall; Craig V M Barton; Courtney E Campany; Kristine Y Crous; Jinyan Yang; Mingkai Jiang;pmid: 39418321
pmc: PMC11585359
Abstract Understanding how canopy-scale photosynthesis responds to temperature is of paramount importance for realistic prediction of the likely impact of climate change on forest growth. The effects of temperature on leaf-scale photosynthesis have been extensively documented but data demonstrating the temperature response of canopy-scale photosynthesis are relatively rare, and the mechanisms that determine the response are not well quantified. Here, we compared leaf- and canopy-scale photosynthesis responses to temperature measured in a whole-tree chamber experiment and tested mechanisms that could explain the difference between leaf and crown scale temperature optima for photosynthesis. We hypothesized that (i) there is a large contribution of non-light saturated leaves to total crown photosynthesis, (ii) photosynthetic component processes vary vertically through the canopy following the gradient in incident light and (iii) seasonal temperature acclimation of photosynthetic biochemistry has a significant role in determining the overall temperature response of canopy photosynthesis. We tested these hypotheses using three models of canopy radiation interception and photosynthesis parameterized with leaf-level physiological data and estimates of canopy leaf area. Our results identified the influence of non-light saturated leaves as a key determinant of the lower temperature optimum of canopy photosynthesis, which reduced the temperature optimum of canopy photosynthesis by 6–8 °C compared with the leaf scale. Further, we demonstrate the importance of accounting for within-canopy variation and seasonal temperature acclimation of photosynthetic biochemistry in determining the magnitude of canopy photosynthesis. Overall, our study identifies key processes that need to be incorporated in terrestrial biosphere models to accurately predict temperature responses of whole-tree photosynthesis.
Tree Physiology arrow_drop_down University of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpae135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Tree Physiology arrow_drop_down University of Bristol: Bristol ResearchArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/treephys/tpae135&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United StatesPublisher:Wiley Philip A. Fay; Michael J. Aspinwall; Harold P. Collins; Anne E. Gibson; Richard H. Gill; Robert B. Jackson; Virginia L. Jin; Albina R. Khasanova; Lara G. Reichmann; H. Wayne Polley;doi: 10.1111/gcb.14032
pmid: 29282824
AbstractContinuing enrichment of atmospheric CO2 may change plant community composition, in part by altering the availability of other limiting resources including soil water, nutrients, or light. The combined effects of CO2 enrichment and altered resource availability on species flowering remain poorly understood. We quantified flowering culm and ramet production and biomass allocation to flowering culms/ramets for 10 years in C4‐dominated grassland communities on contrasting soils along a CO2 concentration gradient spanning pre‐industrial to expected mid‐21st century levels (250–500 μl/L). CO2 enrichment explained up to 77% of the variation in flowering culm count across soils for three of the five species, and was correlated with flowering culm count on at least one soil for four of five species. In contrast, allocation to flowering culms was only weakly correlated with CO2 enrichment for two species. Flowering culm counts were strongly correlated with species aboveground biomass (AGB; R2 = .34–.74), a measure of species abundance. CO2 enrichment also increased soil moisture and decreased light levels within the canopy but did not affect soil inorganic nitrogen availability. Structural equation models fit across the soils suggested species‐specific controls on flowering in two general forms: (1) CO2 effects on flowering culm count mediated by canopy light level and relative species AGB (species AGB/total AGB) or by soil moisture effects on flowering culm count; (2) effects of canopy light level or soil inorganic nitrogen on flowering and/or relative species AGB, but with no significant CO2 effect. Understanding the heterogeneity in species responses to CO2 enrichment in plant communities across soils in edaphically variable landscapes is critical to predict CO2 effects on flowering and other plant fitness components, and species potential to adapt to future environmental changes.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of North Florida (UNF): Digital CommonsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of North Florida (UNF): Digital CommonsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Australia, United Kingdom, FrancePublisher:Wiley Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP140103415Dushan Kumarathunge; Craig V. M. Barton; Kristine Y. Crous; David T. Tissue; Remko A. Duursma; Peter B. Reich; Peter B. Reich; John E. Drake; John E. Drake; Chris J. Blackman; Belinda E. Medlyn; Sebastian Pfautsch; Mingkai Jiang; Adrienne B. Nicotra; Rosana López; Rosana López; Michael J. Aspinwall; Michael J. Aspinwall; Mark G. Tjoelker; Brendan Choat; Martin G. De Kauwe; Andrea Leigh; Angelica Vårhammar; Owen K. Atkin;doi: 10.1111/gcb.14037
pmid: 29316093
AbstractHeatwaves are likely to increase in frequency and intensity with climate change, which may impair tree function and forest C uptake. However, we have little information regarding the impact of extreme heatwaves on the physiological performance of large trees in the field. Here, we grew Eucalyptus parramattensis trees for 1 year with experimental warming (+3°C) in a field setting, until they were greater than 6 m tall. We withheld irrigation for 1 month to dry the surface soils and then implemented an extreme heatwave treatment of 4 consecutive days with air temperatures exceeding 43°C, while monitoring whole‐canopy exchange of CO2 and H2O, leaf temperatures, leaf thermal tolerance, and leaf and branch hydraulic status. The heatwave reduced midday canopy photosynthesis to near zero but transpiration persisted, maintaining canopy cooling. A standard photosynthetic model was unable to capture the observed decoupling between photosynthesis and transpiration at high temperatures, suggesting that climate models may underestimate a moderating feedback of vegetation on heatwave intensity. The heatwave also triggered a rapid increase in leaf thermal tolerance, such that leaf temperatures observed during the heatwave were maintained within the thermal limits of leaf function. All responses were equivalent for trees with a prior history of ambient and warmed (+3°C) temperatures, indicating that climate warming conferred no added tolerance of heatwaves expected in the future. This coordinated physiological response utilizing latent cooling and adjustment of thermal thresholds has implications for tree tolerance of future climate extremes as well as model predictions of future heatwave intensity at landscape and global scales.
Australian National ... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Australian National ... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 FrancePublisher:Wiley Authors: Aspinwall, Michael J. (R17430); King, John S.; Domec, Jean-Christophe; McKeand, Steven E.; +1 AuthorsAspinwall, Michael J. (R17430); King, John S.; Domec, Jean-Christophe; McKeand, Steven E.; Isik, Fikret;doi: 10.1002/eco.197
AbstractPhysiological uniformity and genetic effects on canopy‐level gas‐exchange and hydraulic function could impact loblolly pine (Pinus taedaL.) plantation sustainability and ecosystem dynamics under projected changes in climate. Over a 1‐year period, we examined genetic effects on mean and maximum mid‐day canopy conductance (Gs,Gsmax) and transpiration (E, max‐E) within a juvenile loblolly pine plantation composed of ‘genotypes’ (e.g. different genetic entries) from each of the three different genetic groups (clones, full‐sibs, open‐pollinated). We also compared reference canopy conductance (Gs−reforGsat a vapour pressure deficit (D) = 1 kPa), maximumE(Emax) in response toD, stomatal sensitivity toD, specific hydraulic conductivity (ks), and cavitation resistance among genotypes. Based on genetic and physiological principles, we hypothesized that (1) within genotypes, physiological uniformity will increase as inherent genetic diversity decreases and (2) genotypes with greaterksand higher canopy‐level gas‐exchange rates will be more sensitive to increases inD, and more susceptible to loss ofks. In our results, high‐ and low‐genetic diversity genotypes showed no differences inEandGsuniformity over time. However,Eand max‐Ewere significantly different among genotypes, and genotypes showed significant seasonal variability inGsandGsmax. Additionally, there were significant differences inEmax,Gs−ref,Gssensitivity toD, and the pressure at which 50% loss ofksoccurs (P50) among individual genotypes. We found no relationship between mean hydraulic conductivity parameters and overallGs−reforGssensitivity. However, the genotype full embolism point (P88) and loss ofksrate (LCrate) both showed a significant positive relationship with genotypeGs−refduring the spring, indicating that genotypes with higherGswere less resistant to cavitation. Overall, genetic effects on canopy‐level gas‐exchange and cavitation resistance were significant, implying that physiological differences among genotypes might affect stand water use, carbon gain, drought tolerance, and hydrologic processes. Contrary to our expectations, uniformity in physiological process rates did not increase as inherent genetic diversity decreased, suggesting that clonal genotypes exhibit high physiological plasticity under plantation conditions. Lastly, our results imply that genotypes with higher spring‐time gas‐exchange rates may be more susceptible to catastrophic loss ofks. With changes in climate expected to continue, physiological differences among genotypes may affect loblolly pine plantation carbon and water cycling. Copyright © 2011 John Wiley & Sons, Ltd.
Hyper Article en Lig... arrow_drop_down EcohydrologyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eco.197&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down EcohydrologyArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eco.197&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 BelgiumPublisher:Elsevier BV Bronson P. Bullock; Michael J. Aspinwall; Steven E. McKeand; John S. King; John S. King;handle: 10067/907620151162165141
Abstract Genetic differences in stand-level above- and belowground dry mass production in loblolly pine (Pinus taeda L.) may influence southern pine plantation productivity, sustainability and carbon (C) sequestration. Furthermore, deployment of more or less genetically homogeneous individuals could impact stand uniformity and ecosystem processes. In this study, we aimed to compare stand uniformity and above- and belowground dry mass production among loblolly pine genotypes of contrasting inherent genetic homogeneity. We hypothesized that stand-level uniformity would increase as within-genotype inherent genetic variation decreased (open-pollinated (half-sib) > full-sib > clone). To examine genetic effects on stand uniformity and productivity, we grew ten different genotypes (three open-pollinated families, three full-sib families, three clones, and one seed orchard mix variety) in a plantation setting for 4 years, at two different planting densities (∼539 and 1077 trees ha−1), and used allometric relationships to estimate standing dry mass and annual dry mass production. In the low planting density treatment, age 3 total standing dry mass of the most productive genotype (5824 kg ha−1) was 82% higher than that of the least productive genotype (3207 kg ha−1). In the high planting density treatment, age 3 total standing dry mass of the most productive genotype (11,393 kg ha−1) was 110% higher than that of the least productive genotype (5427 kg ha−1). Genetic differences in annual dry mass production were of a similar magnitude with peak rates during the third year as high as 4221 and 8198 kg ha−1 yr−1 in the low and high planting density treatments, respectively. More genetically homogeneous genotypes did not show greater stand-level uniformity under operational management conditions. Over time, genotypes showed no consistent differences in the coefficient of variation (CV) for ground-level diameter; however, two full-sib and two half-sib families showed significantly lower CV’s for total tree height than all three clones. Moreover, genotypes with lower CV’s for height growth displayed greater stand-level dry mass production which supports the premise that greater stand uniformity will lead to enhanced productivity. Since uniformity and stand-level productivity of loblolly pine clones will be principally governed by environmental heterogeneity, our results highlight the need for silvicultural prescriptions that maximize site uniformity. In addition, our results demonstrate how the deployment of highly productive loblolly pine genotypes may provide a means of enhancing southern pine ecosystem sustainability by sequestering C in both harvestable aboveground biomass and woody belowground biomass.
Forest Ecology and M... arrow_drop_down Forest Ecology and ManagementArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefForest Ecology and ManagementArticle . 2011Data sources: Institutional Repository Universiteit AntwerpenUniversity of Western Sydney (UWS): Research DirectArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2011.04.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Forest Ecology and M... arrow_drop_down Forest Ecology and ManagementArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefForest Ecology and ManagementArticle . 2011Data sources: Institutional Repository Universiteit AntwerpenUniversity of Western Sydney (UWS): Research DirectArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2011.04.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSF | The Physiological Genomic...NSF| The Physiological Genomics of Panicum: Exploring Switchgrass Responses to Climate ChangeAuthors: Lowry, David B.; Taylor, Samuel H.; Bonnette, Jason; Aspinwall, Michael J. (R17430); +4 AuthorsLowry, David B.; Taylor, Samuel H.; Bonnette, Jason; Aspinwall, Michael J. (R17430); Asmus, Ashley L.; Keitt, Tim H.; Tobias, Chistian M.; Juenger, Thomas E.;Genetic and genomic resources have recently been developed for the bioenergy crop switchgrass (Panicum virgatum). Despite these advances, little research has been focused on identifying genetic loci involved in natural variation of important bioenergy traits, including biomass. Quantitative trait locus (QTL) mapping is typically used to discover loci that contribute to trait variation. Once identified, QTLs can be used to improve agronomically important traits through marker-assisted selection. In this study, we conducted QTL mapping in Austin, TX, USA, with a full-sib mapping population derived from a cross between tetraploid clones of two major switchgrass cultivars (Alamo-A4 and Kanlow-K5). We observed significant among-genotype variation for the vast majority of growth, morphological, and phenological traits measured on the mapping population. Overall, we discovered 27 significant QTLs across 23 traits. QTLs for biomass production colocalized on linkage group 9b across years, as well as with a major biomass QTL discovered in another recent switchgrass QTL study. The experiment was conducted under a rainout shelter, which allowed us to examine the effects of differential irrigation on trait values. We found very minimal effects of the reduced watering treatment on traits, with no significant effect on biomass production. Overall, the results of our study set the stage for future crop improvement through marker-assisted selection breeding.
BioEnergy Research arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-015-9629-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert BioEnergy Research arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12155-015-9629-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu