- home
- Advanced Search
Filters
Year range
-chevron_right GOField of Science
SDG [Beta]
Country
Source
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:IOP Publishing Funded by:NSERCNSERCAuthors: Jeremy Fyke; H. Damon Matthews;Abstract Efforts to mitigate and adapt to long-term climate change could benefit greatly from probabilistic estimates of cumulative carbon emissions due to fossil fuel burning and resulting CO2-induced planetary warming. Here we demonstrate the use of a reduced-form model to project these variables. We performed simulations using a large-ensemble framework with parametric uncertainty sampled to produce distributions of future cumulative emissions and consequent planetary warming. A hind-cast ensemble of simulations captured 1980–2012 historical CO2 emissions trends and an ensemble of future projection simulations generated a distribution of emission scenarios that qualitatively resembled the suite of Representative and Extended Concentration Pathways. The resulting cumulative carbon emission and temperature change distributions are characterized by 5–95th percentile ranges of 0.96–4.9 teratonnes C (Tt C) and 1.4 °C–8.5 °C, respectively, with 50th percentiles at 3.1 Tt C and 4.7 °C. Within the wide range of policy-related parameter combinations that produced these distributions, we found that low-emission simulations were characterized by both high carbon prices and low costs of non-fossil fuel energy sources, suggesting the importance of these two policy levers in particular for avoiding dangerous levels of climate warming. With this analysis we demonstrate a probabilistic approach to the challenge of identifying strategies for limiting cumulative carbon emissions and assessing likelihoods of surpassing dangerous temperature thresholds.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/11/115007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/11/115007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Embargo end date: 20 Jul 2022 Germany, Saudi Arabia, Sweden, Australia, Spain, France, Saudi Arabia, Sweden, France, United Kingdom, United KingdomPublisher:Cambridge University Press (CUP) Funded by:NSERC, EC | TiPACCs, EC | PROTECT +4 projectsNSERC ,EC| TiPACCs ,EC| PROTECT ,EC| ERA ,EC| FirEUrisk ,EC| COMFORT ,[no funder available]Martin, Maria,; Sendra, Olga Alcaraz; Bastos, Ana; Bauer, Nico; Bertram, Christoph; Blenckner, Thorsten; Bowen, Kathryn; Brando, Paulo,; Rudolph, Tanya Brodie; Büchs, Milena; Bustamante, Mercedes; Chen, Deliang; Cleugh, Helen; Dasgupta, Purnamita; Denton, Fatima; Donges, Jonathan,; Donkor, Felix Kwabena; Duan, Hongbo; Duarte, Carlos,; Ebi, Kristie,; Edwards, Clea,; Engel, Anja; Fisher, Eleanor; Fuss, Sabine; Gaertner, Juliana; Gettelman, Andrew; Girardin, Cécile A.J.; Golledge, Nicholas,; Green, Jessica,; Grose, Michael,; Hashizume, Masahiro; Hebden, Sophie; Hepach, Helmke; Hirota, Marina; Hsu, Huang-Hsiung; Kojima, Satoshi; Lele, Sharachchandra; Lorek, Sylvia; Lotze, Heike,; Matthews, H. Damon,; Mccauley, Darren; Mebratu, Desta; Mengis, Nadine; Nolan, Rachael,; Pihl, Erik; Rahmstorf, Stefan; Redman, Aaron; Reid, Colleen,; Rockström, Johan; Rogelj, Joeri; Saunois, Marielle; Sayer, Lizzie; Schlosser, Peter; Sioen, Giles,; Spangenberg, Joachim,; Stammer, Detlef; Sterner, Thomas N.S.; Stevens, Nicola; Thonicke, Kirsten; Tian, Hanqin; Winkelmann, Ricarda; Woodcock, James; Sendra, Olga,; Rudolph, Tanya,; Donkor, Felix,; Girardin, Cécile,; Sterner, Thomas;handle: 10044/1/93398 , 10754/673835 , 11343/301490 , 2117/357724
Non-technical summaryWe summarize some of the past year's most important findings within climate change-related research. New research has improved our understanding about the remaining options to achieve the Paris Agreement goals, through overcoming political barriers to carbon pricing, taking into account non-CO2factors, a well-designed implementation of demand-side and nature-based solutions, resilience building of ecosystems and the recognition that climate change mitigation costs can be justified by benefits to the health of humans and nature alone. We consider new insights about what to expect if we fail to include a new dimension of fire extremes and the prospect of cascading climate tipping elements.Technical summaryA synthesis is made of 10 topics within climate research, where there have been significant advances since January 2020. The insights are based on input from an international open call with broad disciplinary scope. Findings include: (1) the options to still keep global warming below 1.5 °C; (2) the impact of non-CO2factors in global warming; (3) a new dimension of fire extremes forced by climate change; (4) the increasing pressure on interconnected climate tipping elements; (5) the dimensions of climate justice; (6) political challenges impeding the effectiveness of carbon pricing; (7) demand-side solutions as vehicles of climate mitigation; (8) the potentials and caveats of nature-based solutions; (9) how building resilience of marine ecosystems is possible; and (10) that the costs of climate change mitigation policies can be more than justified by the benefits to the health of humans and nature.Social media summaryHow do we limit global warming to 1.5 °C and why is it crucial? See highlights of latest climate science.
CORE arrow_drop_down COREArticle . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/179965/1/ten-new-insights-in-climate-science-2021-a-horizon-scan.pdfData sources: COREInstitut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03448064Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/93398Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03448064Data sources: Bielefeld Academic Search Engine (BASE)The Nordic Africa Institute: Publications (DiVA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/301490Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/sus.2021.25&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 92visibility views 92 download downloads 134 Powered bymore_vert CORE arrow_drop_down COREArticle . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/179965/1/ten-new-insights-in-climate-science-2021-a-horizon-scan.pdfData sources: COREInstitut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03448064Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/93398Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03448064Data sources: Bielefeld Academic Search Engine (BASE)The Nordic Africa Institute: Publications (DiVA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/301490Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/sus.2021.25&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:IOP Publishing Authors: H. Damon Matthews;The construction of new fossil fuel energy infrastructure implies a commitment to burn fossil fuels and therefore produce CO _2 emissions for several decades into the future. The recent letter by Davis and Socolow (2014 Environ. Res. Lett. http://dx.doi.org/10.1088/1748-9326/9/8/084018 9 http://dx.doi.org/10.1088/1748-9326/9/8/084018 ) highlights the current and growing commitment to future emissions, and argues that this emission commitment should be accounted for at the time of new construction. The idea of accounting for future committed emissions associated with current energy policy decisions is compelling and could equally be applied to other aspects of the fossil fuel supply chain, such as investing in the development of new fossil fuel reserves. There is evidence, for example, that oil reserves are growing faster that the rate of extraction, implying a growing future emissions commitment that is likely incompatible with climate mitigation targets.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/9/11/111001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/9/11/111001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Embargo end date: 01 Jan 2021 United Kingdom, Switzerland, GermanyPublisher:Springer Science and Business Media LLC Funded by:NSERC, EC | CONSTRAINNSERC ,EC| CONSTRAINReto Knutti; Nadine Mengis; Nadine Mengis; Karsten Haustein; Christopher J. Smith; Katarzyna B. Tokarska; H. Damon Matthews; Sebastian Sippel; Joeri Rogelj; Joeri Rogelj; Andrew H. MacDougall; Piers M. Forster;handle: 10044/1/90424
AbstractThe remaining carbon budget quantifies the future CO2emissions to limit global warming below a desired level. Carbon budgets are subject to uncertainty in the Transient Climate Response to Cumulative CO2Emissions (TCRE), as well as to non-CO2climate influences. Here we estimate the TCRE using observational constraints, and integrate the geophysical and socioeconomic uncertainties affecting the distribution of the remaining carbon budget. We estimate a median TCRE of 0.44 °C and 5–95% range of 0.32–0.62 °C per 1000 GtCO2emitted. Considering only geophysical uncertainties, our median estimate of the 1.5 °C remaining carbon budget is 440 GtCO2from 2020 onwards, with a range of 230–670 GtCO2, (for a 67–33% chance of not exceeding the target). Additional socioeconomic uncertainty related to human decisions regarding future non-CO2emissions scenarios can further shift the median 1.5 °C remaining carbon budget by ±170 GtCO2.
CORE arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/90424Data sources: Bielefeld Academic Search Engine (BASE)Communications Earth & EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-020-00064-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 11visibility views 11 download downloads 16 Powered bymore_vert CORE arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/90424Data sources: Bielefeld Academic Search Engine (BASE)Communications Earth & EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-020-00064-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:IOP Publishing Funded by:NSERCNSERCAuthors: Anders Bjørn; Shannon Lloyd; Damon Matthews;Abstract The Science Based Targets initiative has published a Comment to our study (Bjørn et al 2021 Environ. Res. Lett. 16 054019). We see the Comment as an important step towards addressing our study’s call for more systematic presentation of methods for setting science-based targets and increased transparency behind the initiative’s method recommendations. We also agree with some of the Comment’s points of criticism of our study and the related nuances introduced. Yet, we find other points to be inaccurate or misdirected. Here, we reply to the Comment by clarifying misunderstandings on our study’s aims, providing additional methodological details, and elaborating on our perspectives.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac548e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac548e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:IOP Publishing Funded by:AKA | Centre of Excellence in A..., AKA | Extending the relationshi...AKA| Centre of Excellence in Atmospheric Science From Molecular and Biolocigal processes to The Global Climate ,AKA| Extending the relationship between cumulative carbon emissions and climate change to include climate extremes, solar geoengineering, and uncertainty to non-CO2 emissionsJoni-Pekka Pietikäinen; Hannele Korhonen; H. Damon Matthews; Anca Hienola; Declan O'Donnell; Ari Laaksonen; Antti-Ilari Partanen; Antti-Ilari Partanen;To assess the impact of anthropogenic aerosol emission reduction on limiting global temperature increase to 1.5 °C or 2 °C above pre-industrial levels, two climate modeling approaches have been used (MAGICC6, and a combination of ECHAM-HAMMOZ and the UVic ESCM), with two aerosol control pathways under two greenhouse gas (GHG) reduction scenarios. We found that aerosol emission reductions associated with CO _2 co-emissions had a significant warming effect during the first half of the century and that the near-term warming is dependent on the pace of aerosol emission reduction. The modeling results show that these aerosol emission reductions account for about 0.5 °C warming relative to 2015, on top of the 1 °C above pre-industrial levels that were already reached in 2015. We found also that the decreases in aerosol emissions lead to different decreases in the magnitude of the aerosol radiative forcing in the two models. By 2100, the aerosol forcing is projected by ECHAM–UVic to diminish in magnitude by 0.96 W m ^−2 and by MAGICC6 by 0.76 W m ^−2 relative to 2000. Despite this discrepancy, the climate responses in terms of temperature are similar. Aggressive aerosol control due to air quality legislation affects the peak temperature, which is 0.2 °C–0.3 °C above the 1.5 °C limit even within the most ambitious CO _2 /GHG reduction scenario. At the end of the century, the temperature differences between aerosol reduction scenarios in the context of ambitious CO _2 mitigation are negligible.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aab1b2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aab1b2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Embargo end date: 02 Sep 2024 Germany, United Kingdom, SwitzerlandPublisher:Copernicus GmbH Funded by:NSERC, EC | 4C, EC | CRESCENDO +2 projectsNSERC ,EC| 4C ,EC| CRESCENDO ,SNSF| Ocean extremes in a warmer world: Discovering risks for marine ecosystems (OceanX) ,EC| CONSTRAINC. D. Jones; T. L. Frölicher; T. L. Frölicher; C. Koven; A. H. MacDougall; H. D. Matthews; K. Zickfeld; J. Rogelj; J. Rogelj; K. B. Tokarska; K. B. Tokarska; N. P. Gillett; T. Ilyina; M. Meinshausen; M. Meinshausen; N. Mengis; N. Mengis; R. Séférian; M. Eby; F. A. Burger; F. A. Burger;handle: 10044/1/74834
Abstract. The amount of additional future temperature change following a complete cessation of CO2 emissions is a measure of the unrealized warming to which we are committed due to CO2 already emitted to the atmosphere. This “zero emissions commitment” (ZEC) is also an important quantity when estimating the remaining carbon budget – a limit on the total amount of CO2 emissions consistent with limiting global mean temperature at a particular level. In the recent IPCC Special Report on Global Warming of 1.5 ∘C, the carbon budget framework used to calculate the remaining carbon budget for 1.5 ∘C included the assumption that the ZEC due to CO2 emissions is negligible and close to zero. Previous research has shown significant uncertainty even in the sign of the ZEC. To close this knowledge gap, we propose the Zero Emissions Commitment Model Intercomparison Project (ZECMIP), which will quantify the amount of unrealized temperature change that occurs after CO2 emissions cease and investigate the geophysical drivers behind this climate response. Quantitative information on ZEC is a key gap in our knowledge, and one that will not be addressed by currently planned CMIP6 simulations, yet it is crucial for verifying whether carbon budgets need to be adjusted to account for any unrealized temperature change resulting from past CO2 emissions. We request only one top-priority simulation from comprehensive general circulation Earth system models (ESMs) and Earth system models of intermediate complexity (EMICs) – a branch from the 1 % CO2 run with CO2 emissions set to zero at the point of 1000 PgC of total CO2 emissions in the simulation – with the possibility for additional simulations, if resources allow. ZECMIP is part of CMIP6, under joint sponsorship by C4MIP and CDRMIP, with associated experiment names to enable data submissions to the Earth System Grid Federation. All data will be published and made freely available.
OceanRep arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/74834Data sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model Development (GMD)Article . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-12-4375-2019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 63 citations 63 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 1visibility views 1 download downloads 83 Powered bymore_vert OceanRep arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/74834Data sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model Development (GMD)Article . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-12-4375-2019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:IOP Publishing Authors: H. Damon Matthews; Andrew H. MacDougall; Reto Knutti; Kirsten Zickfeld;The near proportionality between cumulative CO _2 emissions and change in near surface temperature can be used to define a carbon budget: a finite quantity of carbon that can be burned associated with a chosen ‘safe’ temperature change threshold. Here we evaluate the sensitivity of this carbon budget to permafrost carbon dynamics and changes in non-CO _2 forcings. The carbon budget for 2.0 ${}^{\circ }{\rm{C}}$ of warming is reduced from 1320 Pg C when considering only forcing from CO _2 to 810 Pg C when considering permafrost carbon feedbacks as well as other anthropogenic contributions to climate change. We also examined net carbon budgets following an overshoot of and return to a warming target. That is, the net cumulative CO _2 emissions at the point in time a warming target is restored following artificial removal of CO _2 from the atmosphere to cool the climate back to a chosen temperature target. These overshoot net carbon budgets are consistently smaller than the conventional carbon budgets. Overall carbon budgets persist as a robust and simple conceptual framework to relate the principle cause of climate change to the impacts of climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/12/125003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/12/125003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:IOP Publishing Funded by:NSERCNSERCAuthors: Jeremy Fyke; H. Damon Matthews;Abstract Efforts to mitigate and adapt to long-term climate change could benefit greatly from probabilistic estimates of cumulative carbon emissions due to fossil fuel burning and resulting CO2-induced planetary warming. Here we demonstrate the use of a reduced-form model to project these variables. We performed simulations using a large-ensemble framework with parametric uncertainty sampled to produce distributions of future cumulative emissions and consequent planetary warming. A hind-cast ensemble of simulations captured 1980–2012 historical CO2 emissions trends and an ensemble of future projection simulations generated a distribution of emission scenarios that qualitatively resembled the suite of Representative and Extended Concentration Pathways. The resulting cumulative carbon emission and temperature change distributions are characterized by 5–95th percentile ranges of 0.96–4.9 teratonnes C (Tt C) and 1.4 °C–8.5 °C, respectively, with 50th percentiles at 3.1 Tt C and 4.7 °C. Within the wide range of policy-related parameter combinations that produced these distributions, we found that low-emission simulations were characterized by both high carbon prices and low costs of non-fossil fuel energy sources, suggesting the importance of these two policy levers in particular for avoiding dangerous levels of climate warming. With this analysis we demonstrate a probabilistic approach to the challenge of identifying strategies for limiting cumulative carbon emissions and assessing likelihoods of surpassing dangerous temperature thresholds.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/11/115007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/11/115007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Embargo end date: 20 Jul 2022 Germany, Saudi Arabia, Sweden, Australia, Spain, France, Saudi Arabia, Sweden, France, United Kingdom, United KingdomPublisher:Cambridge University Press (CUP) Funded by:NSERC, EC | TiPACCs, EC | PROTECT +4 projectsNSERC ,EC| TiPACCs ,EC| PROTECT ,EC| ERA ,EC| FirEUrisk ,EC| COMFORT ,[no funder available]Martin, Maria,; Sendra, Olga Alcaraz; Bastos, Ana; Bauer, Nico; Bertram, Christoph; Blenckner, Thorsten; Bowen, Kathryn; Brando, Paulo,; Rudolph, Tanya Brodie; Büchs, Milena; Bustamante, Mercedes; Chen, Deliang; Cleugh, Helen; Dasgupta, Purnamita; Denton, Fatima; Donges, Jonathan,; Donkor, Felix Kwabena; Duan, Hongbo; Duarte, Carlos,; Ebi, Kristie,; Edwards, Clea,; Engel, Anja; Fisher, Eleanor; Fuss, Sabine; Gaertner, Juliana; Gettelman, Andrew; Girardin, Cécile A.J.; Golledge, Nicholas,; Green, Jessica,; Grose, Michael,; Hashizume, Masahiro; Hebden, Sophie; Hepach, Helmke; Hirota, Marina; Hsu, Huang-Hsiung; Kojima, Satoshi; Lele, Sharachchandra; Lorek, Sylvia; Lotze, Heike,; Matthews, H. Damon,; Mccauley, Darren; Mebratu, Desta; Mengis, Nadine; Nolan, Rachael,; Pihl, Erik; Rahmstorf, Stefan; Redman, Aaron; Reid, Colleen,; Rockström, Johan; Rogelj, Joeri; Saunois, Marielle; Sayer, Lizzie; Schlosser, Peter; Sioen, Giles,; Spangenberg, Joachim,; Stammer, Detlef; Sterner, Thomas N.S.; Stevens, Nicola; Thonicke, Kirsten; Tian, Hanqin; Winkelmann, Ricarda; Woodcock, James; Sendra, Olga,; Rudolph, Tanya,; Donkor, Felix,; Girardin, Cécile,; Sterner, Thomas;handle: 10044/1/93398 , 10754/673835 , 11343/301490 , 2117/357724
Non-technical summaryWe summarize some of the past year's most important findings within climate change-related research. New research has improved our understanding about the remaining options to achieve the Paris Agreement goals, through overcoming political barriers to carbon pricing, taking into account non-CO2factors, a well-designed implementation of demand-side and nature-based solutions, resilience building of ecosystems and the recognition that climate change mitigation costs can be justified by benefits to the health of humans and nature alone. We consider new insights about what to expect if we fail to include a new dimension of fire extremes and the prospect of cascading climate tipping elements.Technical summaryA synthesis is made of 10 topics within climate research, where there have been significant advances since January 2020. The insights are based on input from an international open call with broad disciplinary scope. Findings include: (1) the options to still keep global warming below 1.5 °C; (2) the impact of non-CO2factors in global warming; (3) a new dimension of fire extremes forced by climate change; (4) the increasing pressure on interconnected climate tipping elements; (5) the dimensions of climate justice; (6) political challenges impeding the effectiveness of carbon pricing; (7) demand-side solutions as vehicles of climate mitigation; (8) the potentials and caveats of nature-based solutions; (9) how building resilience of marine ecosystems is possible; and (10) that the costs of climate change mitigation policies can be more than justified by the benefits to the health of humans and nature.Social media summaryHow do we limit global warming to 1.5 °C and why is it crucial? See highlights of latest climate science.
CORE arrow_drop_down COREArticle . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/179965/1/ten-new-insights-in-climate-science-2021-a-horizon-scan.pdfData sources: COREInstitut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03448064Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/93398Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03448064Data sources: Bielefeld Academic Search Engine (BASE)The Nordic Africa Institute: Publications (DiVA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/301490Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/sus.2021.25&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 92visibility views 92 download downloads 134 Powered bymore_vert CORE arrow_drop_down COREArticle . 2021License: CC BYFull-Text: https://eprints.whiterose.ac.uk/179965/1/ten-new-insights-in-climate-science-2021-a-horizon-scan.pdfData sources: COREInstitut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03448064Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/93398Data sources: Bielefeld Academic Search Engine (BASE)King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03448064Data sources: Bielefeld Academic Search Engine (BASE)The Nordic Africa Institute: Publications (DiVA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/301490Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/sus.2021.25&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:IOP Publishing Authors: H. Damon Matthews;The construction of new fossil fuel energy infrastructure implies a commitment to burn fossil fuels and therefore produce CO _2 emissions for several decades into the future. The recent letter by Davis and Socolow (2014 Environ. Res. Lett. http://dx.doi.org/10.1088/1748-9326/9/8/084018 9 http://dx.doi.org/10.1088/1748-9326/9/8/084018 ) highlights the current and growing commitment to future emissions, and argues that this emission commitment should be accounted for at the time of new construction. The idea of accounting for future committed emissions associated with current energy policy decisions is compelling and could equally be applied to other aspects of the fossil fuel supply chain, such as investing in the development of new fossil fuel reserves. There is evidence, for example, that oil reserves are growing faster that the rate of extraction, implying a growing future emissions commitment that is likely incompatible with climate mitigation targets.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/9/11/111001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/9/11/111001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Embargo end date: 01 Jan 2021 United Kingdom, Switzerland, GermanyPublisher:Springer Science and Business Media LLC Funded by:NSERC, EC | CONSTRAINNSERC ,EC| CONSTRAINReto Knutti; Nadine Mengis; Nadine Mengis; Karsten Haustein; Christopher J. Smith; Katarzyna B. Tokarska; H. Damon Matthews; Sebastian Sippel; Joeri Rogelj; Joeri Rogelj; Andrew H. MacDougall; Piers M. Forster;handle: 10044/1/90424
AbstractThe remaining carbon budget quantifies the future CO2emissions to limit global warming below a desired level. Carbon budgets are subject to uncertainty in the Transient Climate Response to Cumulative CO2Emissions (TCRE), as well as to non-CO2climate influences. Here we estimate the TCRE using observational constraints, and integrate the geophysical and socioeconomic uncertainties affecting the distribution of the remaining carbon budget. We estimate a median TCRE of 0.44 °C and 5–95% range of 0.32–0.62 °C per 1000 GtCO2emitted. Considering only geophysical uncertainties, our median estimate of the 1.5 °C remaining carbon budget is 440 GtCO2from 2020 onwards, with a range of 230–670 GtCO2, (for a 67–33% chance of not exceeding the target). Additional socioeconomic uncertainty related to human decisions regarding future non-CO2emissions scenarios can further shift the median 1.5 °C remaining carbon budget by ±170 GtCO2.
CORE arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/90424Data sources: Bielefeld Academic Search Engine (BASE)Communications Earth & EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-020-00064-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 11visibility views 11 download downloads 16 Powered bymore_vert CORE arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/90424Data sources: Bielefeld Academic Search Engine (BASE)Communications Earth & EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-020-00064-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:IOP Publishing Funded by:NSERCNSERCAuthors: Anders Bjørn; Shannon Lloyd; Damon Matthews;Abstract The Science Based Targets initiative has published a Comment to our study (Bjørn et al 2021 Environ. Res. Lett. 16 054019). We see the Comment as an important step towards addressing our study’s call for more systematic presentation of methods for setting science-based targets and increased transparency behind the initiative’s method recommendations. We also agree with some of the Comment’s points of criticism of our study and the related nuances introduced. Yet, we find other points to be inaccurate or misdirected. Here, we reply to the Comment by clarifying misunderstandings on our study’s aims, providing additional methodological details, and elaborating on our perspectives.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac548e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac548e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:IOP Publishing Funded by:AKA | Centre of Excellence in A..., AKA | Extending the relationshi...AKA| Centre of Excellence in Atmospheric Science From Molecular and Biolocigal processes to The Global Climate ,AKA| Extending the relationship between cumulative carbon emissions and climate change to include climate extremes, solar geoengineering, and uncertainty to non-CO2 emissionsJoni-Pekka Pietikäinen; Hannele Korhonen; H. Damon Matthews; Anca Hienola; Declan O'Donnell; Ari Laaksonen; Antti-Ilari Partanen; Antti-Ilari Partanen;To assess the impact of anthropogenic aerosol emission reduction on limiting global temperature increase to 1.5 °C or 2 °C above pre-industrial levels, two climate modeling approaches have been used (MAGICC6, and a combination of ECHAM-HAMMOZ and the UVic ESCM), with two aerosol control pathways under two greenhouse gas (GHG) reduction scenarios. We found that aerosol emission reductions associated with CO _2 co-emissions had a significant warming effect during the first half of the century and that the near-term warming is dependent on the pace of aerosol emission reduction. The modeling results show that these aerosol emission reductions account for about 0.5 °C warming relative to 2015, on top of the 1 °C above pre-industrial levels that were already reached in 2015. We found also that the decreases in aerosol emissions lead to different decreases in the magnitude of the aerosol radiative forcing in the two models. By 2100, the aerosol forcing is projected by ECHAM–UVic to diminish in magnitude by 0.96 W m ^−2 and by MAGICC6 by 0.76 W m ^−2 relative to 2000. Despite this discrepancy, the climate responses in terms of temperature are similar. Aggressive aerosol control due to air quality legislation affects the peak temperature, which is 0.2 °C–0.3 °C above the 1.5 °C limit even within the most ambitious CO _2 /GHG reduction scenario. At the end of the century, the temperature differences between aerosol reduction scenarios in the context of ambitious CO _2 mitigation are negligible.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aab1b2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aab1b2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019Embargo end date: 02 Sep 2024 Germany, United Kingdom, SwitzerlandPublisher:Copernicus GmbH Funded by:NSERC, EC | 4C, EC | CRESCENDO +2 projectsNSERC ,EC| 4C ,EC| CRESCENDO ,SNSF| Ocean extremes in a warmer world: Discovering risks for marine ecosystems (OceanX) ,EC| CONSTRAINC. D. Jones; T. L. Frölicher; T. L. Frölicher; C. Koven; A. H. MacDougall; H. D. Matthews; K. Zickfeld; J. Rogelj; J. Rogelj; K. B. Tokarska; K. B. Tokarska; N. P. Gillett; T. Ilyina; M. Meinshausen; M. Meinshausen; N. Mengis; N. Mengis; R. Séférian; M. Eby; F. A. Burger; F. A. Burger;handle: 10044/1/74834
Abstract. The amount of additional future temperature change following a complete cessation of CO2 emissions is a measure of the unrealized warming to which we are committed due to CO2 already emitted to the atmosphere. This “zero emissions commitment” (ZEC) is also an important quantity when estimating the remaining carbon budget – a limit on the total amount of CO2 emissions consistent with limiting global mean temperature at a particular level. In the recent IPCC Special Report on Global Warming of 1.5 ∘C, the carbon budget framework used to calculate the remaining carbon budget for 1.5 ∘C included the assumption that the ZEC due to CO2 emissions is negligible and close to zero. Previous research has shown significant uncertainty even in the sign of the ZEC. To close this knowledge gap, we propose the Zero Emissions Commitment Model Intercomparison Project (ZECMIP), which will quantify the amount of unrealized temperature change that occurs after CO2 emissions cease and investigate the geophysical drivers behind this climate response. Quantitative information on ZEC is a key gap in our knowledge, and one that will not be addressed by currently planned CMIP6 simulations, yet it is crucial for verifying whether carbon budgets need to be adjusted to account for any unrealized temperature change resulting from past CO2 emissions. We request only one top-priority simulation from comprehensive general circulation Earth system models (ESMs) and Earth system models of intermediate complexity (EMICs) – a branch from the 1 % CO2 run with CO2 emissions set to zero at the point of 1000 PgC of total CO2 emissions in the simulation – with the possibility for additional simulations, if resources allow. ZECMIP is part of CMIP6, under joint sponsorship by C4MIP and CDRMIP, with associated experiment names to enable data submissions to the Earth System Grid Federation. All data will be published and made freely available.
OceanRep arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/74834Data sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model Development (GMD)Article . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-12-4375-2019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 63 citations 63 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 1visibility views 1 download downloads 83 Powered bymore_vert OceanRep arrow_drop_down Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/74834Data sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model Development (GMD)Article . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-12-4375-2019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:IOP Publishing Authors: H. Damon Matthews; Andrew H. MacDougall; Reto Knutti; Kirsten Zickfeld;The near proportionality between cumulative CO _2 emissions and change in near surface temperature can be used to define a carbon budget: a finite quantity of carbon that can be burned associated with a chosen ‘safe’ temperature change threshold. Here we evaluate the sensitivity of this carbon budget to permafrost carbon dynamics and changes in non-CO _2 forcings. The carbon budget for 2.0 ${}^{\circ }{\rm{C}}$ of warming is reduced from 1320 Pg C when considering only forcing from CO _2 to 810 Pg C when considering permafrost carbon feedbacks as well as other anthropogenic contributions to climate change. We also examined net carbon budgets following an overshoot of and return to a warming target. That is, the net cumulative CO _2 emissions at the point in time a warming target is restored following artificial removal of CO _2 from the atmosphere to cool the climate back to a chosen temperature target. These overshoot net carbon budgets are consistently smaller than the conventional carbon budgets. Overall carbon budgets persist as a robust and simple conceptual framework to relate the principle cause of climate change to the impacts of climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/12/125003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/10/12/125003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu