- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Spain, France, Belgium, United KingdomPublisher:Copernicus GmbH A. Bastos; P. Ciais; F. Chevallier; C. Rödenbeck; A. P. Ballantyne; A. P. Ballantyne; F. Maignan; Y. Yin; M. Fernández-Martínez; P. Friedlingstein; J. Peñuelas; J. Peñuelas; S. L. Piao; S. Sitch; W. K. Smith; X. Wang; Z. Zhu; V. Haverd; E. Kato; A. K. Jain; S. Lienert; D. Lombardozzi; J. E. M. S. Nabel; P. Peylin; B. Poulter; D. Zhu;Abstract. Continuous atmospheric CO2 monitoring data indicate an increase in seasonal-cycle amplitude (SCA) of CO2 exchange in northern high latitudes. The major drivers of enhanced SCA remain unclear and intensely debated with land-use change, CO2 fertilization and warming identified as likely contributors. We integrated CO2-flux data from two atmospheric inversions (consistent with atmospheric records) and from and 11 state-of-the-art land-surface models (LSMs) to evaluate the relative importance of individual contributors to trends and drivers of the SCA of CO2-fluxes for 1980−2015. The LSMs generally reproduce the latitudinal increase in SCA trends within the inversions range. Inversions and LSMs attribute SCA increase to boreal Asia and Europe due to enhanced vegetation productivity (in LSMs) and point to contrasting effects of CO2 fertilisation (positive) and warming (negative) on SCA. Our results do not support land-use change as a key contributor to the increase in SCA. The sensitivity of simulated microbial respiration to temperature in LSMs explained biases in SCA trends, which suggests SCA could help to constrain model turnover times.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02398289Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10871/39685Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02398289Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/acp-20...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and Physics (ACP)Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BYData sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2019Data sources: Institutional Repository Universiteit Antwerpenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-2019-252&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02398289Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10871/39685Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02398289Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/acp-20...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and Physics (ACP)Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BYData sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2019Data sources: Institutional Repository Universiteit Antwerpenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-2019-252&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014Publisher:Copernicus GmbH Benjamin Smith; Benjamin Smith; Vanessa Haverd; Lars Nieradzik; Peter R. Briggs;Abstract. Poorly constrained rates of biomass turnover are a key limitation of Earth system models (ESMs). In light of this, we recently proposed a new approach encoded in a model called Populations-Order-Physiology (POP), for the simulation of woody ecosystem stand dynamics, demography and disturbance-mediated heterogeneity. POP is suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any ESM. POP bridges the gap between first-generation dynamic vegetation models (DVMs) with simple large-area parameterisations of woody biomass (typically used in current ESMs) and complex second-generation DVMs that explicitly simulate demographic processes and landscape heterogeneity of forests. The key simplification in the POP approach, compared with second-generation DVMs, is to compute physiological processes such as assimilation at grid-scale (with CABLE (Community Atmosphere Biosphere Land Exchange) or a similar land surface model), but to partition the grid-scale biomass increment among age classes defined at sub-grid-scale, each subject to its own dynamics. POP was successfully demonstrated along a savanna transect in northern Australia, replicating the effects of strong rainfall and fire disturbance gradients on observed stand productivity and structure. Here, we extend the application of POP to wide-ranging temporal and boreal forests, employing paired observations of stem biomass and density from forest inventory data to calibrate model parameters governing stand demography and biomass evolution. The calibrated POP model is then coupled to the CABLE land surface model, and the combined model (CABLE-POP) is evaluated against leaf–stem allometry observations from forest stands ranging in age from 3 to 200 year. Results indicate that simulated biomass pools conform well with observed allometry. We conclude that POP represents an ecologically plausible and efficient alternative to large-area parameterisations of woody biomass turnover, typically used in current ESMs.
Biogeosciences (BG) arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-11-4039-2014&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Biogeosciences (BG) arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-11-4039-2014&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 United States, United Kingdom, United Kingdom, Austria, Brazil, Germany, France, France, United Kingdom, France, Netherlands, Germany, BrazilPublisher:Springer Science and Business Media LLC Funded by:ARC | ARC Centres of Excellence..., EC | LUC4C, UKRI | The UK Earth system model... +1 projectsARC| ARC Centres of Excellences - Grant ID: CE170100023 ,EC| LUC4C ,UKRI| The UK Earth system modelling project. ,EC| IMBALANCE-PSönke Zaehle; Anja Rammig; Florian Hofhansl; Ying-Ping Wang; David M. Lapola; Lucia Fuchslueger; Lucia Fuchslueger; Vanessa Haverd; Adriana Grandis; Sabrina Garcia; Carlos A. Quesada; Richard J. Norby; Celso von Randow; Felix Leung; Felix Leung; Lina M. Mercado; Qing Zhu; Mingkai Jiang; Anthony P. Walker; Bart Kruijt; Belinda E. Medlyn; Katrin Fleischer; Martin G. De Kauwe; Oscar J. Valverde-Barrantes; Xiaojuan Yang; Bernard Pak; Daniel S. Goll; Daniel S. Goll; Karst J. Schaap; Tomas F. Domingues; Jennifer A. Holm;Global terrestrial models currently predict that the Amazon rainforest will continue to act as a carbon sink in the future, primarily owing to the rising atmospheric carbon dioxide (CO2) concentration. Soil phosphorus impoverishment in parts of the Amazon basin largely controls its functioning, but the role of phosphorus availability has not been considered in global model ensembles—for example, during the Fifth Climate Model Intercomparison Project. Here we simulate the planned free-air CO2 enrichment experiment AmazonFACE with an ensemble of 14 terrestrial ecosystem models. We show that phosphorus availability reduces the projected CO2-induced biomass carbon growth by about 50% to 79 ± 63 g C m−2 yr−1 over 15 years compared to estimates from carbon and carbon–nitrogen models. Our results suggest that the resilience of the region to climate change may be much less than previously assumed. Variation in the biomass carbon response among the phosphorus-enabled models is considerable, ranging from 5 to 140 g C m−2 yr−1, owing to the contrasting plant phosphorus use and acquisition strategies considered among the models. The Amazon forest response thus depends on the interactions and relative contributions of the phosphorus acquisition and use strategies across individuals, and to what extent these processes can be upregulated under elevated CO2.
NERC Open Research A... arrow_drop_down University of California: eScholarshipArticle . 2019License: CC BYFull-Text: https://escholarship.org/uc/item/2tf7v6gdData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaUniversity of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41561-019-0404-9&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert NERC Open Research A... arrow_drop_down University of California: eScholarshipArticle . 2019License: CC BYFull-Text: https://escholarship.org/uc/item/2tf7v6gdData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaUniversity of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41561-019-0404-9&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Wiley Funded by:ARC | Discovery Early Career Re...ARC| Discovery Early Career Researcher Award - Grant ID: DE190101182Michael J. Liddell; Jürgen Knauer; Tim Wardlaw; Daniel Metzen; William Woodgate; William Woodgate; Nina Hinko-Najera; Anne Griebel; Stefan K. Arndt; Lauren T. Bennett; Richard Silberstein; Richard Silberstein; Alison C. Bennett; Elise Pendall; Vanessa Haverd; Jason Beringer;AbstractGross primary productivity (GPP) of wooded ecosystems (forests and savannas) is central to the global carbon cycle, comprising 67%–75% of total global terrestrial GPP. Climate change may alter this flux by increasing the frequency of temperatures beyond the thermal optimum of GPP (Topt). We examined the relationship between GPP and air temperature (Ta) in 17 wooded ecosystems dominated by a single plant functional type (broadleaf evergreen trees) occurring over a broad climatic gradient encompassing five ecoregions across Australia ranging from tropical in the north to Mediterranean and temperate in the south. We applied a novel boundary‐line analysis to eddy covariance flux observations to (a) derive ecosystem GPP–Ta relationships and Topt (including seasonal analyses for five tropical savannas); (b) quantitatively and qualitatively assess GPP–Ta relationships within and among ecoregions; (c) examine the relationship between Topt and mean daytime air temperature (MDTa) across all ecosystems; and (d) examine how down‐welling short‐wave radiation (Fsd) and vapour pressure deficit (VPD) influence the GPP–Ta relationship. GPP–Ta relationships were convex parabolas with narrow curves in tropical forests, tropical savannas (wet season), and temperate forests, and wider curves in temperate woodlands, Mediterranean woodlands, and tropical savannas (dry season). Ecosystem Topt ranged from 15℃ (temperate forest) to 32℃ (tropical savanna—wet and dry seasons). The shape of GPP–Ta curves was largely determined by daytime Ta range, MDTa, and maximum GPP with the upslope influenced by Fsd and the downslope influenced by VPD. Across all ecosystems, there was a strong positive linear relationship between Topt and MDTa (Adjusted R2: 0.81; Slope: 1.08) with Topt exceeding MDTa by >1℃ at all but two sites. We conclude that ecosystem GPP has adjusted to local MDTa within Australian broadleaf evergreen forests and that GPP is buffered against small Ta increases in the majority of these ecosystems.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15760&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15760&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Embargo end date: 01 Jan 2016 Australia, United Kingdom, Spain, United States, Switzerland, Spain, Spain, SpainPublisher:Copernicus GmbH Funded by:EC | ECOWAXEC| ECOWAXWayne S. Meyer; Natascha Kljun; Anne Griebel; Anne Griebel; Stefan K. Arndt; Lindsay B. Hutley; Suzanne M. Prober; Cacilia Ewenz; Eva van Gorsel; Richard Silberstein; Bradley Evans; Trevor F. Keenan; Sebastian Wolf; Peter Isaac; Jason Beringer; Craig Macfarlane; James Cleverly; Ian McHugh; Elise Pendall; Vanessa Haverd; Víctor Resco de Dios;handle: 10459.1/58879 , 2328/37056 , 1959.7/uws:38219 , 2440/105613 , 1885/153292
Abstract. As a result of climate change warmer temperatures are projected through the 21st century and are already increasing above modelled predictions. Apart from increases in the mean, warm/hot temperature extremes are expected to become more prevalent in the future, along with an increase in the frequency of droughts. It is crucial to better understand the response of terrestrial ecosystems to such temperature extremes for predicting land-surface feedbacks in a changing climate. While land-surface feedbacks in drought conditions and during heat waves have been reported from Europe and the US, direct observations of the impact of such extremes on the carbon and water cycles in Australia have been lacking. During the 2012/2013 summer, Australia experienced a record-breaking heat wave with an exceptional spatial extent that lasted for several weeks. In this study we synthesised eddy-covariance measurements from seven woodlands and one forest site across three biogeographic regions in southern Australia. These observations were combined with model results from BIOS2 (Haverd et al., 2013a, b) to investigate the effect of the summer heat wave on the carbon and water exchange of terrestrial ecosystems which are known for their resilience toward hot and dry conditions. We found that water-limited woodland and energy-limited forest ecosystems responded differently to the heat wave. During the most intense part of the heat wave, the woodlands experienced decreased latent heat flux (23 % of background value), increased Bowen ratio (154 %) and reduced carbon uptake (60 %). At the same time the forest ecosystem showed increased latent heat flux (151 %), reduced Bowen ratio (19 %) and increased carbon uptake (112 %). Higher temperatures caused increased ecosystem respiration at all sites (up to 139 %). During daytime all ecosystems remained carbon sinks, but carbon uptake was reduced in magnitude. The number of hours during which the ecosystem acted as a carbon sink was also reduced, which switched the woodlands into a carbon source on a daily average. Precipitation occurred after the first, most intense part of the heat wave, and the subsequent cooler temperatures in the temperate woodlands led to recovery of the carbon sink, decreased the Bowen ratio (65 %) and hence increased evaporative cooling. Gross primary productivity in the woodlands recovered quickly with precipitation and cooler temperatures but respiration remained high. While the forest proved relatively resilient to this short-term heat extreme the response of the woodlands is the first direct evidence that the carbon sinks of large areas of Australia may not be sustainable in a future climate with an increased number, intensity and duration of heat waves.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/2kp5m577Data sources: Bielefeld Academic Search Engine (BASE)Flinders Academic Commons (FAC - Flinders University)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/2328/37056Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2016License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworkspost2013/2341Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/2440/105613Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/153292Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2016Full-Text: https://doi.org/10.5194/bg-13-5947-2016Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-13-5947-2016&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/2kp5m577Data sources: Bielefeld Academic Search Engine (BASE)Flinders Academic Commons (FAC - Flinders University)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/2328/37056Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2016License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworkspost2013/2341Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/2440/105613Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/153292Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2016Full-Text: https://doi.org/10.5194/bg-13-5947-2016Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-13-5947-2016&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FrancePublisher:American Geophysical Union (AGU) Authors: Cuntz, Matthias; Haverd, Vanessa;doi: 10.1002/2017ms001100
AbstractThe model Soil‐Litter‐Iso (SLI) calculates coupled heat and water transport in soil. It was recently implemented into the Australian land surface model CABLE, which is the land component of the Australian Community Climate and Earth System Simulator (ACCESS). Here we extended SLI to include accurate freeze‐thaw processes in the soil and snow. SLI provides thence an implicit solution of the energy and water balances of soil and snow as a standalone model and within CABLE. The enhanced SLI was tested extensively against theoretical formulations, laboratory experiments, field data, and satellite retrievals. The model performed well for all experiments at wide‐ranging temporal and spatial scales. SLI melts snow faster at the end of the cold season compared to observations though because there is no subgrid variability within SLI given by the implicit, coupled solution of energy and water. Combined CABLE‐SLI shows very realistic dynamics and extent of permafrost on the Northern hemisphere. It illustrated, however, also the limits of possible comparisons between large‐scale land surface models and local permafrost observations. CABLE‐SLI exhibits the same patterns of snow depth and snow water equivalent on the Northern hemisphere compared to satellite‐derived observations but quantitative comparisons depend largely on the given meteorological input fields. Further extension of CABLE‐SLI with depth‐dependence of soil carbon will allow realistic projections of the development of permafrost and frozen carbon stocks in a changing climate.
Journal of Advances ... arrow_drop_down Journal of Advances in Modeling Earth SystemsArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefINRIA a CCSD electronic archive serverArticle . 2018Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017ms001100&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Journal of Advances ... arrow_drop_down Journal of Advances in Modeling Earth SystemsArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefINRIA a CCSD electronic archive serverArticle . 2018Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017ms001100&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 Australia, France, Australia, AustraliaPublisher:Springer Science and Business Media LLC Matthias Cuntz; David W. T. Griffith; Vanessa Haverd; Vanessa Haverd; Eva van Gorsel; Ray Leuning;handle: 1885/39335
One-dimensional Lagrangian dispersion models, frequently used to relate in-canopy source/sink distributions of energy, water and trace gases to vertical concentration profiles, require estimates of the standard deviation of the vertical wind speed, which can be measured, and the Lagrangian time scale, T L , which cannot. In this work we use non-linear parameter estimation to determine the vertical profile of the Lagrangian time scale that simultaneously optimises agreement between modelled and measured vertical profiles of temperature, water vapour and carbon dioxide concentrations within a 40-m tall temperate Eucalyptus forest in southeastern Australia. Modelled temperature and concentration profiles are generated using Lagrangian dispersion theory combined with source/sink distributions of sensible heat, water vapour and CO 2. These distributions are derived from a multilayer Soil-Vegetation-Atmospheric-Transfer model subject to multiple constraints: (1) daytime eddy flux measurements of sensible heat, latent heat, and CO 2 above the canopy, (2) in-canopy lidar measurements of leaf area density distribution, and (3) chamber measurements of CO 2 ground fluxes. The resulting estimate of Lagrangian time scale within the canopy under near-neutral conditions is about 1.7 times higher than previous estimates and decreases towards zero at the ground. It represents an advance over previous estimates of T L , which are largely unconstrained by measurements.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/39335Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10546-008-9344-4&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/39335Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10546-008-9344-4&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 France, Germany, Germany, GermanyPublisher:Wiley Funded by:SNSF | Climate and Environmental..., EC | 4CSNSF| Climate and Environmental Physics: Modeling Global Biogeochemical Cycles in the Earth System (bgcCEP) ,EC| 4CVivek K. Arora; Andy Wiltshire; Wei Li; Dan Zhu; Julia E. M. S. Nabel; Hui Yang; Emilie Joetzjer; Vanessa Harverd; Markus Kautz; Ana Bastos; Pierre Friedlingstein; Pierre Friedlingstein; Sebastian Lienert; Sebastian Lienert; Stephen Sitch; Peter Anthoni; Maurizio Santoro; Yilong Wang; Yuanyuan Huang; Yuanyuan Huang; Philippe Ciais; A. Arneth; Daniel S. Goll; Michael O'Sullivan; N. Vuichard;doi: 10.1111/gcb.15117 , 10.48350/153233
pmid: 32427397
AbstractGaps in our current understanding and quantification of biomass carbon stocks, particularly in tropics, lead to large uncertainty in future projections of the terrestrial carbon balance. We use the recently published GlobBiomass data set of forest above‐ground biomass (AGB) density for the year 2010, obtained from multiple remote sensing and in situ observations at 100 m spatial resolution to evaluate AGB estimated by nine dynamic global vegetation models (DGVMs). The global total forest AGB of the nine DGVMs is 365 ± 66 Pg C, the spread corresponding to the standard deviation between models, compared to 275 Pg C with an uncertainty of ~13.5% from GlobBiomass. Model‐data discrepancy in total forest AGB can be attributed to their discrepancies in the AGB density and/or forest area. While DGVMs represent the global spatial gradients of AGB density reasonably well, they only have modest ability to reproduce the regional spatial gradients of AGB density at scales below 1000 km. The 95th percentile of AGB density (AGB95) in tropics can be considered as the potential maximum of AGB density which can be reached for a given annual precipitation. GlobBiomass data show local deficits of AGB density compared to the AGB95, particularly in transitional and/or wet regions in tropics. We hypothesize that local human disturbances cause more AGB density deficits from GlobBiomass than from DGVMs, which rarely represent human disturbances. We then analyse empirical relationships between AGB density deficits and forest cover changes, population density, burned areas and livestock density. Regression analysis indicated that more than 40% of the spatial variance of AGB density deficits in South America and Africa can be explained; in Southeast Asia, these factors explain only ~25%. This result suggests TRENDY v6 DGVMs tend to underestimate biomass loss from diverse and widespread anthropogenic disturbances, and as a result overestimate turnover time in AGB.
Hyper Article en Lig... arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15117&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15117&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 France, Australia, AustraliaPublisher:Elsevier BV Cernusak, Lucas; Haverd, Vanessa; Brendel, Oliver; Le Thiec, Didier; Guehl, Jean-Marc; Cuntz, Matthias;pmid: 31104852
Human-caused CO2 emissions over the past century have caused the climate of the Earth to warm and have directly impacted on the functioning of terrestrial plants. We examine the global response of terrestrial gross primary production (GPP) to the historic change in atmospheric CO2. The GPP of the terrestrial biosphere has increased steadily, keeping pace remarkably in proportion to the rise in atmospheric CO2. Water-use efficiency, namely the ratio of CO2 uptake by photosynthesis to water loss by transpiration, has increased as a direct leaf-level effect of rising CO2. This has allowed an increase in global leaf area, which has conspired with stimulation of photosynthesis per unit leaf area to produce a maximal response of the terrestrial biosphere to rising atmospheric CO2 and contemporary climate change.
Hyper Article en Lig... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tplants.2019.04.003&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tplants.2019.04.003&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017Embargo end date: 24 Oct 2017 Switzerland, Australia, United KingdomPublisher:Copernicus GmbH Funded by:ARC | Future Fellowships - Gran..., ARC | Patterns and processes of..., ARC | Discovery Projects - Gran... +1 projectsARC| Future Fellowships - Grant ID: FT110100602 ,ARC| Patterns and processes of carbon and water budgets across northern Australian landscapes: From point to region ,ARC| Discovery Projects - Grant ID: DP130101566 ,ARC| Fire Scar Impacts on Surface Heat and Moisture Fluxes in Australia's Tropical Savanna and Feedbacks to Local and Regional ClimateRhys Whitley; Jason Beringer; Lindsay B. Hutley; Gabriel Abramowitz; Martin G. De Kauwe; Bradley Evans; Vanessa Haverd; Longhui Li; Caitlin Moore; Youngryel Ryu; Simon Scheiter; Stanislaus J. Schymanski; Benjamin Smith; Ying-Ping Wang; Mathew Williams; Qiang Yu;Abstract. The savanna complex is a highly diverse global biome that occurs within the seasonally dry tropical to sub-tropical equatorial latitudes and are structurally and functionally distinct from grasslands and forests. Savannas are open-canopy environments that encompass a broad demographic continuum, often characterised by a changing dominance between C3-tree and C4-grass vegetation, where frequent environmental disturbances such as fire modulates the balance between ephemeral and perennial life forms. Climate change is projected to result in significant changes to the savanna floristic structure, with increases to woody biomass expected through CO2 fertilisation in mesic savannas and increased tree mortality expected through increased rainfall interannual variability in xeric savannas. The complex interaction between vegetation and climate that occurs in savannas has traditionally challenged terrestrial biosphere models (TBMs), which aim to simulate the interaction between the atmosphere and the land surface to predict responses of vegetation to changing in environmental forcing. In this review, we examine whether TBMs are able to adequately represent savanna fluxes and what implications potential deficiencies may have for climate change projection scenarios that rely on these models. We start by highlighting the defining characteristic traits and behaviours of savannas, how these differ across continents and how this information is (or is not) represented in the structural framework of many TBMs. We highlight three dynamic processes that we believe directly affect the water use and productivity of the savanna system: phenology, root-water access and fire dynamics. Following this, we discuss how these processes are represented in many current-generation TBMs and whether they are suitable for simulating savanna fluxes.Finally, we give an overview of how eddy-covariance observations in combination with other data sources can be used in model benchmarking and intercomparison frameworks to diagnose the performance of TBMs in this environment and formulate road maps for future development. Our investigation reveals that many TBMs systematically misrepresent phenology, the effects of fire and root-water access (if they are considered at all) and that these should be critical areas for future development. Furthermore, such processes must not be static (i.e. prescribed behaviour) but be capable of responding to the changing environmental conditions in order to emulate the dynamic behaviour of savannas. Without such developments, however, TBMs will have limited predictive capability in making the critical projections needed to understand how savannas will respond to future global change.
UNSWorks arrow_drop_down UNSWorksArticle . 2017License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_53112Data sources: Bielefeld Academic Search Engine (BASE)Fachrepositorium LebenswissenschaftenArticle . 2017Data sources: Fachrepositorium LebenswissenschaftenUniversity of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-14-4711-2017&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert UNSWorks arrow_drop_down UNSWorksArticle . 2017License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_53112Data sources: Bielefeld Academic Search Engine (BASE)Fachrepositorium LebenswissenschaftenArticle . 2017Data sources: Fachrepositorium LebenswissenschaftenUniversity of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-14-4711-2017&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Spain, France, Belgium, United KingdomPublisher:Copernicus GmbH A. Bastos; P. Ciais; F. Chevallier; C. Rödenbeck; A. P. Ballantyne; A. P. Ballantyne; F. Maignan; Y. Yin; M. Fernández-Martínez; P. Friedlingstein; J. Peñuelas; J. Peñuelas; S. L. Piao; S. Sitch; W. K. Smith; X. Wang; Z. Zhu; V. Haverd; E. Kato; A. K. Jain; S. Lienert; D. Lombardozzi; J. E. M. S. Nabel; P. Peylin; B. Poulter; D. Zhu;Abstract. Continuous atmospheric CO2 monitoring data indicate an increase in seasonal-cycle amplitude (SCA) of CO2 exchange in northern high latitudes. The major drivers of enhanced SCA remain unclear and intensely debated with land-use change, CO2 fertilization and warming identified as likely contributors. We integrated CO2-flux data from two atmospheric inversions (consistent with atmospheric records) and from and 11 state-of-the-art land-surface models (LSMs) to evaluate the relative importance of individual contributors to trends and drivers of the SCA of CO2-fluxes for 1980−2015. The LSMs generally reproduce the latitudinal increase in SCA trends within the inversions range. Inversions and LSMs attribute SCA increase to boreal Asia and Europe due to enhanced vegetation productivity (in LSMs) and point to contrasting effects of CO2 fertilisation (positive) and warming (negative) on SCA. Our results do not support land-use change as a key contributor to the increase in SCA. The sensitivity of simulated microbial respiration to temperature in LSMs explained biases in SCA trends, which suggests SCA could help to constrain model turnover times.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02398289Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10871/39685Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02398289Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/acp-20...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and Physics (ACP)Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BYData sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2019Data sources: Institutional Repository Universiteit Antwerpenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-2019-252&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02398289Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10871/39685Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02398289Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/acp-20...Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefAtmospheric Chemistry and Physics (ACP)Article . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BYData sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2019Data sources: Institutional Repository Universiteit Antwerpenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-2019-252&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014Publisher:Copernicus GmbH Benjamin Smith; Benjamin Smith; Vanessa Haverd; Lars Nieradzik; Peter R. Briggs;Abstract. Poorly constrained rates of biomass turnover are a key limitation of Earth system models (ESMs). In light of this, we recently proposed a new approach encoded in a model called Populations-Order-Physiology (POP), for the simulation of woody ecosystem stand dynamics, demography and disturbance-mediated heterogeneity. POP is suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any ESM. POP bridges the gap between first-generation dynamic vegetation models (DVMs) with simple large-area parameterisations of woody biomass (typically used in current ESMs) and complex second-generation DVMs that explicitly simulate demographic processes and landscape heterogeneity of forests. The key simplification in the POP approach, compared with second-generation DVMs, is to compute physiological processes such as assimilation at grid-scale (with CABLE (Community Atmosphere Biosphere Land Exchange) or a similar land surface model), but to partition the grid-scale biomass increment among age classes defined at sub-grid-scale, each subject to its own dynamics. POP was successfully demonstrated along a savanna transect in northern Australia, replicating the effects of strong rainfall and fire disturbance gradients on observed stand productivity and structure. Here, we extend the application of POP to wide-ranging temporal and boreal forests, employing paired observations of stem biomass and density from forest inventory data to calibrate model parameters governing stand demography and biomass evolution. The calibrated POP model is then coupled to the CABLE land surface model, and the combined model (CABLE-POP) is evaluated against leaf–stem allometry observations from forest stands ranging in age from 3 to 200 year. Results indicate that simulated biomass pools conform well with observed allometry. We conclude that POP represents an ecologically plausible and efficient alternative to large-area parameterisations of woody biomass turnover, typically used in current ESMs.
Biogeosciences (BG) arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-11-4039-2014&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Biogeosciences (BG) arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2014License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-11-4039-2014&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 United States, United Kingdom, United Kingdom, Austria, Brazil, Germany, France, France, United Kingdom, France, Netherlands, Germany, BrazilPublisher:Springer Science and Business Media LLC Funded by:ARC | ARC Centres of Excellence..., EC | LUC4C, UKRI | The UK Earth system model... +1 projectsARC| ARC Centres of Excellences - Grant ID: CE170100023 ,EC| LUC4C ,UKRI| The UK Earth system modelling project. ,EC| IMBALANCE-PSönke Zaehle; Anja Rammig; Florian Hofhansl; Ying-Ping Wang; David M. Lapola; Lucia Fuchslueger; Lucia Fuchslueger; Vanessa Haverd; Adriana Grandis; Sabrina Garcia; Carlos A. Quesada; Richard J. Norby; Celso von Randow; Felix Leung; Felix Leung; Lina M. Mercado; Qing Zhu; Mingkai Jiang; Anthony P. Walker; Bart Kruijt; Belinda E. Medlyn; Katrin Fleischer; Martin G. De Kauwe; Oscar J. Valverde-Barrantes; Xiaojuan Yang; Bernard Pak; Daniel S. Goll; Daniel S. Goll; Karst J. Schaap; Tomas F. Domingues; Jennifer A. Holm;Global terrestrial models currently predict that the Amazon rainforest will continue to act as a carbon sink in the future, primarily owing to the rising atmospheric carbon dioxide (CO2) concentration. Soil phosphorus impoverishment in parts of the Amazon basin largely controls its functioning, but the role of phosphorus availability has not been considered in global model ensembles—for example, during the Fifth Climate Model Intercomparison Project. Here we simulate the planned free-air CO2 enrichment experiment AmazonFACE with an ensemble of 14 terrestrial ecosystem models. We show that phosphorus availability reduces the projected CO2-induced biomass carbon growth by about 50% to 79 ± 63 g C m−2 yr−1 over 15 years compared to estimates from carbon and carbon–nitrogen models. Our results suggest that the resilience of the region to climate change may be much less than previously assumed. Variation in the biomass carbon response among the phosphorus-enabled models is considerable, ranging from 5 to 140 g C m−2 yr−1, owing to the contrasting plant phosphorus use and acquisition strategies considered among the models. The Amazon forest response thus depends on the interactions and relative contributions of the phosphorus acquisition and use strategies across individuals, and to what extent these processes can be upregulated under elevated CO2.
NERC Open Research A... arrow_drop_down University of California: eScholarshipArticle . 2019License: CC BYFull-Text: https://escholarship.org/uc/item/2tf7v6gdData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaUniversity of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41561-019-0404-9&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert NERC Open Research A... arrow_drop_down University of California: eScholarshipArticle . 2019License: CC BYFull-Text: https://escholarship.org/uc/item/2tf7v6gdData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of CaliforniaUniversity of Bristol: Bristol ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41561-019-0404-9&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 AustraliaPublisher:Wiley Funded by:ARC | Discovery Early Career Re...ARC| Discovery Early Career Researcher Award - Grant ID: DE190101182Michael J. Liddell; Jürgen Knauer; Tim Wardlaw; Daniel Metzen; William Woodgate; William Woodgate; Nina Hinko-Najera; Anne Griebel; Stefan K. Arndt; Lauren T. Bennett; Richard Silberstein; Richard Silberstein; Alison C. Bennett; Elise Pendall; Vanessa Haverd; Jason Beringer;AbstractGross primary productivity (GPP) of wooded ecosystems (forests and savannas) is central to the global carbon cycle, comprising 67%–75% of total global terrestrial GPP. Climate change may alter this flux by increasing the frequency of temperatures beyond the thermal optimum of GPP (Topt). We examined the relationship between GPP and air temperature (Ta) in 17 wooded ecosystems dominated by a single plant functional type (broadleaf evergreen trees) occurring over a broad climatic gradient encompassing five ecoregions across Australia ranging from tropical in the north to Mediterranean and temperate in the south. We applied a novel boundary‐line analysis to eddy covariance flux observations to (a) derive ecosystem GPP–Ta relationships and Topt (including seasonal analyses for five tropical savannas); (b) quantitatively and qualitatively assess GPP–Ta relationships within and among ecoregions; (c) examine the relationship between Topt and mean daytime air temperature (MDTa) across all ecosystems; and (d) examine how down‐welling short‐wave radiation (Fsd) and vapour pressure deficit (VPD) influence the GPP–Ta relationship. GPP–Ta relationships were convex parabolas with narrow curves in tropical forests, tropical savannas (wet season), and temperate forests, and wider curves in temperate woodlands, Mediterranean woodlands, and tropical savannas (dry season). Ecosystem Topt ranged from 15℃ (temperate forest) to 32℃ (tropical savanna—wet and dry seasons). The shape of GPP–Ta curves was largely determined by daytime Ta range, MDTa, and maximum GPP with the upslope influenced by Fsd and the downslope influenced by VPD. Across all ecosystems, there was a strong positive linear relationship between Topt and MDTa (Adjusted R2: 0.81; Slope: 1.08) with Topt exceeding MDTa by >1℃ at all but two sites. We conclude that ecosystem GPP has adjusted to local MDTa within Australian broadleaf evergreen forests and that GPP is buffered against small Ta increases in the majority of these ecosystems.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15760&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15760&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Embargo end date: 01 Jan 2016 Australia, United Kingdom, Spain, United States, Switzerland, Spain, Spain, SpainPublisher:Copernicus GmbH Funded by:EC | ECOWAXEC| ECOWAXWayne S. Meyer; Natascha Kljun; Anne Griebel; Anne Griebel; Stefan K. Arndt; Lindsay B. Hutley; Suzanne M. Prober; Cacilia Ewenz; Eva van Gorsel; Richard Silberstein; Bradley Evans; Trevor F. Keenan; Sebastian Wolf; Peter Isaac; Jason Beringer; Craig Macfarlane; James Cleverly; Ian McHugh; Elise Pendall; Vanessa Haverd; Víctor Resco de Dios;handle: 10459.1/58879 , 2328/37056 , 1959.7/uws:38219 , 2440/105613 , 1885/153292
Abstract. As a result of climate change warmer temperatures are projected through the 21st century and are already increasing above modelled predictions. Apart from increases in the mean, warm/hot temperature extremes are expected to become more prevalent in the future, along with an increase in the frequency of droughts. It is crucial to better understand the response of terrestrial ecosystems to such temperature extremes for predicting land-surface feedbacks in a changing climate. While land-surface feedbacks in drought conditions and during heat waves have been reported from Europe and the US, direct observations of the impact of such extremes on the carbon and water cycles in Australia have been lacking. During the 2012/2013 summer, Australia experienced a record-breaking heat wave with an exceptional spatial extent that lasted for several weeks. In this study we synthesised eddy-covariance measurements from seven woodlands and one forest site across three biogeographic regions in southern Australia. These observations were combined with model results from BIOS2 (Haverd et al., 2013a, b) to investigate the effect of the summer heat wave on the carbon and water exchange of terrestrial ecosystems which are known for their resilience toward hot and dry conditions. We found that water-limited woodland and energy-limited forest ecosystems responded differently to the heat wave. During the most intense part of the heat wave, the woodlands experienced decreased latent heat flux (23 % of background value), increased Bowen ratio (154 %) and reduced carbon uptake (60 %). At the same time the forest ecosystem showed increased latent heat flux (151 %), reduced Bowen ratio (19 %) and increased carbon uptake (112 %). Higher temperatures caused increased ecosystem respiration at all sites (up to 139 %). During daytime all ecosystems remained carbon sinks, but carbon uptake was reduced in magnitude. The number of hours during which the ecosystem acted as a carbon sink was also reduced, which switched the woodlands into a carbon source on a daily average. Precipitation occurred after the first, most intense part of the heat wave, and the subsequent cooler temperatures in the temperate woodlands led to recovery of the carbon sink, decreased the Bowen ratio (65 %) and hence increased evaporative cooling. Gross primary productivity in the woodlands recovered quickly with precipitation and cooler temperatures but respiration remained high. While the forest proved relatively resilient to this short-term heat extreme the response of the woodlands is the first direct evidence that the carbon sinks of large areas of Australia may not be sustainable in a future climate with an increased number, intensity and duration of heat waves.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/2kp5m577Data sources: Bielefeld Academic Search Engine (BASE)Flinders Academic Commons (FAC - Flinders University)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/2328/37056Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2016License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworkspost2013/2341Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/2440/105613Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/153292Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2016Full-Text: https://doi.org/10.5194/bg-13-5947-2016Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-13-5947-2016&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/2kp5m577Data sources: Bielefeld Academic Search Engine (BASE)Flinders Academic Commons (FAC - Flinders University)Article . 2016License: CC BYFull-Text: http://hdl.handle.net/2328/37056Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2016License: CC BYFull-Text: https://ro.ecu.edu.au/ecuworkspost2013/2341Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/2440/105613Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/153292Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2016Full-Text: https://doi.org/10.5194/bg-13-5947-2016Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-13-5947-2016&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 FrancePublisher:American Geophysical Union (AGU) Authors: Cuntz, Matthias; Haverd, Vanessa;doi: 10.1002/2017ms001100
AbstractThe model Soil‐Litter‐Iso (SLI) calculates coupled heat and water transport in soil. It was recently implemented into the Australian land surface model CABLE, which is the land component of the Australian Community Climate and Earth System Simulator (ACCESS). Here we extended SLI to include accurate freeze‐thaw processes in the soil and snow. SLI provides thence an implicit solution of the energy and water balances of soil and snow as a standalone model and within CABLE. The enhanced SLI was tested extensively against theoretical formulations, laboratory experiments, field data, and satellite retrievals. The model performed well for all experiments at wide‐ranging temporal and spatial scales. SLI melts snow faster at the end of the cold season compared to observations though because there is no subgrid variability within SLI given by the implicit, coupled solution of energy and water. Combined CABLE‐SLI shows very realistic dynamics and extent of permafrost on the Northern hemisphere. It illustrated, however, also the limits of possible comparisons between large‐scale land surface models and local permafrost observations. CABLE‐SLI exhibits the same patterns of snow depth and snow water equivalent on the Northern hemisphere compared to satellite‐derived observations but quantitative comparisons depend largely on the given meteorological input fields. Further extension of CABLE‐SLI with depth‐dependence of soil carbon will allow realistic projections of the development of permafrost and frozen carbon stocks in a changing climate.
Journal of Advances ... arrow_drop_down Journal of Advances in Modeling Earth SystemsArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefINRIA a CCSD electronic archive serverArticle . 2018Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017ms001100&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Journal of Advances ... arrow_drop_down Journal of Advances in Modeling Earth SystemsArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefINRIA a CCSD electronic archive serverArticle . 2018Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2017ms001100&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 Australia, France, Australia, AustraliaPublisher:Springer Science and Business Media LLC Matthias Cuntz; David W. T. Griffith; Vanessa Haverd; Vanessa Haverd; Eva van Gorsel; Ray Leuning;handle: 1885/39335
One-dimensional Lagrangian dispersion models, frequently used to relate in-canopy source/sink distributions of energy, water and trace gases to vertical concentration profiles, require estimates of the standard deviation of the vertical wind speed, which can be measured, and the Lagrangian time scale, T L , which cannot. In this work we use non-linear parameter estimation to determine the vertical profile of the Lagrangian time scale that simultaneously optimises agreement between modelled and measured vertical profiles of temperature, water vapour and carbon dioxide concentrations within a 40-m tall temperate Eucalyptus forest in southeastern Australia. Modelled temperature and concentration profiles are generated using Lagrangian dispersion theory combined with source/sink distributions of sensible heat, water vapour and CO 2. These distributions are derived from a multilayer Soil-Vegetation-Atmospheric-Transfer model subject to multiple constraints: (1) daytime eddy flux measurements of sensible heat, latent heat, and CO 2 above the canopy, (2) in-canopy lidar measurements of leaf area density distribution, and (3) chamber measurements of CO 2 ground fluxes. The resulting estimate of Lagrangian time scale within the canopy under near-neutral conditions is about 1.7 times higher than previous estimates and decreases towards zero at the ground. It represents an advance over previous estimates of T L , which are largely unconstrained by measurements.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/39335Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10546-008-9344-4&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/39335Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10546-008-9344-4&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 France, Germany, Germany, GermanyPublisher:Wiley Funded by:SNSF | Climate and Environmental..., EC | 4CSNSF| Climate and Environmental Physics: Modeling Global Biogeochemical Cycles in the Earth System (bgcCEP) ,EC| 4CVivek K. Arora; Andy Wiltshire; Wei Li; Dan Zhu; Julia E. M. S. Nabel; Hui Yang; Emilie Joetzjer; Vanessa Harverd; Markus Kautz; Ana Bastos; Pierre Friedlingstein; Pierre Friedlingstein; Sebastian Lienert; Sebastian Lienert; Stephen Sitch; Peter Anthoni; Maurizio Santoro; Yilong Wang; Yuanyuan Huang; Yuanyuan Huang; Philippe Ciais; A. Arneth; Daniel S. Goll; Michael O'Sullivan; N. Vuichard;doi: 10.1111/gcb.15117 , 10.48350/153233
pmid: 32427397
AbstractGaps in our current understanding and quantification of biomass carbon stocks, particularly in tropics, lead to large uncertainty in future projections of the terrestrial carbon balance. We use the recently published GlobBiomass data set of forest above‐ground biomass (AGB) density for the year 2010, obtained from multiple remote sensing and in situ observations at 100 m spatial resolution to evaluate AGB estimated by nine dynamic global vegetation models (DGVMs). The global total forest AGB of the nine DGVMs is 365 ± 66 Pg C, the spread corresponding to the standard deviation between models, compared to 275 Pg C with an uncertainty of ~13.5% from GlobBiomass. Model‐data discrepancy in total forest AGB can be attributed to their discrepancies in the AGB density and/or forest area. While DGVMs represent the global spatial gradients of AGB density reasonably well, they only have modest ability to reproduce the regional spatial gradients of AGB density at scales below 1000 km. The 95th percentile of AGB density (AGB95) in tropics can be considered as the potential maximum of AGB density which can be reached for a given annual precipitation. GlobBiomass data show local deficits of AGB density compared to the AGB95, particularly in transitional and/or wet regions in tropics. We hypothesize that local human disturbances cause more AGB density deficits from GlobBiomass than from DGVMs, which rarely represent human disturbances. We then analyse empirical relationships between AGB density deficits and forest cover changes, population density, burned areas and livestock density. Regression analysis indicated that more than 40% of the spatial variance of AGB density deficits in South America and Africa can be explained; in Southeast Asia, these factors explain only ~25%. This result suggests TRENDY v6 DGVMs tend to underestimate biomass loss from diverse and widespread anthropogenic disturbances, and as a result overestimate turnover time in AGB.
Hyper Article en Lig... arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15117&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15117&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 France, Australia, AustraliaPublisher:Elsevier BV Cernusak, Lucas; Haverd, Vanessa; Brendel, Oliver; Le Thiec, Didier; Guehl, Jean-Marc; Cuntz, Matthias;pmid: 31104852
Human-caused CO2 emissions over the past century have caused the climate of the Earth to warm and have directly impacted on the functioning of terrestrial plants. We examine the global response of terrestrial gross primary production (GPP) to the historic change in atmospheric CO2. The GPP of the terrestrial biosphere has increased steadily, keeping pace remarkably in proportion to the rise in atmospheric CO2. Water-use efficiency, namely the ratio of CO2 uptake by photosynthesis to water loss by transpiration, has increased as a direct leaf-level effect of rising CO2. This has allowed an increase in global leaf area, which has conspired with stimulation of photosynthesis per unit leaf area to produce a maximal response of the terrestrial biosphere to rising atmospheric CO2 and contemporary climate change.
Hyper Article en Lig... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tplants.2019.04.003&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Hyper Article en Lig... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.tplants.2019.04.003&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017Embargo end date: 24 Oct 2017 Switzerland, Australia, United KingdomPublisher:Copernicus GmbH Funded by:ARC | Future Fellowships - Gran..., ARC | Patterns and processes of..., ARC | Discovery Projects - Gran... +1 projectsARC| Future Fellowships - Grant ID: FT110100602 ,ARC| Patterns and processes of carbon and water budgets across northern Australian landscapes: From point to region ,ARC| Discovery Projects - Grant ID: DP130101566 ,ARC| Fire Scar Impacts on Surface Heat and Moisture Fluxes in Australia's Tropical Savanna and Feedbacks to Local and Regional ClimateRhys Whitley; Jason Beringer; Lindsay B. Hutley; Gabriel Abramowitz; Martin G. De Kauwe; Bradley Evans; Vanessa Haverd; Longhui Li; Caitlin Moore; Youngryel Ryu; Simon Scheiter; Stanislaus J. Schymanski; Benjamin Smith; Ying-Ping Wang; Mathew Williams; Qiang Yu;Abstract. The savanna complex is a highly diverse global biome that occurs within the seasonally dry tropical to sub-tropical equatorial latitudes and are structurally and functionally distinct from grasslands and forests. Savannas are open-canopy environments that encompass a broad demographic continuum, often characterised by a changing dominance between C3-tree and C4-grass vegetation, where frequent environmental disturbances such as fire modulates the balance between ephemeral and perennial life forms. Climate change is projected to result in significant changes to the savanna floristic structure, with increases to woody biomass expected through CO2 fertilisation in mesic savannas and increased tree mortality expected through increased rainfall interannual variability in xeric savannas. The complex interaction between vegetation and climate that occurs in savannas has traditionally challenged terrestrial biosphere models (TBMs), which aim to simulate the interaction between the atmosphere and the land surface to predict responses of vegetation to changing in environmental forcing. In this review, we examine whether TBMs are able to adequately represent savanna fluxes and what implications potential deficiencies may have for climate change projection scenarios that rely on these models. We start by highlighting the defining characteristic traits and behaviours of savannas, how these differ across continents and how this information is (or is not) represented in the structural framework of many TBMs. We highlight three dynamic processes that we believe directly affect the water use and productivity of the savanna system: phenology, root-water access and fire dynamics. Following this, we discuss how these processes are represented in many current-generation TBMs and whether they are suitable for simulating savanna fluxes.Finally, we give an overview of how eddy-covariance observations in combination with other data sources can be used in model benchmarking and intercomparison frameworks to diagnose the performance of TBMs in this environment and formulate road maps for future development. Our investigation reveals that many TBMs systematically misrepresent phenology, the effects of fire and root-water access (if they are considered at all) and that these should be critical areas for future development. Furthermore, such processes must not be static (i.e. prescribed behaviour) but be capable of responding to the changing environmental conditions in order to emulate the dynamic behaviour of savannas. Without such developments, however, TBMs will have limited predictive capability in making the critical projections needed to understand how savannas will respond to future global change.
UNSWorks arrow_drop_down UNSWorksArticle . 2017License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_53112Data sources: Bielefeld Academic Search Engine (BASE)Fachrepositorium LebenswissenschaftenArticle . 2017Data sources: Fachrepositorium LebenswissenschaftenUniversity of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-14-4711-2017&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert UNSWorks arrow_drop_down UNSWorksArticle . 2017License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_53112Data sources: Bielefeld Academic Search Engine (BASE)Fachrepositorium LebenswissenschaftenArticle . 2017Data sources: Fachrepositorium LebenswissenschaftenUniversity of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-14-4711-2017&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
