Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Global Change Biology
Article . 2021 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 9 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermal optima of gross primary productivity are closely aligned with mean air temperatures across Australian wooded ecosystems

Authors: Michael J. Liddell; Jürgen Knauer; Tim Wardlaw; Daniel Metzen; William Woodgate; William Woodgate; Nina Hinko-Najera; +9 Authors

Thermal optima of gross primary productivity are closely aligned with mean air temperatures across Australian wooded ecosystems

Abstract

AbstractGross primary productivity (GPP) of wooded ecosystems (forests and savannas) is central to the global carbon cycle, comprising 67%–75% of total global terrestrial GPP. Climate change may alter this flux by increasing the frequency of temperatures beyond the thermal optimum of GPP (Topt). We examined the relationship between GPP and air temperature (Ta) in 17 wooded ecosystems dominated by a single plant functional type (broadleaf evergreen trees) occurring over a broad climatic gradient encompassing five ecoregions across Australia ranging from tropical in the north to Mediterranean and temperate in the south. We applied a novel boundary‐line analysis to eddy covariance flux observations to (a) derive ecosystem GPP–Ta relationships and Topt (including seasonal analyses for five tropical savannas); (b) quantitatively and qualitatively assess GPP–Ta relationships within and among ecoregions; (c) examine the relationship between Topt and mean daytime air temperature (MDTa) across all ecosystems; and (d) examine how down‐welling short‐wave radiation (Fsd) and vapour pressure deficit (VPD) influence the GPP–Ta relationship. GPP–Ta relationships were convex parabolas with narrow curves in tropical forests, tropical savannas (wet season), and temperate forests, and wider curves in temperate woodlands, Mediterranean woodlands, and tropical savannas (dry season). Ecosystem Topt ranged from 15℃ (temperate forest) to 32℃ (tropical savanna—wet and dry seasons). The shape of GPP–Ta curves was largely determined by daytime Ta range, MDTa, and maximum GPP with the upslope influenced by Fsd and the downslope influenced by VPD. Across all ecosystems, there was a strong positive linear relationship between Topt and MDTa (Adjusted R2: 0.81; Slope: 1.08) with Topt exceeding MDTa by >1℃ at all but two sites. We conclude that ecosystem GPP has adjusted to local MDTa within Australian broadleaf evergreen forests and that GPP is buffered against small Ta increases in the majority of these ecosystems.

Country
Australia
Keywords

570, Terrestrial and Aquatic Ecology, Ecology and Evolutionary Biology, broadleaved evergreen tree, Eddy covariance, Forests, 551, 333, Carbon Cycle, forest, XXXXXX - Unknown, Physical Sciences and Mathematics, Ecosystem, 580, thermal optima, Australia, Temperature, Life Sciences, gross primary production, savanna, air temperature, climate change, Seasons, Environmental Sciences

Powered by OpenAIRE graph
Found an issue? Give us feedback