- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:Elsevier BV Authors: E. Pérez-Iribarren; I. González-Pino; Z. Azkorra-Larrinaga; M. Odriozola-Maritorena; +1 AuthorsE. Pérez-Iribarren; I. González-Pino; Z. Azkorra-Larrinaga; M. Odriozola-Maritorena; I. Gómez-Arriarán;The hybridization of energy systems is based on the combined integration of both renewable and non-renewable technologies and thermal energy storage. These hybrid installations improve cost effectiveness and energy efficiency when they are correctly designed and the operation strategy is suitable. Despite the relevance of achieving the optimal configuration, sizing and control strategy of hybrid thermal systems, there is no simple and generic methodology which allows this type of installations to be optimized in the project phase. In response to this issue, in this work, a mixed integer linear programming-based simple model is carried out with the aim of obtaining the optimal design, sizing and operation of thermal energy systems in residential buildings. To do so, a superstructure is defined that includes the main technologies commercialized for thermal energy systems in buildings. Technical, economic, environmental and legal constraints are determined in the proposed generic model. In order to validate the method, it is applied to a central space heating and domestic hot water installation of a residential building located in a cold climate in Spain. Optimal solutions are obtained considering three different perspectives —economic, environmental and multicriteria— and are compared to the current installation. According to the results, the overall cost of the economic optimal configuration is reduced by 15%, whereas the greenhouse gas emissions decrease by 56% in the environmental optimal solution. It is thus demonstrated that the proposed generic and simple model is a useful tool for determining the optimal hybridization of the plant and for analysing the technical, economic and environmental feasibility of these systems in the project phase. This work was supported by the Spanish Ministry of Science and Innovation and the European Regional Development Fund through the SMARTECH project ‘Towards Smart Buildings, research of energy monitoring techniques for the evaluation, certification and optimization of control’, project reference: PID2021-126739OB-C22 (MCI/AEI/FEDER, UE).
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2023.117326&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2023.117326&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Estibaliz Pérez-Iribarren; I. González-Pino; I. Gómez-Arriaran; Z. Azkorra-Larrinaga;The implementation of micro-cogeneration plants in residential buildings requires a technical and economic viability study. This analysis depends greatly on the regulatory framework controlling this kind of installations, which is characterized by its variability and great uncertainty. Viability is also closely related to the sizing of devices and their integration within the plant, as well as to its global operation. Although different methods are used for sizing micro-cogeneration installations, there is no methodology to determine the optimal capacity of the thermal energy storage and the auxiliary generation system in the design phase. Since the optimal strategy of the whole plant is not taken into account in this project phase, the installation is usually oversized, decreasing the efficiency of the plant and increasing the overall cost. The aim of this paper is to analyze the viability study of micro-cogeneration systems with integrated thermal energy storage and determine the influence of this on the final results. Furthermore, a mathematical linear programming-based model is proposed, where the optimal behavior of the different devices is predicted in the design phase in order to determine the optimal sizing of both the tank and the auxiliary boiler. The developed model can be a useful tool in viability analysis and can easily be reproduced by engineers and researchers. In conclusion, the optimal integration and sizing of the thermal energy storage considerably improve the thermodynamic, economic and environmental results This work was supported by the Spanish Ministry of Science, Innovation and Universities and the European Regional Development Fund through the MONITHERM project ‘Investigation of monitoring techniques of occupied buildings for their thermal characterization and methodology to identify their key performance indicators’, project reference: RTI2018-096296-B-C22 (MCIU/AEI/FEDER, UE)
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.114769&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.114769&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 SpainPublisher:MDPI AG Authors: Zaloa Azkorra-Larrinaga; Naiara Romero-Antón; Koldobika Martin-Escudero; Gontzal Lopez-Ruiz;Green roofs are artificial ecosystems that provide a nature-based solution to environmental problems such as climate change and the urban heat island effect by absorbing solar radiation and helping to alleviate urban environmental, economic, and social problems. Green roofs offer many benefits in terms of heat and water conservation as well as in terms of energy costs. This work proposes the design of an extensive and environmentally sustainable green roof for the Faculty of Engineering building in Bilbao. The green roof will be made from the composting of food waste generated in the building’s own canteen. Therefore, the main objective of this study is to calculate the solar efficiency of a sustainable green roof, evaluate its thermal performance, and quantify the impact that its implementation would have on energy consumption and the thermal comfort of its users. The results obtained confirm that an environmentally sustainable green roof has a positive effect on summer energy consumption and that this effect is much greater when there is water on the roof, as shown by the difference in energy savings between the dry (−53.7%) and wet (−84.2%) scenarios. The data show that in winter the differences between a green roof and a non-vegetated roof are not significant. In this case, the estimated energy consumption penalty (0.015 kWh/m2) would be 10% of the summer gain.
Buildings arrow_drop_down BuildingsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2075-5309/13/7/1846/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13071846&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Buildings arrow_drop_down BuildingsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2075-5309/13/7/1846/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13071846&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Zaloa Azkorra-Larrinaga; Naiara Romero-Anton; Koldobika Martin-Escudero; Gontzal Lopez-Ruiz; +1 AuthorsZaloa Azkorra-Larrinaga; Naiara Romero-Anton; Koldobika Martin-Escudero; Gontzal Lopez-Ruiz; Catalina Giraldo-Soto;In recent years, passive solutions for building envelopes have become much more common due to their capacity to decrease the heat flux through the envelope during summer time. Vertical greenery systems (VGS) are emerging as an interesting method of decreasing the thermal demand of cities, and also improving the quality of urban life. Open ventilated facades (OVF) have gained popularity due to their capacity to enhance the thermal resistance of the building envelope. As part of a project carried out in a Paslink cell in Vitoria-Gasteiz, an experimental campaign with full-scale VGS and OVF was carried out during the summer season to assess the thermal performance of a modular living wall (MLW) with respect to an OVF. The objective is to demonstrate that a stochastic differential equations (SDE) model can be used to assess the cooling requirements of an MLW and an OVF. An analysis was carried out to evaluate how different characteristics of the main facade affect performance, such as thermal resistance, solar absorption coefficient and convection coefficient. The results of these experiments show that both MLW (46 %) and OVF (67 %) configurations significantly minimize solar heat loads compared to non-passive bare wall (BW) facades, which are the reference configurations.
Case Studies in Ther... arrow_drop_down Case Studies in Thermal EngineeringArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2023.103919&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Case Studies in Ther... arrow_drop_down Case Studies in Thermal EngineeringArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2023.103919&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Elsevier BV Authors: Azkorra Larrinaga, Zaloa; Ercoreca González, Aitor; Flores Abascal, Iván; Pérez Iribarren, Estibaliz; +1 AuthorsAzkorra Larrinaga, Zaloa; Ercoreca González, Aitor; Flores Abascal, Iván; Pérez Iribarren, Estibaliz; Romero Antón, Naiara;[EN] The thermal evaluation of building components composed of a base wall with a solar passive skin solution, such as a vertical/roof greenery system, ventilated facade, reflective painting, etc., is usually performed as a whole. In this research, it has been proven that, independently of the base wall thermal inertia and insulation level, the temperature of the outermost surface layer of any building component during sunny hours is mainly dependent on the ambient air temperature and relative humidity, the incident global solar radiation and the building skin behaviour. The latter assumption has been proven on the south wall of a reference building simulated with TRNSYS. The south wall properties have been varied and the building has been subjected to different climates. The assumption's validity has been checked for twelve south wall cases: a combination of 2 thermal transmittance, 2 thermal inertia and 3 climates. Each case has been simulated for a whole year. Based on this finding and the local ambient conditions for sunny hours, the hypothetical achievable maximum and minimum temperatures for the outermost surface layer have been defined. Then, based on the outermost surface temperature experimental measurements, the cooling and heating solar efficiencies valid for any skin solution have been defined. Furthermore, the developed methodology has been applied to a vertical living wall tested for a whole year under the accuracy and quality procedure of the PASLINK method. In this way, the cooling and heating solar efficiencies were experimentally determined for this skin solution for both, the hot cold seasons. The study has shown that the cooling efficiency during the hot season is 90.8%. As expected, even during sunny summer hours, the presence of water positively affects the performance of the facade, as it brings the base wall external surface temperature close to the ambient wet bulb temperature, therefore reducing the cooling load of the building. For the cold season, the cooling efficiency was similar, at 90.3%, which means a heating efficiency of 9.7%. Again, even for sunny winter hours, the values of the external surface temperature tend towards the ambient air wet bulb temperature, resulting in an increase in the heating demand. These experimental efficiency values allow the heating or cooling behaviour of different skin solutions to be comparable with a single number that is independent of the base wall composition. In addition, independently of the base wall composition, once the experimental efficiency value of a given skin solution is known, it allows (during sunny hours) the base wall outermost surface temperature to be calculated with precision. The latter makes it possible to increase the accuracy of the estimation of the heating and cooling demands of such methods as the degree-day method. This work was supported by the Spanish Ministry of Science, Innovation and Universities and the European Regional Development Fund (grant number RTI2018-096296-B-C22) through the MONITHERM project 'Investigation of monitoring techniques of occupied buildings for their thermal characterization and methodology to identify their key performance indicators', project reference: RTI2018-096296-B-C22 (MCIU/AEI/FEDER, UE). Open Access funding provided by University of Basque Country.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2022.118403&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2022.118403&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 SpainPublisher:Elsevier BV Authors: Romero Antón, Naiara; Martín Escudero, Koldobika; Mengmeng, Ren; Azkorra Larrinaga, Zaloa;The latest Direct Numerical Simulation (DNS) modeling results in flameless combustion suggest interactions between the combustion reaction zones. The New Extended Eddy Dissipation Concept (NE-EDC) model, where model coefficients are calculated based on local Reynolds and Damköhler numbers, was proposed to improve the standard Eddy Dissipation Concept (EDC) model's accuracy when modeling flameless combustion, but this model does not include the interactions between the reaction zones. In this work, a revised version of the NE-EDC model is presented, called here Generalized NE-EDC model, where the chemical time scale is calculated in detail, considering the reaction rates of CH4, H2, O2, CO and CO2, making the interaction between the reaction zones more realistic (in the NE-EDC only a one-step CH4 global reaction mechanism is considered). A comparative study of four global reaction mechanisms is carried out to select the best mechanism for chemical time scale definition: the adjusted Jones & Lindstedt (JL1); the adjusted Westbrook & Dryer (WD1); the adjusted Westbrook & Dryer (WD2); and the one-step CH4 global mechanism (1-step). The four global reaction mechanisms, in combination with the NE-EDC model, are applied to the Delft lab-scale furnace and the modeling results are compared against those experimental measurements. The NE-EDC modeling results, in combination with WD2, present a slight improvement over the other global mechanisms in flameless modeling.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compfluid.2021.105203&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compfluid.2021.105203&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:Elsevier BV Authors: Zaloa Azkorra-Larrinaga; Aitor Erkoreka-González; Koldobika Martín-Escudero; Estibaliz Pérez-Iribarren; +1 AuthorsZaloa Azkorra-Larrinaga; Aitor Erkoreka-González; Koldobika Martín-Escudero; Estibaliz Pérez-Iribarren; Naiara Romero-Antón;Vertical vegetation systems are an innovative passive method for decreasing the thermal energy demand of buildings while increasing the quality of urban life. The main objective of this work is to calculate the effectiveness of vegetation in reducing thermal loads analytically. For this purpose, the thermal energy performance of the modular living wall was compared with a traditional double façade construction system to evaluate the influence of vegetation using Stochastic Differential Equations models. The research was carried out experimentally using a real-scale PASLINK test cell. The thermal behaviour of a double leaf bare wall and the same double leaf wall converted into a modular living wall were calculated for different summertime and wintertime periods. In both studied cases, the temperature of the exterior surface of the bare wall is taken at the same place regardless of whether or not there is greenery system in the energy balance. With this simplification, the effect of the modular living wall can be identified within the estimated coefficients. The thermal resistance of the conventional double façade increased 0.74 (m2 K)/W over the non-greened wall, which represents a weighted increase of 49%. Additionally, the experimental results showed that the evapotraspiration processes that take place in the living wall lead to an increase in the combined convection-radiation coefficient, which reduces the overheating of the façade. Moreover, the effective solar absorptivity value of the outermost surface of the bare wall has been reduced an 85% thanks to the living wall, which confirms the high capacity of the living wall to reduce solar heat gains. This publication is part of the R+D+i project PID2021-126739OB-C22, financed by MCIN/AEI/10.13039/501100011033/ and “ERDF A way of making Europe”. This project has been made possible thanks to the agreement between the Basque Government and the University of the Basque Country UPV/EHU through of the ENEDI research group for the management and development of the Thermal Area of the Buildings Quality Control Laboratory of the Basque Government (ATLCCE). Open Access funding provided by University of Basque Country.
Building and Environ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2023.110102&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Building and Environ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2023.110102&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:MDPI AG Authors: Zaloa Azkorra-Larrinaga; Naiara Romero-Antón; Koldobika Martín-Escudero; Gontzal Lopez-Ruiz; +1 AuthorsZaloa Azkorra-Larrinaga; Naiara Romero-Antón; Koldobika Martín-Escudero; Gontzal Lopez-Ruiz; Catalina Giraldo-Soto;doi: 10.3390/su152416737
Sustainable development is essential for the future of the planet. Using passive elements, like ventilated facades based on insulation and air chambers, or living walls, which are solutions based on nature, is a powerful strategy for cities to improve their thermal environment, reduce energy consumption, and mitigate the effects of climate change. This approach allows for the quantification of the influence of passive surfaces on energy fluxes compared to bare surfaces. In addition, it delves into understanding how the incorporation of vegetation on building facades alters surface energy fluxes, involving a combination of physical and biochemical processes. This comprehensive investigation seeks to harness the potential of passive and natural solutions to address the pressing challenges of urban sustainability and climate resilience. This research uses a surface energy balance model to analyze the thermal performance of two facades using experimental data from a PASLINK test cell. This study uses the grey box RC model, which links continuous-time ordinary differential equations with discrete measurement data points. This model provides insight into the complex interplay among factors that influence the thermal behavior of building facades, with the goal of comprehensively understanding how ventilated and green facades affect the dynamics of energy flow compared to conventional facades. The initial thermal resistance of the bare facade was 0.75 (°C m2)/W. The introduction of a ventilated facade significantly increased this thermal resistance to 2.47 (°C m2)/W due to the insulating capacity of the air chamber and its insulating layer (1.70 (°C m2)/W). Regarding the modular living wall, it obtained a thermal resistance value of 1.22 (°C m2)/W (this vegetated facade does not have an insulating layer). In this context, the modular living wall proved to be effective in reducing convective energy by 68% compared with the non-green facade. It is crucial to highlight that evapotranspiration was the primary mechanism for energy dissipation in the green facade. The experiments conclusively show that both the modular living wall and open-ventilated facade significantly reduce solar heat loads compared with non-passive bare wall facades, demonstrating their effectiveness in enhancing thermal performance and minimizing heat absorption.
Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152416737&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152416737&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV A. Paniego-Alday; G. Lopez-Ruiz; Z. Azkorra-Larrinaga; Z. Uriondo-Arrue; N. Romero-Anton;This work analyses and improves the distribution of the flow of flue gases along the inlet duct of two industrial Heat Recovery Steam Generation (HRSG) boilers. The inlet duct connection with the boiler casing presents a special configuration, being axial for one boiler and radial for the other. The study was carried out using a 3D Computational Fluid Dynamics (CFD) modelling. The flow uniformity improvement is studied considering the introduction of baffles, perforated plates and the Part Elimination and Lattice Search (PELS) method. The Root Mean Square (RMS) axial velocity is used to determine uniform flow distribution. Its value must be equal to or below 0.2 m/s. Nevertheless, the pressure drop in the boiler must not increase by 1 mbar as compared to the standard case. After analysing the 3D CFD modelling results, our conclusion is that, in an axial configuration, the PELS method and a perforated plate (TAD44A65) located at the inlet of the recovery zone can improve the fluid flow uniformity to 40 %. For the radial configuration, only a perforated plate (TAD44A65) located at the inlet of the recovery zone improves fluid flow uniformity to 43 %.
Case Studies in Ther... arrow_drop_down Case Studies in Thermal EngineeringArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2024.104717&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Case Studies in Ther... arrow_drop_down Case Studies in Thermal EngineeringArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2024.104717&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 SpainPublisher:MDPI AG Authors: Ane Goenaga; Koldobika Martin-Escudero; Iván Flores-Abascal; Zaloa Azkorra-Larrinaga; +2 AuthorsAne Goenaga; Koldobika Martin-Escudero; Iván Flores-Abascal; Zaloa Azkorra-Larrinaga; César Escudero; Josu Soriano;doi: 10.3390/en15030819
This research aims to enter the miniature refrigeration machine sector with the objective of designing a small scale unit while maintaining a competitive coefficient of performance (COP), comparing with a Peltier plates system. To this end, a research of the current technology was carried out in order to obtain indicative values on the scales that were being worked on and their application. After the previous research, a refrigeration cycle was designed in EES (engineering equation solver). From this design, different conclusions were obtained: (1) The correct sizing of the compressor revolutions together with its displacement is crucial for the equipment to be able to provide the desired cooling capacity. (2) In order to obtain the desired cooling capacity in the microscale refrigeration system, the heat exchangers must have fins. (3) Of the analysed refrigerants, R600a is the best choice, as it shows favourable characteristics (high COP and low compression ratio) when working in this type of cycle.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/3/819/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15030819&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/3/819/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15030819&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:Elsevier BV Authors: E. Pérez-Iribarren; I. González-Pino; Z. Azkorra-Larrinaga; M. Odriozola-Maritorena; +1 AuthorsE. Pérez-Iribarren; I. González-Pino; Z. Azkorra-Larrinaga; M. Odriozola-Maritorena; I. Gómez-Arriarán;The hybridization of energy systems is based on the combined integration of both renewable and non-renewable technologies and thermal energy storage. These hybrid installations improve cost effectiveness and energy efficiency when they are correctly designed and the operation strategy is suitable. Despite the relevance of achieving the optimal configuration, sizing and control strategy of hybrid thermal systems, there is no simple and generic methodology which allows this type of installations to be optimized in the project phase. In response to this issue, in this work, a mixed integer linear programming-based simple model is carried out with the aim of obtaining the optimal design, sizing and operation of thermal energy systems in residential buildings. To do so, a superstructure is defined that includes the main technologies commercialized for thermal energy systems in buildings. Technical, economic, environmental and legal constraints are determined in the proposed generic model. In order to validate the method, it is applied to a central space heating and domestic hot water installation of a residential building located in a cold climate in Spain. Optimal solutions are obtained considering three different perspectives —economic, environmental and multicriteria— and are compared to the current installation. According to the results, the overall cost of the economic optimal configuration is reduced by 15%, whereas the greenhouse gas emissions decrease by 56% in the environmental optimal solution. It is thus demonstrated that the proposed generic and simple model is a useful tool for determining the optimal hybridization of the plant and for analysing the technical, economic and environmental feasibility of these systems in the project phase. This work was supported by the Spanish Ministry of Science and Innovation and the European Regional Development Fund through the SMARTECH project ‘Towards Smart Buildings, research of energy monitoring techniques for the evaluation, certification and optimization of control’, project reference: PID2021-126739OB-C22 (MCI/AEI/FEDER, UE).
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2023.117326&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2023.117326&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Estibaliz Pérez-Iribarren; I. González-Pino; I. Gómez-Arriaran; Z. Azkorra-Larrinaga;The implementation of micro-cogeneration plants in residential buildings requires a technical and economic viability study. This analysis depends greatly on the regulatory framework controlling this kind of installations, which is characterized by its variability and great uncertainty. Viability is also closely related to the sizing of devices and their integration within the plant, as well as to its global operation. Although different methods are used for sizing micro-cogeneration installations, there is no methodology to determine the optimal capacity of the thermal energy storage and the auxiliary generation system in the design phase. Since the optimal strategy of the whole plant is not taken into account in this project phase, the installation is usually oversized, decreasing the efficiency of the plant and increasing the overall cost. The aim of this paper is to analyze the viability study of micro-cogeneration systems with integrated thermal energy storage and determine the influence of this on the final results. Furthermore, a mathematical linear programming-based model is proposed, where the optimal behavior of the different devices is predicted in the design phase in order to determine the optimal sizing of both the tank and the auxiliary boiler. The developed model can be a useful tool in viability analysis and can easily be reproduced by engineers and researchers. In conclusion, the optimal integration and sizing of the thermal energy storage considerably improve the thermodynamic, economic and environmental results This work was supported by the Spanish Ministry of Science, Innovation and Universities and the European Regional Development Fund through the MONITHERM project ‘Investigation of monitoring techniques of occupied buildings for their thermal characterization and methodology to identify their key performance indicators’, project reference: RTI2018-096296-B-C22 (MCIU/AEI/FEDER, UE)
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.114769&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.114769&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 SpainPublisher:MDPI AG Authors: Zaloa Azkorra-Larrinaga; Naiara Romero-Antón; Koldobika Martin-Escudero; Gontzal Lopez-Ruiz;Green roofs are artificial ecosystems that provide a nature-based solution to environmental problems such as climate change and the urban heat island effect by absorbing solar radiation and helping to alleviate urban environmental, economic, and social problems. Green roofs offer many benefits in terms of heat and water conservation as well as in terms of energy costs. This work proposes the design of an extensive and environmentally sustainable green roof for the Faculty of Engineering building in Bilbao. The green roof will be made from the composting of food waste generated in the building’s own canteen. Therefore, the main objective of this study is to calculate the solar efficiency of a sustainable green roof, evaluate its thermal performance, and quantify the impact that its implementation would have on energy consumption and the thermal comfort of its users. The results obtained confirm that an environmentally sustainable green roof has a positive effect on summer energy consumption and that this effect is much greater when there is water on the roof, as shown by the difference in energy savings between the dry (−53.7%) and wet (−84.2%) scenarios. The data show that in winter the differences between a green roof and a non-vegetated roof are not significant. In this case, the estimated energy consumption penalty (0.015 kWh/m2) would be 10% of the summer gain.
Buildings arrow_drop_down BuildingsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2075-5309/13/7/1846/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13071846&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Buildings arrow_drop_down BuildingsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2075-5309/13/7/1846/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/buildings13071846&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Zaloa Azkorra-Larrinaga; Naiara Romero-Anton; Koldobika Martin-Escudero; Gontzal Lopez-Ruiz; +1 AuthorsZaloa Azkorra-Larrinaga; Naiara Romero-Anton; Koldobika Martin-Escudero; Gontzal Lopez-Ruiz; Catalina Giraldo-Soto;In recent years, passive solutions for building envelopes have become much more common due to their capacity to decrease the heat flux through the envelope during summer time. Vertical greenery systems (VGS) are emerging as an interesting method of decreasing the thermal demand of cities, and also improving the quality of urban life. Open ventilated facades (OVF) have gained popularity due to their capacity to enhance the thermal resistance of the building envelope. As part of a project carried out in a Paslink cell in Vitoria-Gasteiz, an experimental campaign with full-scale VGS and OVF was carried out during the summer season to assess the thermal performance of a modular living wall (MLW) with respect to an OVF. The objective is to demonstrate that a stochastic differential equations (SDE) model can be used to assess the cooling requirements of an MLW and an OVF. An analysis was carried out to evaluate how different characteristics of the main facade affect performance, such as thermal resistance, solar absorption coefficient and convection coefficient. The results of these experiments show that both MLW (46 %) and OVF (67 %) configurations significantly minimize solar heat loads compared to non-passive bare wall (BW) facades, which are the reference configurations.
Case Studies in Ther... arrow_drop_down Case Studies in Thermal EngineeringArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2023.103919&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Case Studies in Ther... arrow_drop_down Case Studies in Thermal EngineeringArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2023.103919&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Elsevier BV Authors: Azkorra Larrinaga, Zaloa; Ercoreca González, Aitor; Flores Abascal, Iván; Pérez Iribarren, Estibaliz; +1 AuthorsAzkorra Larrinaga, Zaloa; Ercoreca González, Aitor; Flores Abascal, Iván; Pérez Iribarren, Estibaliz; Romero Antón, Naiara;[EN] The thermal evaluation of building components composed of a base wall with a solar passive skin solution, such as a vertical/roof greenery system, ventilated facade, reflective painting, etc., is usually performed as a whole. In this research, it has been proven that, independently of the base wall thermal inertia and insulation level, the temperature of the outermost surface layer of any building component during sunny hours is mainly dependent on the ambient air temperature and relative humidity, the incident global solar radiation and the building skin behaviour. The latter assumption has been proven on the south wall of a reference building simulated with TRNSYS. The south wall properties have been varied and the building has been subjected to different climates. The assumption's validity has been checked for twelve south wall cases: a combination of 2 thermal transmittance, 2 thermal inertia and 3 climates. Each case has been simulated for a whole year. Based on this finding and the local ambient conditions for sunny hours, the hypothetical achievable maximum and minimum temperatures for the outermost surface layer have been defined. Then, based on the outermost surface temperature experimental measurements, the cooling and heating solar efficiencies valid for any skin solution have been defined. Furthermore, the developed methodology has been applied to a vertical living wall tested for a whole year under the accuracy and quality procedure of the PASLINK method. In this way, the cooling and heating solar efficiencies were experimentally determined for this skin solution for both, the hot cold seasons. The study has shown that the cooling efficiency during the hot season is 90.8%. As expected, even during sunny summer hours, the presence of water positively affects the performance of the facade, as it brings the base wall external surface temperature close to the ambient wet bulb temperature, therefore reducing the cooling load of the building. For the cold season, the cooling efficiency was similar, at 90.3%, which means a heating efficiency of 9.7%. Again, even for sunny winter hours, the values of the external surface temperature tend towards the ambient air wet bulb temperature, resulting in an increase in the heating demand. These experimental efficiency values allow the heating or cooling behaviour of different skin solutions to be comparable with a single number that is independent of the base wall composition. In addition, independently of the base wall composition, once the experimental efficiency value of a given skin solution is known, it allows (during sunny hours) the base wall outermost surface temperature to be calculated with precision. The latter makes it possible to increase the accuracy of the estimation of the heating and cooling demands of such methods as the degree-day method. This work was supported by the Spanish Ministry of Science, Innovation and Universities and the European Regional Development Fund (grant number RTI2018-096296-B-C22) through the MONITHERM project 'Investigation of monitoring techniques of occupied buildings for their thermal characterization and methodology to identify their key performance indicators', project reference: RTI2018-096296-B-C22 (MCIU/AEI/FEDER, UE). Open Access funding provided by University of Basque Country.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2022.118403&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2022.118403&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 SpainPublisher:Elsevier BV Authors: Romero Antón, Naiara; Martín Escudero, Koldobika; Mengmeng, Ren; Azkorra Larrinaga, Zaloa;The latest Direct Numerical Simulation (DNS) modeling results in flameless combustion suggest interactions between the combustion reaction zones. The New Extended Eddy Dissipation Concept (NE-EDC) model, where model coefficients are calculated based on local Reynolds and Damköhler numbers, was proposed to improve the standard Eddy Dissipation Concept (EDC) model's accuracy when modeling flameless combustion, but this model does not include the interactions between the reaction zones. In this work, a revised version of the NE-EDC model is presented, called here Generalized NE-EDC model, where the chemical time scale is calculated in detail, considering the reaction rates of CH4, H2, O2, CO and CO2, making the interaction between the reaction zones more realistic (in the NE-EDC only a one-step CH4 global reaction mechanism is considered). A comparative study of four global reaction mechanisms is carried out to select the best mechanism for chemical time scale definition: the adjusted Jones & Lindstedt (JL1); the adjusted Westbrook & Dryer (WD1); the adjusted Westbrook & Dryer (WD2); and the one-step CH4 global mechanism (1-step). The four global reaction mechanisms, in combination with the NE-EDC model, are applied to the Delft lab-scale furnace and the modeling results are compared against those experimental measurements. The NE-EDC modeling results, in combination with WD2, present a slight improvement over the other global mechanisms in flameless modeling.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compfluid.2021.105203&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compfluid.2021.105203&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:Elsevier BV Authors: Zaloa Azkorra-Larrinaga; Aitor Erkoreka-González; Koldobika Martín-Escudero; Estibaliz Pérez-Iribarren; +1 AuthorsZaloa Azkorra-Larrinaga; Aitor Erkoreka-González; Koldobika Martín-Escudero; Estibaliz Pérez-Iribarren; Naiara Romero-Antón;Vertical vegetation systems are an innovative passive method for decreasing the thermal energy demand of buildings while increasing the quality of urban life. The main objective of this work is to calculate the effectiveness of vegetation in reducing thermal loads analytically. For this purpose, the thermal energy performance of the modular living wall was compared with a traditional double façade construction system to evaluate the influence of vegetation using Stochastic Differential Equations models. The research was carried out experimentally using a real-scale PASLINK test cell. The thermal behaviour of a double leaf bare wall and the same double leaf wall converted into a modular living wall were calculated for different summertime and wintertime periods. In both studied cases, the temperature of the exterior surface of the bare wall is taken at the same place regardless of whether or not there is greenery system in the energy balance. With this simplification, the effect of the modular living wall can be identified within the estimated coefficients. The thermal resistance of the conventional double façade increased 0.74 (m2 K)/W over the non-greened wall, which represents a weighted increase of 49%. Additionally, the experimental results showed that the evapotraspiration processes that take place in the living wall lead to an increase in the combined convection-radiation coefficient, which reduces the overheating of the façade. Moreover, the effective solar absorptivity value of the outermost surface of the bare wall has been reduced an 85% thanks to the living wall, which confirms the high capacity of the living wall to reduce solar heat gains. This publication is part of the R+D+i project PID2021-126739OB-C22, financed by MCIN/AEI/10.13039/501100011033/ and “ERDF A way of making Europe”. This project has been made possible thanks to the agreement between the Basque Government and the University of the Basque Country UPV/EHU through of the ENEDI research group for the management and development of the Thermal Area of the Buildings Quality Control Laboratory of the Basque Government (ATLCCE). Open Access funding provided by University of Basque Country.
Building and Environ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2023.110102&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Building and Environ... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2023.110102&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:MDPI AG Authors: Zaloa Azkorra-Larrinaga; Naiara Romero-Antón; Koldobika Martín-Escudero; Gontzal Lopez-Ruiz; +1 AuthorsZaloa Azkorra-Larrinaga; Naiara Romero-Antón; Koldobika Martín-Escudero; Gontzal Lopez-Ruiz; Catalina Giraldo-Soto;doi: 10.3390/su152416737
Sustainable development is essential for the future of the planet. Using passive elements, like ventilated facades based on insulation and air chambers, or living walls, which are solutions based on nature, is a powerful strategy for cities to improve their thermal environment, reduce energy consumption, and mitigate the effects of climate change. This approach allows for the quantification of the influence of passive surfaces on energy fluxes compared to bare surfaces. In addition, it delves into understanding how the incorporation of vegetation on building facades alters surface energy fluxes, involving a combination of physical and biochemical processes. This comprehensive investigation seeks to harness the potential of passive and natural solutions to address the pressing challenges of urban sustainability and climate resilience. This research uses a surface energy balance model to analyze the thermal performance of two facades using experimental data from a PASLINK test cell. This study uses the grey box RC model, which links continuous-time ordinary differential equations with discrete measurement data points. This model provides insight into the complex interplay among factors that influence the thermal behavior of building facades, with the goal of comprehensively understanding how ventilated and green facades affect the dynamics of energy flow compared to conventional facades. The initial thermal resistance of the bare facade was 0.75 (°C m2)/W. The introduction of a ventilated facade significantly increased this thermal resistance to 2.47 (°C m2)/W due to the insulating capacity of the air chamber and its insulating layer (1.70 (°C m2)/W). Regarding the modular living wall, it obtained a thermal resistance value of 1.22 (°C m2)/W (this vegetated facade does not have an insulating layer). In this context, the modular living wall proved to be effective in reducing convective energy by 68% compared with the non-green facade. It is crucial to highlight that evapotranspiration was the primary mechanism for energy dissipation in the green facade. The experiments conclusively show that both the modular living wall and open-ventilated facade significantly reduce solar heat loads compared with non-passive bare wall facades, demonstrating their effectiveness in enhancing thermal performance and minimizing heat absorption.
Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152416737&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023Data sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2023Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su152416737&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV A. Paniego-Alday; G. Lopez-Ruiz; Z. Azkorra-Larrinaga; Z. Uriondo-Arrue; N. Romero-Anton;This work analyses and improves the distribution of the flow of flue gases along the inlet duct of two industrial Heat Recovery Steam Generation (HRSG) boilers. The inlet duct connection with the boiler casing presents a special configuration, being axial for one boiler and radial for the other. The study was carried out using a 3D Computational Fluid Dynamics (CFD) modelling. The flow uniformity improvement is studied considering the introduction of baffles, perforated plates and the Part Elimination and Lattice Search (PELS) method. The Root Mean Square (RMS) axial velocity is used to determine uniform flow distribution. Its value must be equal to or below 0.2 m/s. Nevertheless, the pressure drop in the boiler must not increase by 1 mbar as compared to the standard case. After analysing the 3D CFD modelling results, our conclusion is that, in an axial configuration, the PELS method and a perforated plate (TAD44A65) located at the inlet of the recovery zone can improve the fluid flow uniformity to 40 %. For the radial configuration, only a perforated plate (TAD44A65) located at the inlet of the recovery zone improves fluid flow uniformity to 43 %.
Case Studies in Ther... arrow_drop_down Case Studies in Thermal EngineeringArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2024.104717&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Case Studies in Ther... arrow_drop_down Case Studies in Thermal EngineeringArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2024.104717&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 SpainPublisher:MDPI AG Authors: Ane Goenaga; Koldobika Martin-Escudero; Iván Flores-Abascal; Zaloa Azkorra-Larrinaga; +2 AuthorsAne Goenaga; Koldobika Martin-Escudero; Iván Flores-Abascal; Zaloa Azkorra-Larrinaga; César Escudero; Josu Soriano;doi: 10.3390/en15030819
This research aims to enter the miniature refrigeration machine sector with the objective of designing a small scale unit while maintaining a competitive coefficient of performance (COP), comparing with a Peltier plates system. To this end, a research of the current technology was carried out in order to obtain indicative values on the scales that were being worked on and their application. After the previous research, a refrigeration cycle was designed in EES (engineering equation solver). From this design, different conclusions were obtained: (1) The correct sizing of the compressor revolutions together with its displacement is crucial for the equipment to be able to provide the desired cooling capacity. (2) In order to obtain the desired cooling capacity in the microscale refrigeration system, the heat exchangers must have fins. (3) Of the analysed refrigerants, R600a is the best choice, as it shows favourable characteristics (high COP and low compression ratio) when working in this type of cycle.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/3/819/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15030819&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/3/819/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2022Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15030819&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
