- home
- Advanced Search
- Energy Research
- Energy Research
Research data keyboard_double_arrow_right Dataset 2021Publisher:University of Bath Authors: Noble, Jonathan;doi: 10.15125/bath-01084
The data provided here is for the electromagnetic heating of magnetite under radio-frequencies. The data includes that from material characterisation, in-situ magnetometry, calorimetry, in-situ power absorption measurement and arc-tangent modelling results. The data is aligned to the figures in the research publication and is intended that future researchers can make their own analysis based upon our work. Further relevant documentation may be found in the following resources. Noble, J. P. P., Bending, S. J., Sartbaeva, A., Muxworthy, A. R., and Hill, A. K., 2021. A Novel In Situ High‐Temperature Magnetometry Method for Radiofrequency Heating Applications. Advanced Energy Materials, 12(1), 2102515. Available from: https://doi.org/10.1002/aenm.202102515. The data is collected using techniques described fully in the accompanying research article. The data follows the figure numbers from the paper which should make it easy to navigate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15125/bath-01084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15125/bath-01084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 1984 United StatesPublisher:Argonne National Laboratory Authors: Hull, John R.; Iles, Malvern K.;The magnetically confined kinetic-energy storage ring (MCKESR) is a new, fundamental type of energy-storage device. Energy is stored as kinetic energy in mass circulated at high velocity around a circular loop. The constraining force necessary to keep the circulating ring from flying apart is provided by radial, inwardly directed forced exerted along the perimeter of the loop by magnetic fields. The magnets and ring are contained in a tunnel, which may be buried in the ground. Levitational support against gravity is also provided by magnetic fields. Energy insertion or extraction is similar to that for a synchronous motor.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::dd41a9ce198d59228f4282109769bdff&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::dd41a9ce198d59228f4282109769bdff&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2023Publisher:INFN Open Access Repository Authors: Farinon, Stefania; Novelli, Daniel;When approaching the design of a multipole magnet, such as a dipole, quadrupole, sextupole, and so on, it is highly advantageous to initiate the process by establishing the fundamental parameters. These parameters include conductor size, current density, inner and outer radius of the iron yoke, and more. This preliminary dimensioning enables the acquisition of the necessary specifications for the design. Within this report, analytical expressions for the magnetic field, Lorentz forces, and stored energy of multipole magnets with the cos(nθ) and sector coil configurations, both with and without the presence of an iron yoke, are derived. These derivations are based on the vector potential of a current line.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15161/oar.it/143358&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15161/oar.it/143358&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2005Publisher:日本AEM学会 A novel AC magnetic suspension with a permanent magnet is proposed which has the' performance of noncontact energy transfer to the suspended object (floator). It uses permanent magnets for suspending the weight of the floator. An electromagnet combined with the permanent magnet operates for both stabilization and energy transfer to the floator. The principles of the proposed magnetic suspension system are clarified. It is shown that the average suspension force can be adjusted with an impedance control circuit in which the amplitude of the positive secondary current and that of the negative secondary current are separately controlled. An experimental apparatus is fabricated which has three pairs of primary and secondary electromagnets with pennanent magnets for three-axis active control in the vertical direction; the three secondary electromagnets are fixed to the floator that is a rectangular steel plate. The efficacy of the fabricated impedance control circuit is confirmed by the single-axis control experiments. By operating the three secondary electromagnets, the floator was successfully suspended without any mechanical contact. 平成18年日本AEM学会賞「論文賞」受賞
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=irdb________::8abdad2b9cf42954abf0076751a77526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=irdb________::8abdad2b9cf42954abf0076751a77526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2017 United StatesPublisher:The Ohio State University Authors: Park, Inhyuk;handle: 1811/81598
Impulsive kinetic energies are abundant throughout natural and engineered environments including those energies due to human motion, pulsation of flow in pipes, vehicles driving over spanned bridges or speed bumps, and gusts of wind. Such impulsive energy is plentiful and collocated with many microelectronic systems that require small electrical power resources for their sustainment. As a result, researchers are investigating concepts of vibration energy harvesting using electromechanical oscillators that are sensitive to generate large electric energy conversion when excited by impulsive energy. Yet, a critical need exists to identify suitable energy harvesting systems that have high sensitivity to impulsive excitation in order to maximize the energy conversion capability. Recent studies have shown that nonlinear, bistable energy harvesters are generally sensitive to impulsive excitation. Motivated by the early findings, this research establishes and investigates a system of bistable energy harvesters driven by non-contact magnetic repulsion to convert piezoelectric beam strain into DC electrical power. Experimental and numerical investigations are conducted to characterize the effectiveness of the tunable, nonlinear vibration energy harvesting system to maximize the captured kinetic energy and to explore system configurations that optimize the DC power delivery. The results of this research reveal strategies for maximizing sensitivity of the vibration energy harvesting platform to the impulsive excitations via the magnetic force interactions and thus identify practical approaches for vibration energy harvesting in impulsive energy environments. ; No embargo ; Academic Major: Mechanical Engineering
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1811/81598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1811/81598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 1973 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Weldon, D. M.;doi: 10.2172/4457329
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/4457329&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/4457329&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2003Mikkonen, Risto; Kalliohaka, Tapio; Korpela, A.; Lehtonen, J.; Perälä; R.;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=CSC_________::d2fdc5f1d0179772fe6865e7a6adb09b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=CSC_________::d2fdc5f1d0179772fe6865e7a6adb09b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2012 DenmarkPublisher:IEEE Press Authors: Holm, Rasmus Koldborg; Berg, Nick Ilsø; Rasmussen, Peter Omand; Hansen, Rico Hjerm; +1 AuthorsHolm, Rasmus Koldborg; Berg, Nick Ilsø; Rasmussen, Peter Omand; Hansen, Rico Hjerm; Walkusch, Morten;This paper deals with the development of a magnetic lead screw (MLS) for wave energy conversion. Initially, a brief state-of-the-art regarding linear PM generators and magnetic lead screws is given, leading to an introduction of the magnetic lead screw and a presentation of the results from a finite element analysis used to find the magnetic forces. Furthermore, the force per magnet surface area measure is presented as a better alternative to the force density measure, which is often used for linear magnetic devices. Based on this, the overall design of a 500 kN MLS is presented focusing on the bearing supports used to compensate for the magnetic attraction forces and the resulting deflection of the rotor. Also, in order to avoid some of the production related disadvantages of using surface mounted magnets, an embedded magnet topology is proposed. To demonstrate the technology a scaled 17 kN MLS is presented together with experimental results.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1266::dc7c0b37eef0cc2d7765a8a7e01c4468&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1266::dc7c0b37eef0cc2d7765a8a7e01c4468&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article United StatesAuthors: Wong, Jacob Y. M.; Princeton-Pennsylvania Accelerator; Princeton University.; U.S. Atomic Energy Commission.;handle: 2027/mdp.39015095034768
"AEC Contract AT930-1)-2137." ; "May 1, 1962." ; Includes bibliographical references (page 121). ; Mode of access: Internet.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2027/mdp.39015095034768&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2027/mdp.39015095034768&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 1961 United StatesPublisher:Oak Ridge, Tenn. : Oak Ridge Gaseous Diffusion Plant, Union Carbide Nuclear Company Authors: Harris, Warren W.; Union Carbide Nuclear Company.; U.S. Atomic Energy Commission.; Oak Ridge Gaseous Diffusion Plant.; +1 AuthorsHarris, Warren W.; Union Carbide Nuclear Company.; U.S. Atomic Energy Commission.; Oak Ridge Gaseous Diffusion Plant.; International Conference on Magnetism.;handle: 2027/mdp.39015094995753
"K-1496." ; "Date of Issue: November 22, 1961." ; Mode of access: Internet.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2027/mdp.39015094995753&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2027/mdp.39015094995753&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2021Publisher:University of Bath Authors: Noble, Jonathan;doi: 10.15125/bath-01084
The data provided here is for the electromagnetic heating of magnetite under radio-frequencies. The data includes that from material characterisation, in-situ magnetometry, calorimetry, in-situ power absorption measurement and arc-tangent modelling results. The data is aligned to the figures in the research publication and is intended that future researchers can make their own analysis based upon our work. Further relevant documentation may be found in the following resources. Noble, J. P. P., Bending, S. J., Sartbaeva, A., Muxworthy, A. R., and Hill, A. K., 2021. A Novel In Situ High‐Temperature Magnetometry Method for Radiofrequency Heating Applications. Advanced Energy Materials, 12(1), 2102515. Available from: https://doi.org/10.1002/aenm.202102515. The data is collected using techniques described fully in the accompanying research article. The data follows the figure numbers from the paper which should make it easy to navigate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15125/bath-01084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15125/bath-01084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report 1984 United StatesPublisher:Argonne National Laboratory Authors: Hull, John R.; Iles, Malvern K.;The magnetically confined kinetic-energy storage ring (MCKESR) is a new, fundamental type of energy-storage device. Energy is stored as kinetic energy in mass circulated at high velocity around a circular loop. The constraining force necessary to keep the circulating ring from flying apart is provided by radial, inwardly directed forced exerted along the perimeter of the loop by magnetic fields. The magnets and ring are contained in a tunnel, which may be buried in the ground. Levitational support against gravity is also provided by magnetic fields. Energy insertion or extraction is similar to that for a synchronous motor.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::dd41a9ce198d59228f4282109769bdff&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::dd41a9ce198d59228f4282109769bdff&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2023Publisher:INFN Open Access Repository Authors: Farinon, Stefania; Novelli, Daniel;When approaching the design of a multipole magnet, such as a dipole, quadrupole, sextupole, and so on, it is highly advantageous to initiate the process by establishing the fundamental parameters. These parameters include conductor size, current density, inner and outer radius of the iron yoke, and more. This preliminary dimensioning enables the acquisition of the necessary specifications for the design. Within this report, analytical expressions for the magnetic field, Lorentz forces, and stored energy of multipole magnets with the cos(nθ) and sector coil configurations, both with and without the presence of an iron yoke, are derived. These derivations are based on the vector potential of a current line.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15161/oar.it/143358&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15161/oar.it/143358&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Article 2005Publisher:日本AEM学会 A novel AC magnetic suspension with a permanent magnet is proposed which has the' performance of noncontact energy transfer to the suspended object (floator). It uses permanent magnets for suspending the weight of the floator. An electromagnet combined with the permanent magnet operates for both stabilization and energy transfer to the floator. The principles of the proposed magnetic suspension system are clarified. It is shown that the average suspension force can be adjusted with an impedance control circuit in which the amplitude of the positive secondary current and that of the negative secondary current are separately controlled. An experimental apparatus is fabricated which has three pairs of primary and secondary electromagnets with pennanent magnets for three-axis active control in the vertical direction; the three secondary electromagnets are fixed to the floator that is a rectangular steel plate. The efficacy of the fabricated impedance control circuit is confirmed by the single-axis control experiments. By operating the three secondary electromagnets, the floator was successfully suspended without any mechanical contact. 平成18年日本AEM学会賞「論文賞」受賞
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=irdb________::8abdad2b9cf42954abf0076751a77526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=irdb________::8abdad2b9cf42954abf0076751a77526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2017 United StatesPublisher:The Ohio State University Authors: Park, Inhyuk;handle: 1811/81598
Impulsive kinetic energies are abundant throughout natural and engineered environments including those energies due to human motion, pulsation of flow in pipes, vehicles driving over spanned bridges or speed bumps, and gusts of wind. Such impulsive energy is plentiful and collocated with many microelectronic systems that require small electrical power resources for their sustainment. As a result, researchers are investigating concepts of vibration energy harvesting using electromechanical oscillators that are sensitive to generate large electric energy conversion when excited by impulsive energy. Yet, a critical need exists to identify suitable energy harvesting systems that have high sensitivity to impulsive excitation in order to maximize the energy conversion capability. Recent studies have shown that nonlinear, bistable energy harvesters are generally sensitive to impulsive excitation. Motivated by the early findings, this research establishes and investigates a system of bistable energy harvesters driven by non-contact magnetic repulsion to convert piezoelectric beam strain into DC electrical power. Experimental and numerical investigations are conducted to characterize the effectiveness of the tunable, nonlinear vibration energy harvesting system to maximize the captured kinetic energy and to explore system configurations that optimize the DC power delivery. The results of this research reveal strategies for maximizing sensitivity of the vibration energy harvesting platform to the impulsive excitations via the magnetic force interactions and thus identify practical approaches for vibration energy harvesting in impulsive energy environments. ; No embargo ; Academic Major: Mechanical Engineering
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1811/81598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1811/81598&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 1973 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Weldon, D. M.;doi: 10.2172/4457329
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/4457329&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/4457329&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2003Mikkonen, Risto; Kalliohaka, Tapio; Korpela, A.; Lehtonen, J.; Perälä; R.;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=CSC_________::d2fdc5f1d0179772fe6865e7a6adb09b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=CSC_________::d2fdc5f1d0179772fe6865e7a6adb09b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2012 DenmarkPublisher:IEEE Press Authors: Holm, Rasmus Koldborg; Berg, Nick Ilsø; Rasmussen, Peter Omand; Hansen, Rico Hjerm; +1 AuthorsHolm, Rasmus Koldborg; Berg, Nick Ilsø; Rasmussen, Peter Omand; Hansen, Rico Hjerm; Walkusch, Morten;This paper deals with the development of a magnetic lead screw (MLS) for wave energy conversion. Initially, a brief state-of-the-art regarding linear PM generators and magnetic lead screws is given, leading to an introduction of the magnetic lead screw and a presentation of the results from a finite element analysis used to find the magnetic forces. Furthermore, the force per magnet surface area measure is presented as a better alternative to the force density measure, which is often used for linear magnetic devices. Based on this, the overall design of a 500 kN MLS is presented focusing on the bearing supports used to compensate for the magnetic attraction forces and the resulting deflection of the rotor. Also, in order to avoid some of the production related disadvantages of using surface mounted magnets, an embedded magnet topology is proposed. To demonstrate the technology a scaled 17 kN MLS is presented together with experimental results.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1266::dc7c0b37eef0cc2d7765a8a7e01c4468&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1266::dc7c0b37eef0cc2d7765a8a7e01c4468&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article United StatesAuthors: Wong, Jacob Y. M.; Princeton-Pennsylvania Accelerator; Princeton University.; U.S. Atomic Energy Commission.;handle: 2027/mdp.39015095034768
"AEC Contract AT930-1)-2137." ; "May 1, 1962." ; Includes bibliographical references (page 121). ; Mode of access: Internet.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2027/mdp.39015095034768&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2027/mdp.39015095034768&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 1961 United StatesPublisher:Oak Ridge, Tenn. : Oak Ridge Gaseous Diffusion Plant, Union Carbide Nuclear Company Authors: Harris, Warren W.; Union Carbide Nuclear Company.; U.S. Atomic Energy Commission.; Oak Ridge Gaseous Diffusion Plant.; +1 AuthorsHarris, Warren W.; Union Carbide Nuclear Company.; U.S. Atomic Energy Commission.; Oak Ridge Gaseous Diffusion Plant.; International Conference on Magnetism.;handle: 2027/mdp.39015094995753
"K-1496." ; "Date of Issue: November 22, 1961." ; Mode of access: Internet.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2027/mdp.39015094995753&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=2027/mdp.39015094995753&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu