- home
- Advanced Search
- Energy Research
- Energies
- Energy Research
- Energies
description Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:MDPI AG Authors: Kai-Wern Ng;Wei-Haur Lam;
Wei-Haur Lam
Wei-Haur Lam in OpenAIREKhai-Ching Ng;
Khai-Ching Ng
Khai-Ching Ng in OpenAIREdoi: 10.3390/en6031497
Research in marine current energy, including tidal and ocean currents, has undergone significant growth in the past decade. The horizontal-axis marine current turbine is one of the machines used to harness marine current energy, which appears to be the most technologically and economically viable one at this stage. A number of large-scale marine current turbines rated at more than 1 MW have been deployed around the World. Parallel to the development of industry, academic research on horizontal-axis marine current turbines has also shown positive growth. This paper reviews previous research on horizontal-axis marine current turbines and provides a concise overview for future researchers who might be interested in horizontal-axis marine current turbines. The review covers several main aspects, such as: energy assessment, turbine design, wakes, generators, novel modifications and environmental impact. Future trends for research on horizontal-axis marine current turbines are also discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en6031497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 75 citations 75 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en6031497&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type , Preprint 2017 United KingdomPublisher:MDPI AG Authors:Stuart Walker;
Stuart Walker
Stuart Walker in OpenAIRELorenzo Cappietti;
Lorenzo Cappietti
Lorenzo Cappietti in OpenAIRETidal stream energy is a low carbon energy source. Tidal stream turbines operate in a turbulent environment, and the effect of the structure between the turbine and seabed on this environment is not fully understood. An experimental study using 1:72 scale models based on a commercial turbine design was carried out to study the support structure influence on turbulence intensity around turbine blades. The study was conducted using the wave-current tank at LABIMA, University of Florence. A realistic flow environment (ambient turbulent intensity = 11%) was established. Turbulence intensity was measured upstream and downstream of a turbine mounted on two different support structures (one resembling a commercial design, the other the same with an additional vertical element), in order to quantify any variation in turbulence and performance between the support structures. Turbine drive power was used to calculate power generation. Acoustic Doppler Velocimetry was used to record and calculate upstream and downstream turbulence intensity. In otherwise identical conditions, performance variation of only 4% was observed between two support structures. Turbulent intensity at 1, 3 and 5 blade diameters, both upstream and downstream, showed variation up to 21% between the two cases. The additional turbulent structures generated by the additional element of the second support structure appears to cause this effect, and the upstream propagation of turbulent intensity is believed to be permitted by surface waves. This result is significant for the prediction of turbine array performance.
CORE arrow_drop_down https://doi.org/10.20944/prepr...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefResearch at Derby (University of Derby)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints201702.0102.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down https://doi.org/10.20944/prepr...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefResearch at Derby (University of Derby)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints201702.0102.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 SwedenPublisher:MDPI AG doi: 10.3390/en10091323
The focus of this paper is the survivability of wave energy converters (WECs) in extreme waves and tsunamis, using realistic WEC parameters. The impact of a generator damping factor has been studied, and the peak forces plotted as a function of wave height. The paper shows that an increased damping decreases the force in the endstop hit, which is in agreement with earlier studies. However, when analyzing this in more detail, we can show that friction damping and velocity dependent generator damping affect the performance of the device differently, and that friction can have a latching effect on devices in tsunami waves, leading to higher peak forces. In addition, we study the impact of different line lengths, and find that longer line lengths reduce the endstop forces in extreme regular waves, but on the contrary increase the forces in tsunami waves due to the different fluid velocity fields.
Energies arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2017Data sources: Publikationer från Uppsala Universitetadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10091323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2017Data sources: Publikationer från Uppsala Universitetadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10091323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:MDPI AG Authors:Raúl Cascajo;
Emilio García;Raúl Cascajo
Raúl Cascajo in OpenAIREEduardo Quiles;
Eduardo Quiles
Eduardo Quiles in OpenAIREAntonio Correcher;
+1 AuthorsAntonio Correcher
Antonio Correcher in OpenAIRERaúl Cascajo;
Emilio García;Raúl Cascajo
Raúl Cascajo in OpenAIREEduardo Quiles;
Eduardo Quiles
Eduardo Quiles in OpenAIREAntonio Correcher;
Francisco Morant;Antonio Correcher
Antonio Correcher in OpenAIREdoi: 10.3390/en12050787
A feasibility study for the installation of Wave Energy Converters (WEC) in a Spanish Mediterranean port is evaluated in this paper. The final aim is to evaluate the possibility of building a new infrastructure which combines a breakwater and a WEC able to provide energy to the commercial port of Valencia. An estimation of the wave power potential is made according to existing databases from different sources. A review of the existing WEC types is carried out in order to choose the most suitable technology for its installation in a port environment. The authors discuss the main advantages and issues of the integration of WEC in port breakwaters. A prospective study for the Port of Valencia is made, considering the port energy demand evolution, historical data on wave energy potential and the port expansion plans. We conclude that Overtopping Devices (OTDs) are the most suitable ones to allow the good integration with the new breakwater needed for the expansion of the Port of Valencia and we give an estimation on the power available from the resource in our case study.
Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12050787&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 67 citations 67 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12050787&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:MDPI AG Authors:Takvor Soukissian;
Dimitra Denaxa;Takvor Soukissian
Takvor Soukissian in OpenAIREFlora Karathanasi;
Flora Karathanasi
Flora Karathanasi in OpenAIREAristides Prospathopoulos;
+4 AuthorsAristides Prospathopoulos
Aristides Prospathopoulos in OpenAIRETakvor Soukissian;
Dimitra Denaxa;Takvor Soukissian
Takvor Soukissian in OpenAIREFlora Karathanasi;
Flora Karathanasi
Flora Karathanasi in OpenAIREAristides Prospathopoulos;
Konstantinos Sarantakos;Aristides Prospathopoulos
Aristides Prospathopoulos in OpenAIREAthanasia Iona;
Konstantinos Georgantas;Athanasia Iona
Athanasia Iona in OpenAIRESpyridon Mavrakos;
Spyridon Mavrakos
Spyridon Mavrakos in OpenAIREdoi: 10.3390/en10101512
In this work, an extended overview of the marine renewable energy in the Mediterranean Sea is provided as regards current status, potential problems, challenges, and perspectives of development. An integrated and holistic approach is necessary for the economic viability and sustainability of marine renewable energy projects; this approach comprises three different frameworks, not always aligned, i.e., geotechnical/engineering, socio-economic, and environmental/ecological frameworks. In this context, the geomorphological, climatological, socio-economic, and environmental/ecological particularities of the Mediterranean basin are discussed, as they constitute key issues of the spatial context in which marine renewable energy projects are to be implemented. General guidelines for the sustainable development of marine renewable energy in the Mediterranean are also provided.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10101512&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 110 citations 110 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10101512&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 SpainPublisher:MDPI AG Authors:Laura Castro-Santos;
Elson Martins;Laura Castro-Santos
Laura Castro-Santos in OpenAIREC. Guedes Soares;
C. Guedes Soares
C. Guedes Soares in OpenAIREdoi: 10.3390/en9050324
This paper establishes a general methodology to calculate the life-cycle cost of floating offshore renewable energy devices, applying it to wave energy and wind energy devices. It is accounts for the contributions of the six main phases of their life-cycle: concept definition, design and development, manufacturing, installation, exploitation and dismantling, the costs of which have been defined. Moreover, the energy produced is also taken into account to calculate the Levelized Cost of Energy of a floating offshore renewable energy farm. The methodology proposed has been applied to two renewable energy devices: a floating offshore wave energy device and a floating offshore wind energy device. Two locations have been considered: Aguçadoura and São Pedro de Moel, both in Portugal. Results indicate that the most important cost in terms of the life-cycle of a floating offshore renewable energy farm is the exploitation cost, followed by the manufacturing and the installation cost. In addition, the best area in terms of costs is the same independently of the type of floating offshore renewable energy considered: Aguçadoura. However, the results in terms of Levelized Cost of Energy are different: Aguçadoura is better when considering wave energy technology and the São Pedro de Moel region is the best option when considering floating wind energy technology. The method proposed aims to give a direct approach to calculate the main life-cycle cost of a floating offshore renewable energy farm. It helps to assess its feasibility and evaluating the relevant characteristics that influence it the most.
Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2016License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9050324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio da Universidade da CoruñaArticle . 2016License: CC BYData sources: Repositorio da Universidade da Coruñaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en9050324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Publicly fundedFunded by:FCT | LA 10, SFI | Marine Renewable Energy I...FCT| LA 10 ,SFI| Marine Renewable Energy Ireland (MaREI) - The SFI Centre for Marine Renewable Energy ResearchAuthors:Matthieu Ancellin;
Marlène Dong; Philippe Jean;Matthieu Ancellin
Matthieu Ancellin in OpenAIREFrédéric Dias;
Frédéric Dias
Frédéric Dias in OpenAIREdoi: 10.3390/en13205499
The maximal power that is absorbed by a wave energy converter can be estimated from the far-field behavior of the waves that are radiated by the device. For realistic estimates, constraints must be used to enforce restrictions on the set of admissible motions when deriving the maximal absorption width. This work is dedicated to the numerical computation of the maximal absorption width under constraints for devices with several non-trivial degrees of freedom. In particular, the method is applied to a model of SBM Offshore’s S3 wave energy converter, a bulging horizontal cylinder. The results are compared with a more classical approach, which consists of computing the linear dynamic response of the wave energy converter interacting with the waves. The far-field maximal absorption width can be seen as an upper bound to evaluate what would be the power captured by a perfect control strategy. The method also shows that the absorption width of the S3 wave energy converter is larger for wavelengths that are smaller than the device length. In practice, this means that S3 wave energy converters will be longer than the maximal wavelength to be captured on the targeted production site.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205499&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Donghai Zhou; Xiaojing Sun;doi: 10.3390/en14144087
Marine current power is a kind of renewable energy that has attracted increasing attention because of its abundant reserves, high predictability, and consistency. A marine current turbine is a large rotating device that converts the kinetic energy of the marine current into mechanical energy. As a straight-bladed vertical axis marine current turbine (VAMCT) has a square or rectangular cross-section, it can thus have a larger swept area than that of horizontal axis marine current turbines (HAMCT) for a given diameter, and also have good adaptability in shallow water where the turbine size is limited by both width and depth of a channel. However, the low energy utilization efficiency of the VAMCT is the main bottleneck that restricts its application. In this paper, two-dimensional numerical simulations were performed to investigate the effectiveness of an upstream deflector on improving performance of the straight-bladed (H-type) marine current turbine. The effects of various key geometrical parameters of the deflector including position, length, and installation angle on the hydrodynamic characteristics of the VAMCT were then systematically analyzed in order to explore the mechanism underlying the interaction between the deflector and rotor of a VAMCT. As a result, the optimal combination of geometrical parameters of the deflector by which the maximum energy utilization efficiency was achieved was a 13.37% increment compared to that of the original VAMCT. The results of this work show the feasibility of the deflector as a potential choice for improving the energy harvesting performance of a VAMCT with simple structure and easy implementation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144087&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 SwedenPublisher:MDPI AG Authors:Malin Göteman;
Malin Göteman
Malin Göteman in OpenAIREJens Engström;
Mikael Eriksson;Jens Engström
Jens Engström in OpenAIREJan Isberg;
Jan Isberg
Jan Isberg in OpenAIREdoi: 10.3390/en81212394
In many wave energy concepts, power output in the MW range requires the simultaneous operation of many wave energy converters. In particular, this is true for small point-absorbers, where a wave energy farm may contain several hundred devices. The total performance of the farm is affected by the hydrodynamic interactions between the individual devices, and reliable tools that can model full farms are needed to study power output and find optimal design parameters. This paper presents a novel method to model the hydrodynamic interactions and power output of very large wave energy farms. The method is based on analytical multiple scattering theory and uses time series of irregular wave amplitudes to compute the instantaneous power of each device. An interaction distance cut-off is introduced to improve the computational cost with acceptable accuracy. As an application of the method, wave energy farms with over 100 devices are studied in the MW range using one month of wave data measured at an off-shore site.
Energies arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2015Data sources: Publikationer från Uppsala Universitetadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81212394&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down Publikationer från Uppsala UniversitetArticle . 2015Data sources: Publikationer från Uppsala Universitetadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en81212394&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 DenmarkPublisher:MDPI AG Funded by:EC | DTOceanPlusEC| DTOceanPlusdoi: 10.3390/en13195108
This research work proposes a novel approach to estimate probabilities of availability states of the energy transfer network in marine energy conversion subsystems, using Bayesian Networks (BNs). The logical interrelationships between units at different level in this network can be understood through qualitative system analysis, which then can be modeled by the fault tree (FT). The FT can be mapped to a corresponding BN, and the condition probabilities of nodes can be determined based on the logic structure. A case study was performed to demonstrate how the mapping is implemented, and the probabilities of availability states were estimated. The results give the probability of each availability state as a function of time, which serves as a basis for choosing the optimal design solution.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu