- home
- Advanced Search
Filters
Year range
-chevron_right GOField of Science
Funder
SDG [Beta]
Country
Language
Source
Research community
- Energy Research
- Energy Research
Research data keyboard_double_arrow_right Dataset 2024Publisher:Mendeley Data Authors: Bellinaso, Lucas;Paper: https://doi.org/10.1016/j.solener.2024.112714 - Modelling files (CSVs): arc modelling shown in paper (Figure 7), using IEC 63027 electrode. - Validation files (CSVs): Arc Self-Extinction Prediction Method Validation, shon in the paper (Figure 9).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/fj5nb2vpn7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/fj5nb2vpn7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Mendeley Data Authors: Restrepo-Cuestas, Bonie ; Guarnizo-Lemus, Cristian; Rojas-Montano, Jhon Jairo; Montoya-Marin, John Alejandro; +1 AuthorsRestrepo-Cuestas, Bonie ; Guarnizo-Lemus, Cristian; Rojas-Montano, Jhon Jairo; Montoya-Marin, John Alejandro; Ibañez-Diaz, Andrés Alberto;This dataset collects and classifies mismatching failures in solar panels, focusing on three main types: partial shading, discoloration, and cracking. The panels, SP090P Solar Plus Energy and HYBRYTEC-M5-30/12, were subjected to testing under three distinct scenarios: dirty surfaces, clean surfaces, and partial shading. For each fault condition, voltage and current measurements are included, along with thermographic images, allowing for a comprehensive analysis of the impact of these mismatches on panel performance. This database is designed to support investigations and mitigation strategies for PV system failures. The dataset is divided into raw data and processed data. The time series of electrical data for each panel and each condition are saved using matlab .mat format, SVG images of the I-V curves are also included. Thermographic images are included in IS2 format (viewable using Fluke Connect Desktop), as well as CSV matrices of the temperature quantities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/xjs42j8dtf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/xjs42j8dtf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Mendeley Data Authors: Krainer, Diana;doi: 10.17632/ycv7ktjcp7
This study presents the performance behavior of bifacial photovoltaic (PV) modules in comparison to monofacial standard modules. The novelty lies in the fact to investigate the topic of irradiance enhancement. The impact of meteorological parameters on the performance of different bifacial photovoltaic module types of same cell type was determined. A cloud classification with sky imager was performed for clouds that trigger irradiance enhancements and interpretation of the underlying physical mechanisms was done. The main focus of this study was the appearance of irradiance enhancement events, the change of meteorological parameters during enhancement and the impact of these changes on the performance of photovoltaic bifacial module technologies. The analysis of efficiencies as well as yield performance was done in comparison to mono crystalline reference modules for the full year as well as only during irradiance enhancement. The impact of meteorological parameters on the performance of different bifacial photovoltaic module types was determined time resolved during irradiance enhancement as well as for a diurnal cycle in the period 04/2020–06/2021. Irradiance enhancements exceeding 1000 Wm−2 were found to occur only on days with clouds in Vienna (Austria). For 179 irradiance enhancement situations analysed, 81 % of all enhancements happened for cloudiness greater than 0.4 and still 30 % for a cloudiness greater than 0.7, the latter resulting also in single enhancement events greater than 1150 Wm−2. Cloud genera preferentially causing irradiance enhancements were identified as Altocumulus and Cumulus clouds. The mechanism of irradiance enhancement compatible to the position of the sun towards the clouds were in accordance with the cloud types Mie-scattering and edge reflections, respectively, or a mix of both. The overall photovoltaic long term performance results showed that the average weighted absolute efficiencies of the bifacial photovoltaic modules were 2–4 % higher than the ones of monofacial standard reference modules. The performance of the bifacial modules increased consistently between 17–24 % throughout the 15 month period of investigation independent of orientation with a visible seasonal variation, namely 19–28 % in winter, 18–24 % in spring, 16–25 % in summer and 17–27 % in autumn. This repository contains the pre- and post-measurement of the surface albedo (folder: Albedo), the statistical evaluation of the cloudiness index (folder: Cloud evaluation), the cloud pictures during irradiance enhancements exceeding 1015 Wm-2 (folder: Cloud pictures RE_times_1100-1015), the ambient temperature and irradiance (folder: Wheaterstation_files) and the calculated average wavelength of the solar spectrum during measurement (folder: average_wavelength). Also, the folder Biface data contains the meausrement of the module power and energy yield of the test modules.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/ycv7ktjcp7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/ycv7ktjcp7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2010 United StatesPublisher:ScholarWorks@UMass Amherst Authors: Mose, Douglas G; Mandes, Evans; Metcalf, James;Most buildings require power produced by fossil fuels, the extraction and consumption of which contaminate our environment. The Virginia Center of Basic and Applied Science (CBAS, INC) constructed a building in a remote forested area as a plant and fish nursery (and living space for staff) to be operated by solar electrical power. Comfortable summer interior temperature is facilitated by an open design, 15,000 cubic foot interior, ceiling fans, many large windows and doors, with a large sun-screen eave off the 1000 square foot south-facing roof. Comfortable winter temperature is possible because the building has no tree-shade, thick well-insulated walls and roof, a low number of air changes per hour, and when necessary the surrounding forest provides wood stove heat. The energy challenge of the research was to develop a system facilitating 24-hour and year-round use (primarily for lights, fans, pumps, heaters and staff living requirements) that did not need to be connected to the local electrical utility company. On average, the facility uses 3-4 kilowatt hours per day. The solar power is captured by 8 solar panels which charge a bank of deep-cycle batteries, which in turn generate the power for the facility. The complete system (solar panels, charge controller, batteries, DC-to-AC inverter, 110-to-220 transformer) cost about $10,000, about 5% of the total facility cost.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::524b748d24e7c427b7560ec5890ae9a7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::524b748d24e7c427b7560ec5890ae9a7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 CanadaPublisher:Elsevier BV Authors: Koami Soulemane Hayibo; Joshua M. Pearce;To enable lower-cost building materials, a free-swinging bifacial vertical solar photovoltaic (PV) rack has been proposed, which complies with Canadian building codes and is the lowest-capital-cost agrivoltaics rack. The wind force applied to the free-swinging PV, however, causes it to have a non-90° tilt angle and no energy performance model accurately describes such a system. To provide a simulation model for the free-swinging PV, where wind speed and direction govern the array tilt angle, this study builds upon the open-source System Advisor Model (SAM) using Python. After the SAM python model is validated, a view factor model is used to calculate front and back irradiations. The findings reveal that free-swinging PV generates 12% more energy than vertical fixed-tilt PV. Free-swinging PV offers a levelized racking cost, which is 30% lower than that of other agrivoltaics racks including commercial fixed-tilt metal, optimized fixed-tilt wood, and seasonally-adjusted wood PV racking.
The University of We... arrow_drop_down The University of Western Ontario: Scholarship@WesternArticle . 2023License: CC BYFull-Text: https://ir.lib.uwo.ca/electricalpub/602Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of We... arrow_drop_down The University of Western Ontario: Scholarship@WesternArticle . 2023License: CC BYFull-Text: https://ir.lib.uwo.ca/electricalpub/602Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2017 IndiaAuthors: Kesavan, Arul Varman;In the past few decades the field of organic electronics particularly organics photovoltaic (OPVs) find wide interest among researchers. It finds many advantages such as light weight, low temperature fabrication requirements, mechanical flexibility, can be fabricated by roll-to-roll process methods. Since, the OPVs are thin film devices the optical absorption and device interfaces are very important factor in deciding the device performance. The optical absorption is dictated by the semiconducting active layer which generates the charge carrier for the effective current generations. The absorption of the active layer can be enhanced by various methods to improve the electron-to-photon conversion ratio. The interface properties play crucial role because the semiconductor generated exciton needs to be splitted and collected effectively at the electrode. This can be effectively achieved by aligning energy level of the active layer, interface layer and electrode. Further, the device efficiency is also correlated with the morphology at the various interfaces which controls the charge carrier flow across the different layers. In the chapter-1, the details about the motivation of the work, generation of the solar cell and the invention of the photovoltaic and then discussed about working principle of OPVs and finally summary of the work is given. In the chapter-2, the materials, methods and characterization technique details are given. In the chapter-3, plasmonic device was designed to enhance the photocurrent density in an inverted bulk heterojunction organic solar cell. Aluminum nanoparticles dispersed in the hole transport layer at the rear end of the device structure are observed to enhance the device performance through multiple effects including enhanced absorption and better charge collection. Modeling and simulations are used to understand the mechanisms of optical transport that underline the enhancements which are experimentally observed. In the chapter-4, the ternary blend system, binary acceptor (PC71BM and ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::5e272bf624cb4e41553cd8eaee3fd24b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::5e272bf624cb4e41553cd8eaee3fd24b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Institute of Advanced Engineering and Science Tariq Emad Ali; Mohammed A. Abdala; Ameer Al-Khaykan; Dhulfiqar A. Alwahab; Counsell M. Counsell;<span lang="EN-US">Iraqi people have been without energy for nearly two decades, even though their geographic position provides a high intensity of radiation appropriate for the construction of solar plants capable of producing significant quantities of electricity. Also, the annual sunny hours in Iraq are between 3,600 to 4,300 hours which makes it perfect to use the photovoltaics arrays to generate electricity with very high efficiency compared to many countries, especially in Europe. This paper shows the amount of electric energy generated by the meter square of crystalline silicon in the photovoltaic (PV) array that already installed in 18 states in Iraq for each month of the year. The results of the meter-square of PV array in three tracking positions are presented in this paper. This paper shows that the average electricity generated in North cities (Dohuk, Al-Sulaymaniyah, and Erbil) are less than the southern cities in the winter season (three positions) by about 40-50%. Iraq has a stable PV electrical generation during all the year in all regions except the North cities while the highest cities in electricity generation are (Najaf and Al-Anbar).</span>
International Journa... arrow_drop_down International Journal of Electrical and Computer Engineering (IJECE)Article . 2023 . Peer-reviewedLicense: CC BY SAData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.11591/ijece.v13i4.pp3606-3612&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 5 Powered bymore_vert International Journa... arrow_drop_down International Journal of Electrical and Computer Engineering (IJECE)Article . 2023 . Peer-reviewedLicense: CC BY SAData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.11591/ijece.v13i4.pp3606-3612&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2005 United StatesPublisher:National Renewable Energy Laboratory (U.S.) Authors: Kempe, M. D.;Photovoltaic (pv) devices are encapsulated in polymeric materials not only for corrosion protection, but also for mechanical support. Even though ethylene-vinyl acetate (EVA) suffers from having both glass and melting phase transitions at temperatures experienced under environmental exposure, its low cost and good optical transmission made EVA the most commonly used material for PV modules. These transitions, however, cause EVA to embrittle at low temperatures (~ -15 deg C) and to be very soft at high temperatures (>40 deg C). From mechanical considerations, one would prefer a material that was relatively unchanged under a wide temperature range. This would produce a more predictable and reliable package. These concerns are likely to become more important as silicon based cells are made thinner.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::6d89c88dc128dc7bf17a265eb517cc17&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::6d89c88dc128dc7bf17a265eb517cc17&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2016 United Stateshandle: 2286/R.I.40743
abstract: Photovoltaics (PV) is an environmentally promising technology to meet climate goals and transition away from greenhouse-gas (GHG) intensive sources of electricity. The dominant approach to improve the environmental gains from PV is increasing the module efficiency and, thereby, the renewable electricity generated during use. While increasing the use-phase environmental benefits, this approach doesn’t address environmentally intensive PV manufacturing and recycling processes. Lifecycle assessment (LCA), the preferred framework to identify and address environmental hotspots in PV manufacturing and recycling, doesn’t account for time-sensitive climate impact of PV manufacturing GHG emissions and underestimates the climate benefit of manufacturing improvements. Furthermore, LCA is inherently retrospective by relying on inventory data collected from commercial-scale processes that have matured over time and this approach cannot evaluate environmentally promising pilot-scale alternatives based on lab-scale data. Also, prospective-LCAs that rely on hotspot analysis to guide future environmental improvements, (1) don’t account for stake-holder inputs to guide environmental choices in a specific decision context, and (2) may fail in a comparative context where the mutual differences in the environmental impacts of the alternatives and not the environmental hotspots of a particular alternative determine the environmentally preferable alternative This thesis addresses the aforementioned problematic aspects by (1)using the time-sensitive radiative-forcing metric to identify PV manufacturing improvements with the highest climate benefit, (2)identifying the environmental hotspots in the incumbent CdTe-PV recycling process, and (3)applying the anticipatory-LCA framework to identify the most environmentally favorable alternative to address the recycling hotspot and significant stakeholder inputs that can impact the choice of the preferred recycling alternative. The results show that using low-carbon electricity is the most significant PV manufacturing improvement and is equivalent to increasing the mono-Si and multi-Si module efficiency from a baseline of 17% to 21.7% and 16% to 18.7%, respectively. The elimination of the ethylene-vinyl acetate encapsulant through mechanical and chemical processes is the most significant environmental hotspot for CdTe PV recycling. Thermal delamination is the most promising environmental alternative to address this hotspot. The most significant stake-holder input to influence the choice of the environmentally preferable recycling alternative is the weight assigned to the different environmental impact categories. ; Dissertation/Thesis ; Doctoral Dissertation Civil and Environmental Engineering 2016
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::1f23591764b2a025453cfb70f882302d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::1f23591764b2a025453cfb70f882302d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Embargo end date: 02 Jul 2018Publisher:Mendeley Authors: Muniz, E;Measurements of electrical characteristics of a photovoltaic panel while outdoor, changing the number of covered/inactive cells and the number of bypass diodes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/hssdg65gyr.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/hssdg65gyr.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2024Publisher:Mendeley Data Authors: Bellinaso, Lucas;Paper: https://doi.org/10.1016/j.solener.2024.112714 - Modelling files (CSVs): arc modelling shown in paper (Figure 7), using IEC 63027 electrode. - Validation files (CSVs): Arc Self-Extinction Prediction Method Validation, shon in the paper (Figure 9).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/fj5nb2vpn7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/fj5nb2vpn7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Mendeley Data Authors: Restrepo-Cuestas, Bonie ; Guarnizo-Lemus, Cristian; Rojas-Montano, Jhon Jairo; Montoya-Marin, John Alejandro; +1 AuthorsRestrepo-Cuestas, Bonie ; Guarnizo-Lemus, Cristian; Rojas-Montano, Jhon Jairo; Montoya-Marin, John Alejandro; Ibañez-Diaz, Andrés Alberto;This dataset collects and classifies mismatching failures in solar panels, focusing on three main types: partial shading, discoloration, and cracking. The panels, SP090P Solar Plus Energy and HYBRYTEC-M5-30/12, were subjected to testing under three distinct scenarios: dirty surfaces, clean surfaces, and partial shading. For each fault condition, voltage and current measurements are included, along with thermographic images, allowing for a comprehensive analysis of the impact of these mismatches on panel performance. This database is designed to support investigations and mitigation strategies for PV system failures. The dataset is divided into raw data and processed data. The time series of electrical data for each panel and each condition are saved using matlab .mat format, SVG images of the I-V curves are also included. Thermographic images are included in IS2 format (viewable using Fluke Connect Desktop), as well as CSV matrices of the temperature quantities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/xjs42j8dtf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/xjs42j8dtf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Mendeley Data Authors: Krainer, Diana;doi: 10.17632/ycv7ktjcp7
This study presents the performance behavior of bifacial photovoltaic (PV) modules in comparison to monofacial standard modules. The novelty lies in the fact to investigate the topic of irradiance enhancement. The impact of meteorological parameters on the performance of different bifacial photovoltaic module types of same cell type was determined. A cloud classification with sky imager was performed for clouds that trigger irradiance enhancements and interpretation of the underlying physical mechanisms was done. The main focus of this study was the appearance of irradiance enhancement events, the change of meteorological parameters during enhancement and the impact of these changes on the performance of photovoltaic bifacial module technologies. The analysis of efficiencies as well as yield performance was done in comparison to mono crystalline reference modules for the full year as well as only during irradiance enhancement. The impact of meteorological parameters on the performance of different bifacial photovoltaic module types was determined time resolved during irradiance enhancement as well as for a diurnal cycle in the period 04/2020–06/2021. Irradiance enhancements exceeding 1000 Wm−2 were found to occur only on days with clouds in Vienna (Austria). For 179 irradiance enhancement situations analysed, 81 % of all enhancements happened for cloudiness greater than 0.4 and still 30 % for a cloudiness greater than 0.7, the latter resulting also in single enhancement events greater than 1150 Wm−2. Cloud genera preferentially causing irradiance enhancements were identified as Altocumulus and Cumulus clouds. The mechanism of irradiance enhancement compatible to the position of the sun towards the clouds were in accordance with the cloud types Mie-scattering and edge reflections, respectively, or a mix of both. The overall photovoltaic long term performance results showed that the average weighted absolute efficiencies of the bifacial photovoltaic modules were 2–4 % higher than the ones of monofacial standard reference modules. The performance of the bifacial modules increased consistently between 17–24 % throughout the 15 month period of investigation independent of orientation with a visible seasonal variation, namely 19–28 % in winter, 18–24 % in spring, 16–25 % in summer and 17–27 % in autumn. This repository contains the pre- and post-measurement of the surface albedo (folder: Albedo), the statistical evaluation of the cloudiness index (folder: Cloud evaluation), the cloud pictures during irradiance enhancements exceeding 1015 Wm-2 (folder: Cloud pictures RE_times_1100-1015), the ambient temperature and irradiance (folder: Wheaterstation_files) and the calculated average wavelength of the solar spectrum during measurement (folder: average_wavelength). Also, the folder Biface data contains the meausrement of the module power and energy yield of the test modules.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/ycv7ktjcp7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/ycv7ktjcp7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2010 United StatesPublisher:ScholarWorks@UMass Amherst Authors: Mose, Douglas G; Mandes, Evans; Metcalf, James;Most buildings require power produced by fossil fuels, the extraction and consumption of which contaminate our environment. The Virginia Center of Basic and Applied Science (CBAS, INC) constructed a building in a remote forested area as a plant and fish nursery (and living space for staff) to be operated by solar electrical power. Comfortable summer interior temperature is facilitated by an open design, 15,000 cubic foot interior, ceiling fans, many large windows and doors, with a large sun-screen eave off the 1000 square foot south-facing roof. Comfortable winter temperature is possible because the building has no tree-shade, thick well-insulated walls and roof, a low number of air changes per hour, and when necessary the surrounding forest provides wood stove heat. The energy challenge of the research was to develop a system facilitating 24-hour and year-round use (primarily for lights, fans, pumps, heaters and staff living requirements) that did not need to be connected to the local electrical utility company. On average, the facility uses 3-4 kilowatt hours per day. The solar power is captured by 8 solar panels which charge a bank of deep-cycle batteries, which in turn generate the power for the facility. The complete system (solar panels, charge controller, batteries, DC-to-AC inverter, 110-to-220 transformer) cost about $10,000, about 5% of the total facility cost.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::524b748d24e7c427b7560ec5890ae9a7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::524b748d24e7c427b7560ec5890ae9a7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 CanadaPublisher:Elsevier BV Authors: Koami Soulemane Hayibo; Joshua M. Pearce;To enable lower-cost building materials, a free-swinging bifacial vertical solar photovoltaic (PV) rack has been proposed, which complies with Canadian building codes and is the lowest-capital-cost agrivoltaics rack. The wind force applied to the free-swinging PV, however, causes it to have a non-90° tilt angle and no energy performance model accurately describes such a system. To provide a simulation model for the free-swinging PV, where wind speed and direction govern the array tilt angle, this study builds upon the open-source System Advisor Model (SAM) using Python. After the SAM python model is validated, a view factor model is used to calculate front and back irradiations. The findings reveal that free-swinging PV generates 12% more energy than vertical fixed-tilt PV. Free-swinging PV offers a levelized racking cost, which is 30% lower than that of other agrivoltaics racks including commercial fixed-tilt metal, optimized fixed-tilt wood, and seasonally-adjusted wood PV racking.
The University of We... arrow_drop_down The University of Western Ontario: Scholarship@WesternArticle . 2023License: CC BYFull-Text: https://ir.lib.uwo.ca/electricalpub/602Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of We... arrow_drop_down The University of Western Ontario: Scholarship@WesternArticle . 2023License: CC BYFull-Text: https://ir.lib.uwo.ca/electricalpub/602Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2017 IndiaAuthors: Kesavan, Arul Varman;In the past few decades the field of organic electronics particularly organics photovoltaic (OPVs) find wide interest among researchers. It finds many advantages such as light weight, low temperature fabrication requirements, mechanical flexibility, can be fabricated by roll-to-roll process methods. Since, the OPVs are thin film devices the optical absorption and device interfaces are very important factor in deciding the device performance. The optical absorption is dictated by the semiconducting active layer which generates the charge carrier for the effective current generations. The absorption of the active layer can be enhanced by various methods to improve the electron-to-photon conversion ratio. The interface properties play crucial role because the semiconductor generated exciton needs to be splitted and collected effectively at the electrode. This can be effectively achieved by aligning energy level of the active layer, interface layer and electrode. Further, the device efficiency is also correlated with the morphology at the various interfaces which controls the charge carrier flow across the different layers. In the chapter-1, the details about the motivation of the work, generation of the solar cell and the invention of the photovoltaic and then discussed about working principle of OPVs and finally summary of the work is given. In the chapter-2, the materials, methods and characterization technique details are given. In the chapter-3, plasmonic device was designed to enhance the photocurrent density in an inverted bulk heterojunction organic solar cell. Aluminum nanoparticles dispersed in the hole transport layer at the rear end of the device structure are observed to enhance the device performance through multiple effects including enhanced absorption and better charge collection. Modeling and simulations are used to understand the mechanisms of optical transport that underline the enhancements which are experimentally observed. In the chapter-4, the ternary blend system, binary acceptor (PC71BM and ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::5e272bf624cb4e41553cd8eaee3fd24b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::5e272bf624cb4e41553cd8eaee3fd24b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Institute of Advanced Engineering and Science Tariq Emad Ali; Mohammed A. Abdala; Ameer Al-Khaykan; Dhulfiqar A. Alwahab; Counsell M. Counsell;<span lang="EN-US">Iraqi people have been without energy for nearly two decades, even though their geographic position provides a high intensity of radiation appropriate for the construction of solar plants capable of producing significant quantities of electricity. Also, the annual sunny hours in Iraq are between 3,600 to 4,300 hours which makes it perfect to use the photovoltaics arrays to generate electricity with very high efficiency compared to many countries, especially in Europe. This paper shows the amount of electric energy generated by the meter square of crystalline silicon in the photovoltaic (PV) array that already installed in 18 states in Iraq for each month of the year. The results of the meter-square of PV array in three tracking positions are presented in this paper. This paper shows that the average electricity generated in North cities (Dohuk, Al-Sulaymaniyah, and Erbil) are less than the southern cities in the winter season (three positions) by about 40-50%. Iraq has a stable PV electrical generation during all the year in all regions except the North cities while the highest cities in electricity generation are (Najaf and Al-Anbar).</span>
International Journa... arrow_drop_down International Journal of Electrical and Computer Engineering (IJECE)Article . 2023 . Peer-reviewedLicense: CC BY SAData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.11591/ijece.v13i4.pp3606-3612&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 5 Powered bymore_vert International Journa... arrow_drop_down International Journal of Electrical and Computer Engineering (IJECE)Article . 2023 . Peer-reviewedLicense: CC BY SAData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.11591/ijece.v13i4.pp3606-3612&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2005 United StatesPublisher:National Renewable Energy Laboratory (U.S.) Authors: Kempe, M. D.;Photovoltaic (pv) devices are encapsulated in polymeric materials not only for corrosion protection, but also for mechanical support. Even though ethylene-vinyl acetate (EVA) suffers from having both glass and melting phase transitions at temperatures experienced under environmental exposure, its low cost and good optical transmission made EVA the most commonly used material for PV modules. These transitions, however, cause EVA to embrittle at low temperatures (~ -15 deg C) and to be very soft at high temperatures (>40 deg C). From mechanical considerations, one would prefer a material that was relatively unchanged under a wide temperature range. This would produce a more predictable and reliable package. These concerns are likely to become more important as silicon based cells are made thinner.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::6d89c88dc128dc7bf17a265eb517cc17&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::6d89c88dc128dc7bf17a265eb517cc17&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2016 United Stateshandle: 2286/R.I.40743
abstract: Photovoltaics (PV) is an environmentally promising technology to meet climate goals and transition away from greenhouse-gas (GHG) intensive sources of electricity. The dominant approach to improve the environmental gains from PV is increasing the module efficiency and, thereby, the renewable electricity generated during use. While increasing the use-phase environmental benefits, this approach doesn’t address environmentally intensive PV manufacturing and recycling processes. Lifecycle assessment (LCA), the preferred framework to identify and address environmental hotspots in PV manufacturing and recycling, doesn’t account for time-sensitive climate impact of PV manufacturing GHG emissions and underestimates the climate benefit of manufacturing improvements. Furthermore, LCA is inherently retrospective by relying on inventory data collected from commercial-scale processes that have matured over time and this approach cannot evaluate environmentally promising pilot-scale alternatives based on lab-scale data. Also, prospective-LCAs that rely on hotspot analysis to guide future environmental improvements, (1) don’t account for stake-holder inputs to guide environmental choices in a specific decision context, and (2) may fail in a comparative context where the mutual differences in the environmental impacts of the alternatives and not the environmental hotspots of a particular alternative determine the environmentally preferable alternative This thesis addresses the aforementioned problematic aspects by (1)using the time-sensitive radiative-forcing metric to identify PV manufacturing improvements with the highest climate benefit, (2)identifying the environmental hotspots in the incumbent CdTe-PV recycling process, and (3)applying the anticipatory-LCA framework to identify the most environmentally favorable alternative to address the recycling hotspot and significant stakeholder inputs that can impact the choice of the preferred recycling alternative. The results show that using low-carbon electricity is the most significant PV manufacturing improvement and is equivalent to increasing the mono-Si and multi-Si module efficiency from a baseline of 17% to 21.7% and 16% to 18.7%, respectively. The elimination of the ethylene-vinyl acetate encapsulant through mechanical and chemical processes is the most significant environmental hotspot for CdTe PV recycling. Thermal delamination is the most promising environmental alternative to address this hotspot. The most significant stake-holder input to influence the choice of the environmentally preferable recycling alternative is the weight assigned to the different environmental impact categories. ; Dissertation/Thesis ; Doctoral Dissertation Civil and Environmental Engineering 2016
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::1f23591764b2a025453cfb70f882302d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::1f23591764b2a025453cfb70f882302d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Embargo end date: 02 Jul 2018Publisher:Mendeley Authors: Muniz, E;Measurements of electrical characteristics of a photovoltaic panel while outdoor, changing the number of covered/inactive cells and the number of bypass diodes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/hssdg65gyr.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17632/hssdg65gyr.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu