Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
  • Access
  • Type
  • Year range
  • Field of Science
    Clear
  • Funder
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
12 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • natural sciences

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Teixeira, P. Alexandra;
    Teixeira, P. Alexandra
    ORCID
    Harvested from ORCID Public Data File

    Teixeira, P. Alexandra in OpenAIRE
    orcid Lopes, Helena;
    Lopes, Helena
    ORCID
    Harvested from ORCID Public Data File

    Lopes, Helena in OpenAIRE
    Gulyurtlu, Ibrahim; orcid Lapa, Nuno;
    Lapa, Nuno
    ORCID
    Harvested from ORCID Public Data File

    Lapa, Nuno in OpenAIRE

    Abstract Three species of biomass origin (straw pellets, olive cake and wood pellets) and two coals from different countries (Coal Polish and Coal Colombian) have been studied to understand the fate of their ash forming matter during the combustion process and to investigate the influence of co-firing biomass with coal. Three different approaches to investigate the ash behaviour were employed: (1) chemical fractionation analysis to evaluate the association/reactivity of ash forming elements in the fuels as a prediction tool, (2) establishment of elements partitioning in ash streams produced in the combustion and co-combustion trials, and (3) evaluation of enrichment factors of elements in the ash streams. The chemical fractionation analysis was applied to all fuels used to evaluate how the association/reactivity of elements making up ash may influence their behaviour during combustion. Combustion tests were carried out on a pilot scale fluidized bed combustor (FBC). Four ash streams were obtained at different locations. The uncertainty of measurements was estimated allowing a critical evaluation of mass balances over the combustion system and the partitioning of elements in the ash streams. The enrichment factors of elements in the several ash streams were estimated, incorporating uncertainties associated with analytical measurements. Results obtained showed that for FBC the relation between the chemical fractionation and the experimental partitioning is strongly affected by elutriation of particles. The element enrichment factor estimated for each ash stream, using Al as a reference element, revealed better correlations with the elements reactivity obtained by chemical fractionation because it overcomes particles elutriation effects. Nevertheless, it was observed that the reactivity estimated by chemical fractionation could not be solely interpreted as tendency of the elements to volatilize on FBC system, as reaction in bed zone of boiler may also occur retaining reactive elements.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Fuelarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Fuel
    Article
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Repositório do LNEG
    Conference object . 2010
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fuel
    Article . 2012 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    23
    citations23
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Fuelarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Fuel
      Article
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Repositório do LNEG
      Conference object . 2010
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fuel
      Article . 2012 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Rui Barbosa; orcid Nuno Lapa;
    Nuno Lapa
    ORCID
    Harvested from ORCID Public Data File

    Nuno Lapa in OpenAIRE
    orcid Helena Lopes;
    Helena Lopes
    ORCID
    Harvested from ORCID Public Data File

    Helena Lopes in OpenAIRE
    Annika Günther; +2 Authors

    The main aim of this work was to study the removal efficiency of Pb from synthetic and industrial wastewaters by using biomass fly ashes. The biomass fly ashes were produced in a biomass boiler of a pulp and paper industry. Three concentrations of Pb(2+) were tested in the synthetic wastewater (1, 10 and 1000 mg Pb/L). Moreover, two different wastewaters were collected in an industrial wastewater treatment plant (IWWTP) of an industry of lead-acid batteries: (i) wastewater of the equalization tank, and (ii) IWWTP effluent. All the wastewaters were submitted to coagulation-flocculation tests with a wide range of biomass fly ashes dosage (expressed as Solid/Liquid - S/L - ratios). All supernatants were characterized for chemical and ecotoxicological parameters. The use of biomass fly ashes has reduced significantly the Pb concentration in the synthetic wastewater and in the wastewaters collected in the IWWTP. For example, the definitive coagulation-flocculation assays performed over the IWWTP effluent presented a very low concentration of Pb (0.35 mg/L) for the S/L ratio of 1.23 g/L. Globally, the ecotoxicological characterization of the supernatants resulting from the coagulation-flocculation assays of all wastewaters has indicated an overall reduction on the ecotoxicity of the crude wastewaters, due to the removal of Pb.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Colloid a...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Colloid and Interface Science
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    22
    citations22
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Colloid a...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Colloid and Interface Science
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Teixeira, P. Alexandra;
    Teixeira, P. Alexandra
    ORCID
    Harvested from ORCID Public Data File

    Teixeira, P. Alexandra in OpenAIRE
    orcid Lopes, Helena;
    Lopes, Helena
    ORCID
    Harvested from ORCID Public Data File

    Lopes, Helena in OpenAIRE
    Gulyurtlu, Ibrahim; orcid Lapa, Nuno;
    Lapa, Nuno
    ORCID
    Harvested from ORCID Public Data File

    Lapa, Nuno in OpenAIRE
    +1 Authors

    A thermodynamic model was applied to foresee the occurrence of fouling, slagging, and bed agglomeration phenomena during fluidized bed monocombustion of three different types of biomass, namely straw pellets, olive cake, and wood pellets. The cocombustion effect in reducing the occurrence of deposits and agglomerates of blends of 5, 15, and 25% (wt.) biomass with coal was also assessed. Chemical fractionation was applied to evaluate the reactive and nonreactive fraction of elements in the fuels, which was used to estimate their partition between the freeboard and bottom zone of the boiler. Qualitative and semiquantitative analytical techniques, namely, X-ray diffraction and scanning electronic microscopy – energy dispersive spectroscopy were used to compare the results from the simulation with the mineralogical and morphological composition of ash and deposits formed during combustion. The thermodynamic modeling revealed to be a powerful tool in foreseeing the formation of melt and liquids salts, dependin...

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy & Fuelsarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy & Fuels
    Article
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy & Fuels
    Article . 2013 . Peer-reviewed
    Data sources: Crossref
    addClaim
    14
    citations14
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy & Fuelsarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy & Fuels
      Article
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy & Fuels
      Article . 2013 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Elena Surra;
    Elena Surra
    ORCID
    Harvested from ORCID Public Data File

    Elena Surra in OpenAIRE
    orcid Manuela Correia;
    Manuela Correia
    ORCID
    Harvested from ORCID Public Data File

    Manuela Correia in OpenAIRE
    orcid Sónia Figueiredo;
    Sónia Figueiredo
    ORCID
    Harvested from ORCID Public Data File

    Sónia Figueiredo in OpenAIRE
    orcid Jaime Gabriel Silva;
    Jaime Gabriel Silva
    ORCID
    Harvested from ORCID Public Data File

    Jaime Gabriel Silva in OpenAIRE
    +6 Authors

    Several pesticides and pharmaceuticals (PP) have been detected in the effluent of a full-scale Portuguese Wastewater Treatment Plant (WWTP). Their presence contributed to the environmental burdens associated with the existing treatment of the Municipal Wastewater (MWW) in the impact categories of Human Carcinogenicity, Non-Carcinogenicity, and Freshwater toxicities on average by 85%, 60%, and 90%, respectively (ReciPe2016 and USEtox methods). The environmental and economic assessment of the installation of an Anodic Oxidation (AO) unit for PPs’ removal was performed through Life Cycle and Economic Analysis, considering two types of anodes, the Boron-Doped Diamond (BDD) and the Mixed Metal Oxides (MMO). The operation of the AO unit increased the environmental burdens of the system by 95% on average (USEtox), but these impacts can be partially compensated by the avoided the production of non-renewable energy in the Portuguese electricity mix by biogas cogeneration at the WWTP. If the construction of the AO unit and the manufacturing of the electrodes are considered, the Human and Freshwater Toxicities are often higher than the environmental benefits derived from the PPs’ removal. On the economic side, the MMO configuration is clearly more advantageous, whereas BDD is environmentally more favorable. The issue of the presence of PP in MWW effluents has to be addressed as an integrated solution both improving upstream PP’s management and adopting PP’s removal technologies strongly supported by renewable energies. Further insights are needed for the assessment of fate and of the environmental effects of PP in the sludge.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2021
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Investigo
    Article . 2021
    Data sources: Investigo
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Investigo
    Article . 2021
    License: CC BY
    Data sources: Investigo
    addClaim
    Access Routes
    Green
    gold
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2021
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Investigo
      Article . 2021
      Data sources: Investigo
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Investigo
      Article . 2021
      License: CC BY
      Data sources: Investigo
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Benilde Simões Mendes;
    Benilde Simões Mendes
    ORCID
    Harvested from ORCID Public Data File

    Benilde Simões Mendes in OpenAIRE
    orcid Nuno Lapa;
    Nuno Lapa
    ORCID
    Harvested from ORCID Public Data File

    Nuno Lapa in OpenAIRE
    orcid Margarida Gonçalves;
    Margarida Gonçalves
    ORCID
    Harvested from ORCID Public Data File

    Margarida Gonçalves in OpenAIRE
    Isabel Fonseca; +3 Authors

    The present work aims to perform a multistep upgrading of chars obtained in the co-pyrolysis of PE, PP and PS plastic wastes, pine biomass and used tires. The quality of the upgraded chars was evaluated by measuring some of their physico-chemical properties in order to assess their valorisation as adsorbents' precursors. The crude chars were submitted to a sequential solvent extraction with organic solvents of increasing polarity (hexane, mixture 1:1 v/v hexane:acetone and acetone) followed by an acidic demineralization procedure with 1M HCl solution. The results obtained showed that the upgrading treatment allow the recovery of 63-81% of the pyrolysis oils trapped in the crude chars and a reduction in the char's ash content in the range of 64-86%. The textural and adsorption properties of the upgraded chars were evaluated and the results indicate that the chars are mainly mesoporous and macroporous materials, with adsorption capacities in the range of 3.59-22.2 mg/g for the methylene blue dye. The upgrading treatment allowed to obtain carbonaceous materials with quality to be reused as adsorbents or as precursors for activated carbon.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Hazardous...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Hazardous Materials
    Article . 2012 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    87
    citations87
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Hazardous...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Hazardous Materials
      Article . 2012 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: R. Barbosa; orcid Filomena Pinto;
    Filomena Pinto
    ORCID
    Harvested from ORCID Public Data File

    Filomena Pinto in OpenAIRE
    orcid Margarida Gonçalves;
    Margarida Gonçalves
    ORCID
    Harvested from ORCID Public Data File

    Margarida Gonçalves in OpenAIRE
    orcid Maria Bernardo;
    Maria Bernardo
    ORCID
    Harvested from ORCID Public Data File

    Maria Bernardo in OpenAIRE
    +3 Authors

    A mixture of 70% (w/w) pine biomass and 30% (w/w) plastics (mixture of polypropylene, polyethylene, and polystyrene) was subjected to pyrolysis at 400 degrees C, for 15 min, with an initial pressure of 40 MPa. Part of the solid residue produced was subjected to extraction with dichloromethane (DCM). The extracted residue (residue A) and raw residue (residue B) were analyzed by weight loss combustion and submitted to the leaching test ISO/TS 21268-2 using two different leachants: DCM (0.2%, v/v) and calcium chloride (0.001 mol/L). The concentrations of the heavy metals Cd, Cr, Ni, Zn, Pb and Cu were determined in the eluates and in the two residues. The eluates were further characterized by determining their pH and the concentrations of benzene, toluene, ethylbenzene and xylenes (BTEX). The presence of other organic contaminants in the eluates was qualitatively evaluated by gas chromatography, coupled with mass spectrometry. An ecotoxicological characterization was also performed by using the bio-indicator Vibrio fischeri. The chemical and ecotoxicological results were analyzed according to the French proposal of Criteria on the Evaluation Methods of Waste Ecotoxicity (CEMWE). Residue A was not considered to be ecotoxic by the ecotoxicological criterion (EC(50) (30 min) >or=10%), but it was considered to be ecotoxic by the chemical criterion (Ni>or=0.5mg/L). Residue B was considered to be ecotoxic by the ecotoxicological criterion: EC(50) (30 min)

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Hazardous...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Hazardous Materials
    Article . 2009 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    24
    citations24
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Hazardous...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Hazardous Materials
      Article . 2009 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Nuno Lapa;
    Nuno Lapa
    ORCID
    Harvested from ORCID Public Data File

    Nuno Lapa in OpenAIRE
    orcid Elena Surra;
    Elena Surra
    ORCID
    Harvested from ORCID Public Data File

    Elena Surra in OpenAIRE
    Elena Surra; Isabel A. A. C. Esteves;

    A Life Cycle Analysis (LCA) based on ReCiPe 2016 model of a biorefinery case-study was performed. On the basis of an existing Portuguese Anaerobic Digestion plant, the proposed biorefinery hypothesized the use of (i) Maize Cob Waste (MCW) as co-substrate for Anaerobic co-Digestion (AcoD) with Organic Fraction Municipal Solid Waste (OFMSW), (ii) the use of MCW derived activated carbons (ACs) in a H2S removal unit, and (iii) the biogas upgrading to biomethane in a Pressure Swing Adsorption unit. The main aim was to compare the environmental benefits obtained from distinct uses of biogas, specifically the cogeneration of electricity/heat and biomethane production.Three biogas production configurations were considered: (i) AD of standalone hydrolysed OFMSW (hOFMSW); (ii) AcoD of hOFMSW and MCW pre-treated with H2O2 (hOFMSW+PreMCW); and (iii) AcoD of hOFMSW with non-pre-treated MCW (hOFMSW+MCW). The increase of biogas and methane yields obtained with AcoD of hOFMSW+MCW provided an overall better environmental performance than other configurations.The biogas upgrading to biomethane from AcoD of hOFMSW+MCW generated higher environmental impacts than cogeneration, due to the AC production and upgrading processes. If an optimised H2S adsorption capacity is considered, the Fossil Resource Scarcity, Mineral Resource Scarcity, and Global Warming human health impact categories decreased by 20%, 15%, and 17%, respectively, when compared to the base-case upgrading scenario. Further decreases of up to 52%, 23%, and 28% for those impact categories, respectively, are observed when the natural gas used in the OFMSW collection and transportation fleet is substituted by biomethane produced in the biorefinery.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biomass and Bioenergy
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    SSRN Electronic Journal
    Article . 2020 . Peer-reviewed
    Data sources: Crossref
    addClaim
    14
    citations14
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biomass and Bioenerg...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biomass and Bioenergy
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      SSRN Electronic Journal
      Article . 2020 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Maria Bernardo;
    Maria Bernardo
    ORCID
    Harvested from ORCID Public Data File

    Maria Bernardo in OpenAIRE
    orcid Margarida Gonçalves;
    Margarida Gonçalves
    ORCID
    Harvested from ORCID Public Data File

    Margarida Gonçalves in OpenAIRE
    I. Gulyurtlu; orcid Nuno Lapa;
    Nuno Lapa
    ORCID
    Harvested from ORCID Public Data File

    Nuno Lapa in OpenAIRE
    +3 Authors

    Char residues produced in the co-pyrolysis of different wastes (plastics, pine biomass and used tyres) were characterized using chemical and toxicity assays. One part of the solid chars was submitted to extraction with dichloromethane (DCM) in order to reduce the toxicity of the char residues by removing organic contaminants. The different volatility fractions present in the extracted char (Char A) and in the raw char (Char B) were determined by progressive weight loss combustion. A selected group of heavy metals (Cd, Pb, Zn, Cu, Hg and As) was determined in both chars. The chars were subjected to the leaching test ISO/TS 21268 - 2, 2007 and the resulting eluates were further characterized by determining a group of inorganic parameters (pH, conductivity, Cd, Pb, Zn, Cu, Hg and As contents) and the concentrations of several organic contaminants (volatile aromatic hydrocarbons and alkyl phenols). An ecotoxicological characterization was also performed by using the bio-indicator Vibrio fischeri. The chemical and ecotoxicological results were analyzed according to the Council Decision 2003/33/CE and the criteria on the evaluation methods of waste ecotoxicity (CEMWE). The results obtained in this work indicated that the extraction with DCM is an effective method for the removal of organic contaminants of high to medium volatility from pyrolysis solid residues, thus decreasing their toxicity potential. Zn can be leached from the chars even after the DCM extraction treatment and can contribute to the ecotoxicity of the eluates obtained from chars. Both chars (treated and non treated with DCM) were classified as hazardous and ecotoxic wastes.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Waste Managementarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Waste Management
    Article . 2010 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    47
    citations47
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Waste Managementarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Waste Management
      Article . 2010 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Bernardo, Maria;
    Bernardo, Maria
    ORCID
    Harvested from ORCID Public Data File

    Bernardo, Maria in OpenAIRE
    orcid Lapa, Nuno;
    Lapa, Nuno
    ORCID
    Harvested from ORCID Public Data File

    Lapa, Nuno in OpenAIRE
    orcid Gonçalves, M.;
    Gonçalves, M.
    ORCID
    Harvested from ORCID Public Data File

    Gonçalves, M. in OpenAIRE
    Barbosa, Rui; +2 Authors

    The present work is devoted to the study of the decontamination of chars obtained in the co-pyrolysis of plastics, biomass and tyre wastes. The chars were extracted with several organic solvents of different polarities either individually or in sequence. The ability of each selected extractant to remove toxic pollutants was evaluated by comparing the extraction yields and by characterizing the crude extracts with a combination of chemical analysis and toxicity bioassays. Also, the mineral composition of the treated and non-treated chars was assessed. The results obtained in this study indicate that hexane is the more efficient extraction solvent to be used in the organic decontamination of chars obtained in the co-pyrolysis of plastics, tyres and biomass. A sequential extraction with solvents of increasing polarity can provide a better decontamination of the raw pyrolysis char than any individual extraction. The compounds removed from the char during the decontamination process are mainly aliphatic hydrocarbons and aromatic hydrocarbons, therefore a material that may be upgraded to be used as a fuel and/or as raw material for the organic chemical industry.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Hazardous...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Repositório do LNEG
    Conference object . 2010
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Hazardous Materials
    Article . 2012 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    21
    citations21
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Hazardous...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Repositório do LNEG
      Conference object . 2010
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Hazardous Materials
      Article . 2012 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Nuno Lapa;
    Nuno Lapa
    ORCID
    Harvested from ORCID Public Data File

    Nuno Lapa in OpenAIRE
    orcid Luís C. Branco;
    Luís C. Branco
    ORCID
    Harvested from ORCID Public Data File

    Luís C. Branco in OpenAIRE
    Isabel M. Marrucho; orcid Filipa Lima;
    Filipa Lima
    ORCID
    Harvested from ORCID Public Data File

    Filipa Lima in OpenAIRE
    +1 Authors

    Deep eutectic solvents (DES), a new class of alternative solvents, have recently been used in the pre-treatment of lignocellulosic biomass. Due to the ability to dissolve phenolic compounds, they have been efficiently applied as delignification agents. However, to extend DES application to bioprocesses, such as Anaerobic Digestion (AD), their toxicity to microbial consortia must be evaluated. In this work, an effective delignifying DES, composed of choline chloride (ChCl) and oxalic acid (OA) (1:1) was prepared and its effect evaluated, for the first time, in biogas production. Results show that the presence of DES had both beneficial and detrimental effects on the anaerobic consortium, depending on its concentration. In the concentration range of 0.3-12.5 g/L, the presence of DES led to a lag-phase of 1 to 8 d as the DES concentration increased. However, after the lag-phase has been surpassed, DES up to a concentration of 12.5 g/L improved the biogas production, reaching an accumulated biogas volume three times higher than the control assay for the concentration of 12.5 g/L. For the highest DES concentrations (19.8-78.1 g/L), the biogas production was inhibited. The assays performed with DES components alone have indicated that OA at 3.2 g/L was the main responsible for the inhibition of biogas production (50% less biogas produced than the control). ChCl at 4.9 g/L has not presented a lag-phase and produced an accumulated biogas volume like the control assay (1200 mL for 30 d incubation). This work points out that ChCl:OA DES may be used in the delignification of biomass further submitted to AD, provided the inhibitory concentrations of OA are not achieved.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Waste Managementarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Waste Management
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Waste Managementarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Waste Management
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • chevron_right
Powered by OpenAIRE graph