- home
- Advanced Search
- Energy Research
- natural sciences
- Energy Research
- natural sciences
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Usama Ahmed; Nauman Ahmad; Nauman Ahmad;Nabeel Ahmad;
Nabeel Ahmad
Nabeel Ahmad in OpenAIREAbstract We report a strategy for production of 5-nonanone which is a bio-based platform chemical that can be produced in large quantity from a variety of lignocellulosic biomass sources. In this strategy, the cellulose and hemicellulose fractions of lignocellulosic biomass are catalytically converted to γ -valerolactone (GVL) using the biomass derived GVL as a solvent. To generate the integrated strategy, we develop separation subsystems to achieve high purity of product. Importantly, GVL can be upgraded to 5-nonanone with high yield in a single reactor using a dual catalyst bed of Pd/Nb2O5 plus ceria-zirconia. We design a heat exchanger network to satisfy the total energy requirements of the integrated process via combusting lignin fraction of biomass. Economic feasibility of the process is investigated using discounted cash flow analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.07.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.07.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Authors:Um‐e‐Salma Amjad;
Um‐e‐Salma Amjad
Um‐e‐Salma Amjad in OpenAIREManzar Ishaq;
Manzar Ishaq
Manzar Ishaq in OpenAIREHamood ur Rehman;
Hamood ur Rehman
Hamood ur Rehman in OpenAIRENabeel Ahmad;
+3 AuthorsNabeel Ahmad
Nabeel Ahmad in OpenAIREUm‐e‐Salma Amjad;
Um‐e‐Salma Amjad
Um‐e‐Salma Amjad in OpenAIREManzar Ishaq;
Manzar Ishaq
Manzar Ishaq in OpenAIREHamood ur Rehman;
Hamood ur Rehman
Hamood ur Rehman in OpenAIRENabeel Ahmad;
Lubna Sherin;Nabeel Ahmad
Nabeel Ahmad in OpenAIREMurid Hussain;
Murid Hussain
Murid Hussain in OpenAIREMaria Mustafa;
Maria Mustafa
Maria Mustafa in OpenAIREdoi: 10.1002/ep.13493
AbstractPyrolysis of waste polystyrene to generate fuel was carried out to yield pyrolysis oil. For the first time, NiO deposited over ZrO2 carrier as catalyst, was deployed and evaluated in the catalytic pyrolysis. Catalysts based on different loading (2, 5, 10, and 15%) of NiO deposited over ZrO2 carrier were prepared by solution combustion synthesis and tested toward screening of catalytic pyrolysis of PS in semi batch reactor. Based on conversion, yield of oil and low styrene monomer content, the catalytic performance with different loadings was evaluated and optimized. Furthermore, the oil obtained from the best catalysts were analyzed using GC–MS for carbon number distribution, depolymerization reactions, and diesel fuel generation. These catalysts were also characterized using X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), pyridine FTIR, and scanning electron microscopy (SEM) techniques. As compared to thermal pyrolysis, the catalytic pyrolysis process was found to be highly selective toward diesel like fuel generation with minimum styrene monomer formation. Also, 2 and 10% NiO catalyst showed the best catalytic performance in pyrolysis process that could be ascribed to the presence of Lewis and Brönsted acid sites resulting in selectivity for C16 carbon number, diesel fuel generation, and depolymerization reactions.
Environmental Progre... arrow_drop_down Environmental Progress & Sustainable EnergyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ep.13493&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Progre... arrow_drop_down Environmental Progress & Sustainable EnergyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ep.13493&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu