Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Progre...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Progress & Sustainable Energy
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Diesel and gasoline like fuel production with minimum styrene content from catalytic pyrolysis of polystyrene

Authors: Um‐e‐Salma Amjad; Manzar Ishaq; Hamood ur Rehman; Nabeel Ahmad; Lubna Sherin; Murid Hussain; Maria Mustafa;

Diesel and gasoline like fuel production with minimum styrene content from catalytic pyrolysis of polystyrene

Abstract

AbstractPyrolysis of waste polystyrene to generate fuel was carried out to yield pyrolysis oil. For the first time, NiO deposited over ZrO2 carrier as catalyst, was deployed and evaluated in the catalytic pyrolysis. Catalysts based on different loading (2, 5, 10, and 15%) of NiO deposited over ZrO2 carrier were prepared by solution combustion synthesis and tested toward screening of catalytic pyrolysis of PS in semi batch reactor. Based on conversion, yield of oil and low styrene monomer content, the catalytic performance with different loadings was evaluated and optimized. Furthermore, the oil obtained from the best catalysts were analyzed using GC–MS for carbon number distribution, depolymerization reactions, and diesel fuel generation. These catalysts were also characterized using X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), pyridine FTIR, and scanning electron microscopy (SEM) techniques. As compared to thermal pyrolysis, the catalytic pyrolysis process was found to be highly selective toward diesel like fuel generation with minimum styrene monomer formation. Also, 2 and 10% NiO catalyst showed the best catalytic performance in pyrolysis process that could be ascribed to the presence of Lewis and Brönsted acid sites resulting in selectivity for C16 carbon number, diesel fuel generation, and depolymerization reactions.

Powered by OpenAIRE graph
Found an issue? Give us feedback