- home
- Advanced Search
- Energy Research
- Closed Access
- Open Source
- natural sciences
- 7. Clean energy
- 12. Responsible consumption
- Energy Research
- Closed Access
- Open Source
- natural sciences
- 7. Clean energy
- 12. Responsible consumption
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors:Rajender S. Sangwan;
Rajender S. Sangwan
Rajender S. Sangwan in OpenAIRESushil Kumar Kansal;
Sandeep Kumar; Pranati Kundu; +3 AuthorsSushil Kumar Kansal
Sushil Kumar Kansal in OpenAIRERajender S. Sangwan;
Rajender S. Sangwan
Rajender S. Sangwan in OpenAIRESushil Kumar Kansal;
Sandeep Kumar; Pranati Kundu; Troy Runge; Vivek Ahluwalia;Sushil Kumar Kansal
Sushil Kumar Kansal in OpenAIRESasikumar Elumalai;
Sasikumar Elumalai
Sasikumar Elumalai in OpenAIREpmid: 29274853
In this study, levulinic acid (LA) was produced from rice straw biomass in co-solvent biphasic reactor system consisting of hydrochloric acid and dichloromethane organic solvent. The modified protocol achieved a 15% wt LA yield through the synergistic effect of acid and acidic products (auto-catalysis) and the designed system allowed facile recovery of LA to the organic phase. Further purification of the resulting extractant was achieved through traditional column chromatography, which yielded a high purity LA product while recovering ∼85% wt. Upon charcoal treatment of the resultant fraction generated an industrial grade target molecule of ∼99% purity with ∼95% wt recovery. The system allows the solvent to be easily recovered, in excess of 90%, which was shown to be able to be recycled up to 5 runs without significant loss of final product concentrations. Overall, this system points to a method to significantly reduce manufacturing cost during large-scale LA preparation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.12.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.12.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Piyush Sabharwall; Yang Liu;Ilyas Yilgor;
Shanbin Shi;Ilyas Yilgor
Ilyas Yilgor in OpenAIREAbstract Heat pipes and two-phase thermosyphons are highly efficient heat transfer devices utilizing continuous evaporation and condensation of working fluid for two-phase heat transport in closed systems. Because of the nearly isothermal and fully passive phase-change heat transfer mechanism, heat pipes and thermosyphons have found many applications in nuclear engineering, space technologies, and other energy systems. High-temperature heat pipes are used in nuclear microreactors to remove fission power from the primary system and are coupled with power conversion systems or process heat applications. Modeling of the two-phase flow phenomena inside a heat pipe is essential to its design and safety analysis. In this study, a comprehensive one-dimensional two-phase three-field flow model has been developed for the analysis of heat pipes in normal operation conditions and transients. The conservation or field equations of mass, momentum, and energy were developed for the liquid film, vapor, and droplet. In addition, constitutive models or correlations were reviewed thoroughly and provided for the closure of the three-field equations. Specific constitutive equations regarding interfacial mass and heat transfer at two interfaces, namely film-gas interface and gas-droplet interface, were reviewed for droplet entrainment and deposition rates as well as film and droplet evaporation rates. Additionally, mechanistic correlations of annular flow film thickness were recommended for the modeling of the thermosyphons without a wick as a critical constitutive correlation. Furthermore, experimental data needs from new experiments using a prototype working fluid or surrogate fluids for the model validation of high-temperature heat pipes in microreactors were recommended for future research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2021.108770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2021.108770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Australia, BrazilPublisher:Elsevier BV Authors:Cristiano S. Funari;
Cristiano S. Funari
Cristiano S. Funari in OpenAIRERenato L. Carneiro;
Renato L. Carneiro
Renato L. Carneiro in OpenAIREAlberto J. Cavalheiro;
Alberto J. Cavalheiro
Alberto J. Cavalheiro in OpenAIREEmily F. Hilder;
Emily F. Hilder
Emily F. Hilder in OpenAIREIt is now recognized that analytical chemistry must also be a target for green principles, in particular chromatographic methods which typically use relatively large volumes of hazardous organic solvents. More generally, high performance liquid chromatography (HPLC) is employed routinely for quality control of complex mixtures in various industries. Acetonitrile and methanol are the most commonly used organic solvents in HPLC, but they generate an impact on the environment and can have a negative effect on the health of analysts. Ethanol offers an exciting alternative as a less toxic, biodegradable solvent for HPLC. In this work we demonstrate that replacement of acetonitrile with ethanol as the organic modifier for HPLC can be achieved without significantly compromising analytical performance. This general approach is demonstrated through the specific example analysis of a complex plant extract. A benchmark method employing acetonitrile for the analysis of Bidens pilosa extract was statistically optimized using the Green Chromatographic Fingerprinting Response (GCFR) which includes factors relating to separation performance and environmental parameters. Methods employing ethanol at 30 and 80°C were developed and compared with the reference method regarding their performance of separation (GCFR) as well as by a new metric, Comprehensive Metric to Compare Liquid Chromatography Methods (CM). The fingerprint with ethanol at 80°C was similar to or better than that with MeCN according to GCFR and CM. This demonstrates that temperature may be used to replace harmful solvents with greener ones in HPLC, including for solvents with significantly different physiochemical properties and without loss in separation performance. This work offers a general approach for the chromatographic analysis of complex samples without compromising green analytical chemistry principles.
Journal of Chromatog... arrow_drop_down Journal of Chromatography AArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chroma.2014.05.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Chromatog... arrow_drop_down Journal of Chromatography AArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)UniSA Research Outputs RepositoryArticle . 2014 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chroma.2014.05.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors:Wangen Zhao;
Daocheng Pan; Lijian Huang; Shang Gao; +2 AuthorsWangen Zhao
Wangen Zhao in OpenAIREWangen Zhao;
Daocheng Pan; Lijian Huang; Shang Gao; Qingwen Tian; Gang Wang;Wangen Zhao
Wangen Zhao in OpenAIRECu2CdSn(S,Se)(4) is an important candidate material for thin film solar cell absorber layers. In this work, low-cost Cu2CdSnS4 nanocrytal thin film with a stannite structure has been successfully fabricated by a butyldithiocarbamate-based ethanol solution approach. The selenized Cu2CdSn(S,Se)(4) thin film shows large densely packed grains and has a suitable band gap value of 1.01 eV. The Cu2CdSn(S,Se)(4) thin film solar cell with a proof-of-concept power conversion efficiency of 3.1% was fabricated. (C) 2014 Elsevier B.V. All rights reserved.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2014.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu67 citations 67 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2014.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Tiejun Gao; Xiaomei Li;pmid: 20869240
The possibility of using anaerobic digestate effluent (ADE) to replace freshwater and nutrients for bioethanol production was explored. The ethanol concentration yielded from ADE and post-centrifuged ADE supernatant was 79.60±1.75 g/L and 78.33±1.66 g/L, respectively, with a 24% dry mass (DM) of soft wheat. Ethanol production was enhanced in ADE by as much as 18% in comparison to the production in freshwater (66.61±0.28 g/L, p<0.01). Without yeast nutrients, ADE fermentation yielded an ethanol concentration of 81.10±2.87 g/L, which was significantly higher than that in freshwater fermentation (59.67±1.79 g/L). Analysis showed that ADE contained rich nitrogen, proteins and minerals. After one-step distillation, the ethanol concentration attained was 700.05±46.20 g/L in ADE as compared to 622.79±32.22 g/L in freshwater (p<0.05).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2010.08.088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2010.08.088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 China (People's Republic of)Publisher:Royal Society of Chemistry (RSC) Authors:Peng You;
Peng You
Peng You in OpenAIREGuijun Li;
Guijun Li
Guijun Li in OpenAIREGuanqi Tang;
Guanqi Tang
Guanqi Tang in OpenAIREJiupeng Cao;
+1 AuthorsJiupeng Cao
Jiupeng Cao in OpenAIREPeng You;
Peng You
Peng You in OpenAIREGuijun Li;
Guijun Li
Guijun Li in OpenAIREGuanqi Tang;
Guanqi Tang
Guanqi Tang in OpenAIREJiupeng Cao;
Jiupeng Cao
Jiupeng Cao in OpenAIREFeng Yan;
Feng Yan
Feng Yan in OpenAIREdoi: 10.1039/c9ee02324k
Ultrafast laser-annealing technique for the fabrication of large-grain perovskite films and efficient perovskite solar cells at room temperature.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ee02324k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu144 citations 144 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ee02324k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Korea (Republic of)Publisher:Wiley Authors: Chang, Dong Wook; Ko, Seo-Jin;Kim, Jin Young;
Park, Su-Moon; +3 AuthorsKim, Jin Young
Kim, Jin Young in OpenAIREChang, Dong Wook; Ko, Seo-Jin;Kim, Jin Young;
Park, Su-Moon; Lee, Hyo Joong;Kim, Jin Young
Kim, Jin Young in OpenAIREDai, Liming;
Dai, Liming
Dai, Liming in OpenAIREBaek, Jong-Beom;
Baek, Jong-Beom
Baek, Jong-Beom in OpenAIREpmid: 21932285
AbstractA novel multifunctional conjugated polymer (RCP‐1) composed of an electron‐donating backbone (carbazole) and an electron‐accepting side chain (cyanoacetic acid) connected through conjugated vinylene and terthiophene has been synthesized and tested as a photosensitizer in two major molecule‐based solar cells, namely dye sensitized solar cells (DSSCs) and organic photovoltaic cells (OPVs). Promising initial results on overall power conversion efficiencies of 4.11% and 1.04% are obtained from the basic structure of DSSCs and OPVs based on RCP‐1, respectively. The well‐defined donor (D)‐acceptor (A) structure of RCP‐1 has made it possible, for the first time, to reach over 4% of power conversion efficiency in DSSCs with an organic polymer sensitizer and good operation stability.
Macromolecular Rapid... arrow_drop_down Macromolecular Rapid CommunicationsArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefScholarWorks@UNIST (Ulsan National Institute of Science and Technology)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/marc.201100447&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Macromolecular Rapid... arrow_drop_down Macromolecular Rapid CommunicationsArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefScholarWorks@UNIST (Ulsan National Institute of Science and Technology)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/marc.201100447&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Young Seok Song; Chengbin Yu; Jae Ryoun Youn; Juhyuk Park;Abstract Energy harvesting in natural environment has attracted a great deal of attention to generate stable and continuous electrical energy. In this work, we proposed an advanced pyroelectric energy harvesting system by using form-stable phase change material (PCM) composites. The PCM composite connected pyro-electrode generated electrical polarization due to the change of external environment. Polyethylene glycol (PEG) and 1-tetradecanol (1-TD) composites with different phase transition field induced the temperature difference during light-on/-off process. Poly(vinylidene difluoride) (PVDF) was utilized for pyroelectric energy harvesting. The PVDF based pyro-electrode was applied changing the conditions of solar light irradiation and heat air flow. The PCM composites controlled the temperature fluctuation effectively and generated stable output electrical voltage and current. Numerical simulation was carried out to provided in-depth insight into the underlying physics of the system. We envisage that the developed thermal energy harvesting system can pave a way towards high-throughput and sustainable energy harvesting.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.118212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.118212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Chang Woo Hong;Jihun Kim;
Jin Hyeok Kim; Myeng Gil Gang; +3 AuthorsJihun Kim
Jihun Kim in OpenAIREChang Woo Hong;Jihun Kim;
Jin Hyeok Kim; Myeng Gil Gang; R.B.V. Chalapathy; Jae Ho Yun; Jun Sun Jang;Jihun Kim
Jihun Kim in OpenAIREAbstract In this work, earth-abundant CZTSSe thin film solar cells were fabricated by sulfo-selenization of the Mo/Zn/Cu/Sn/Cu metallic precursors. The influences of morphological and compositional properties of the absorbers on performance of solar cells were investigated by tuning Cu content in the films. The Raman analysis showed that absorbers consist of a kesterite CZTSSe phase with ZnSe as a minor secondary phase. X-ray photoelectron spectroscopy (XPS) analyses revealed that the surfaces are Cu depleted and Zn enriched compared with the bulk composition of the absorbers. The results indicate that during sulfo-selenization the Cu diffused into the film and the Zn towards the film surface. The performance of the solar cells initially improved with the increasing of the Cu content and then decreased. By tuning the Cu content in the absorbers, the minority-carrier life time improved from 0.8 to 1.6 ns. The power conversion efficiency increased from 5.1 to 8.03% with fine controlling of Cu composition of the CZTSSe absorbers. The diode-ideality factors are higher than 2, suggesting an increased interfacial recombination in the devices. The high ideality-factors A and low minority carrier life times may originate from surface and bulk related defects, which in turn limits the Voc and the achievable high conversion efficiency for the CZTSSe thin film solar cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2017.10.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2017.10.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Authors: Jinwei Fu; Guang Yang; Guangming Zhang; Shu-Li Liu;pmid: 30328043
In order to enhance the efficiency and benefits of the sludge anaerobic digestion process, K2FeO4 was added to a sludge anaerobic digestion system, and its effects on the system were comprehensively investigated. Results showed that sludge anaerobic digestion was greatly improved by adding 500 mg/L K2FeO4. Biogas and methane productions were increased by 26.6 and 28.4%, respectively. Sludge reduction, protein removal, and the conversion efficiency of dissolved organics were all improved. The mechanism revealed that the disintegration of sludge flocs, enhancement of protease activity, and decrease of soluble sulfide toxicity on microorganisms contributed to biogas production and sludge reduction. Biogas quality was improved, benefitting from the decreasing H2S content in biogas; as additionally, the cost of biogas desulfuration was reduced. In the biogas slurry treatment, the PO43--P concentrations were decreased by 39%, which also reduced the cost of the dephosphorization processes at certain extent.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-018-3438-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-018-3438-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu