- home
- Advanced Search
- Energy Research
- natural sciences
- 13. Climate action
- Environmental Evidence
- Energy Research
- natural sciences
- 13. Climate action
- Environmental Evidence
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 South AfricaPublisher:Springer Science and Business Media LLC Authors: Haddaway, Neal R.; Johannesdottir, Solveig L.; Piniewski, Mikołaj; Macura, Biljana;handle: 10210/289962
Abstract Background Pollution of the Baltic Sea continues to be a problem. Major terrestrial sources of nutrient emissions to the Baltic Sea are agriculture and wastewater, both major causes of eutrophication. Wastewater contains nutrients and organic matter that could constitute valuable products such as agricultural fertilizers and source of energy. With the EU’s action plan for circular economy, waste management and resource utilization is central. Thus the integration of resource recovery to wastewater management could create benefits beyond the wastewater sector. There is a growing interest in resource recovery from wastewater. However, there is no systematic overview of the literature on technologies to recover nutrients and carbon from wastewater sources done to date. Methods This systematic map will identify a representative list of studies on ecotechnologies for reusing carbon and nutrients (nitrogen and phosphorus) from domestic wastewater, which includes e.g. sewage sludge and wastewater fractions. Searches will be performed in five bibliographic databases, one search engine and 38 specialist websites. Searches will mainly be performed in English, search for literature in specialist websites will also include Finnish, Polish and Swedish. Coding and meta-data extraction will include information on ecotechnology name and short description, reuse outcome (i.e. reuse of carbon, nitrogen and/or phosphorus), type of reuse (i.e. whether it is explicit or implicit), study country and location, latitude and longitude. All screening and coding will be done after initial consistency checking. The outcomes of this systematic map will be a searchable database of coded studies. Findings will be presented in a geo-informational system (i.e. an evidence atlas) and knowledge gaps and clusters will be visualised via heat maps.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-018-0145-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-018-0145-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 South AfricaPublisher:Springer Science and Business Media LLC Authors: Haddaway, Neal R.; Johannesdottir, Solveig L.; Piniewski, Mikołaj; Macura, Biljana;handle: 10210/289962
Abstract Background Pollution of the Baltic Sea continues to be a problem. Major terrestrial sources of nutrient emissions to the Baltic Sea are agriculture and wastewater, both major causes of eutrophication. Wastewater contains nutrients and organic matter that could constitute valuable products such as agricultural fertilizers and source of energy. With the EU’s action plan for circular economy, waste management and resource utilization is central. Thus the integration of resource recovery to wastewater management could create benefits beyond the wastewater sector. There is a growing interest in resource recovery from wastewater. However, there is no systematic overview of the literature on technologies to recover nutrients and carbon from wastewater sources done to date. Methods This systematic map will identify a representative list of studies on ecotechnologies for reusing carbon and nutrients (nitrogen and phosphorus) from domestic wastewater, which includes e.g. sewage sludge and wastewater fractions. Searches will be performed in five bibliographic databases, one search engine and 38 specialist websites. Searches will mainly be performed in English, search for literature in specialist websites will also include Finnish, Polish and Swedish. Coding and meta-data extraction will include information on ecotechnology name and short description, reuse outcome (i.e. reuse of carbon, nitrogen and/or phosphorus), type of reuse (i.e. whether it is explicit or implicit), study country and location, latitude and longitude. All screening and coding will be done after initial consistency checking. The outcomes of this systematic map will be a searchable database of coded studies. Findings will be presented in a geo-informational system (i.e. an evidence atlas) and knowledge gaps and clusters will be visualised via heat maps.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-018-0145-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-018-0145-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 France, United Kingdom, Australia, United Kingdom, France, United KingdomPublisher:Springer Science and Business Media LLC David Benz; Jessica P. R. Thorn; Gillian Petrokofsky; Rachel Friedman; Katherine J. Willis; Katherine J. Willis; Katherine J. Willis;handle: 10568/76448
AbstractBackgroundAn extensive body of evidence in the field of agro-ecology claims to show the positive effects that maintenance of ecosystem services can have on meeting future food demand by making farms more sustainable, productive and resilient, which then contributes to improved nutrition and livelihoods of farmers. However, inconsistent effects have commonly been reported, while empirical evidence to support assumed improvements is largely lacking. Overall, a coherent synthesis and review of the evidence of these claims is largely absent from the literature.MethodsSystematic searches of peer-reviewed research were conducted in bibliographic databases of Web of Science, SCOPUS, AGRICOLA, AGRIS databases and CAB abstracts, and grey literature from Google Scholar, and 32 subject-specific websites. Searches identified 21,147 articles. After screening, 746 studies were included in the final map.ResultsOf the 19 conservation land management practices considered, soil fertilisation (24 %), tillage (23 %), agroforestry (9 %), and water conservation (7 %) were most commonly studied. Ecosystem services most commonly studied were supporting (55 %) and regulating (33 %), particularly carbon sequestration/storage, nutrient cycling and soil/water regulation/supply. Key data gaps identified included the absence of long-term records (with datasets spanning >20 years), studies located in North and Central Africa, research that focuses on smallholder landscapes, and studies that span different scales (regional and landscape levels).ConclusionsThe study employs systematic mapping combined with an online interactive platform that geographically maps results, which allows users to interrogate different aspects of the evidence through a defined database field structure. While studies are not directly comparable, the database of 746 studies brings together a previously fragmented and multidisciplinary literature base, and collectively provides evidence concerning a wide range of conservation land management practices impacting key ecosystem services. The systematic map is easily updatable, and may be extended for additional coding, analysed to assess the quality of studies, or used to inform future systematic reviews.
CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/10568/76448Data sources: Bielefeld Academic Search Engine (BASE)Oxford University Research ArchiveArticle . 2016License: CC BYData sources: Oxford University Research ArchiveThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-016-0064-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/10568/76448Data sources: Bielefeld Academic Search Engine (BASE)Oxford University Research ArchiveArticle . 2016License: CC BYData sources: Oxford University Research ArchiveThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-016-0064-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 France, United Kingdom, Australia, United Kingdom, France, United KingdomPublisher:Springer Science and Business Media LLC David Benz; Jessica P. R. Thorn; Gillian Petrokofsky; Rachel Friedman; Katherine J. Willis; Katherine J. Willis; Katherine J. Willis;handle: 10568/76448
AbstractBackgroundAn extensive body of evidence in the field of agro-ecology claims to show the positive effects that maintenance of ecosystem services can have on meeting future food demand by making farms more sustainable, productive and resilient, which then contributes to improved nutrition and livelihoods of farmers. However, inconsistent effects have commonly been reported, while empirical evidence to support assumed improvements is largely lacking. Overall, a coherent synthesis and review of the evidence of these claims is largely absent from the literature.MethodsSystematic searches of peer-reviewed research were conducted in bibliographic databases of Web of Science, SCOPUS, AGRICOLA, AGRIS databases and CAB abstracts, and grey literature from Google Scholar, and 32 subject-specific websites. Searches identified 21,147 articles. After screening, 746 studies were included in the final map.ResultsOf the 19 conservation land management practices considered, soil fertilisation (24 %), tillage (23 %), agroforestry (9 %), and water conservation (7 %) were most commonly studied. Ecosystem services most commonly studied were supporting (55 %) and regulating (33 %), particularly carbon sequestration/storage, nutrient cycling and soil/water regulation/supply. Key data gaps identified included the absence of long-term records (with datasets spanning >20 years), studies located in North and Central Africa, research that focuses on smallholder landscapes, and studies that span different scales (regional and landscape levels).ConclusionsThe study employs systematic mapping combined with an online interactive platform that geographically maps results, which allows users to interrogate different aspects of the evidence through a defined database field structure. While studies are not directly comparable, the database of 746 studies brings together a previously fragmented and multidisciplinary literature base, and collectively provides evidence concerning a wide range of conservation land management practices impacting key ecosystem services. The systematic map is easily updatable, and may be extended for additional coding, analysed to assess the quality of studies, or used to inform future systematic reviews.
CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/10568/76448Data sources: Bielefeld Academic Search Engine (BASE)Oxford University Research ArchiveArticle . 2016License: CC BYData sources: Oxford University Research ArchiveThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-016-0064-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/10568/76448Data sources: Bielefeld Academic Search Engine (BASE)Oxford University Research ArchiveArticle . 2016License: CC BYData sources: Oxford University Research ArchiveThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-016-0064-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 Germany, United States, SwedenPublisher:Springer Science and Business Media LLC Funded by:NSF | Eco-DAS 2.0: Ecological D...NSF| Eco-DAS 2.0: Ecological Dissertations in the Aquatic SciencesTamar Guy-Haim; Harriet Alexander; Tom W. Bell; Raven L. Bier; Lauren E. Bortolotti; Christian Briseño-Avena; Xiaoli Dong; Alison M. Flanagan; Julia Grosse; Lars Grossmann; Sarah Hasnain; Rachel Hovel; Cora A. Johnston; Dan R. Miller; Mario Muscarella; Akana E. Noto; Alexander J. Reisinger; Heidi J. Smith; Karen Stamieszkin;handle: 1903/27562
Mesocosm experiments have become increasingly popular in climate change research as they bridge the gap between small-scale, less realistic, microcosm experiments, and large-scale, more complex, natural systems. Characteristics of aquatic mesocosm designs (e.g., mesocosm volume, study duration, and replication) vary widely, potentially affecting the magnitude and direction of effect sizes measured in experiments. In this global systematic review we aim to identify the type, direction and strength of climate warming effects on aquatic species, communities and ecosystems in mesocosm experiments. Furthermore, we will investigate the context-dependency of the observed effects on several a priori determined effect moderators (ecological and methodological). Our conclusions will provide recommendations for aquatic scientists designing mesocosm experiments, as well as guidelines for interpretation of experimental results by scientists, policy-makers and the general public. We will conduct a systematic search using multiple online databases to gather evidence from the scientific literature on the effects of warming experimentally tested in aquatic mesocosms. Data from relevant studies will be extracted and used in a random effects meta-analysis to estimate the overall effect sizes of warming experiments on species performance, biodiversity and ecosystem functions. Experimental characteristics (e.g., mesocosm size and shape, replication-level, experimental duration and design, biogeographic region, community type, crossed manipulation) will be further analysed using subgroup analyses.
OceanRep arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/3b10936jData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaPublikationer från Uppsala UniversitetArticle . 2017Data sources: Publikationer från Uppsala UniversitetPublikationer från Uppsala UniversitetOther literature type . 2017 . Peer-reviewedData sources: Publikationer från Uppsala UniversiteteScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2017Data sources: Universitätsbibliographie, Universität Duisburg-EssenDigital Repository at the University of MarylandArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0084-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert OceanRep arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/3b10936jData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaPublikationer från Uppsala UniversitetArticle . 2017Data sources: Publikationer från Uppsala UniversitetPublikationer från Uppsala UniversitetOther literature type . 2017 . Peer-reviewedData sources: Publikationer från Uppsala UniversiteteScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2017Data sources: Universitätsbibliographie, Universität Duisburg-EssenDigital Repository at the University of MarylandArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0084-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 Germany, United States, SwedenPublisher:Springer Science and Business Media LLC Funded by:NSF | Eco-DAS 2.0: Ecological D...NSF| Eco-DAS 2.0: Ecological Dissertations in the Aquatic SciencesTamar Guy-Haim; Harriet Alexander; Tom W. Bell; Raven L. Bier; Lauren E. Bortolotti; Christian Briseño-Avena; Xiaoli Dong; Alison M. Flanagan; Julia Grosse; Lars Grossmann; Sarah Hasnain; Rachel Hovel; Cora A. Johnston; Dan R. Miller; Mario Muscarella; Akana E. Noto; Alexander J. Reisinger; Heidi J. Smith; Karen Stamieszkin;handle: 1903/27562
Mesocosm experiments have become increasingly popular in climate change research as they bridge the gap between small-scale, less realistic, microcosm experiments, and large-scale, more complex, natural systems. Characteristics of aquatic mesocosm designs (e.g., mesocosm volume, study duration, and replication) vary widely, potentially affecting the magnitude and direction of effect sizes measured in experiments. In this global systematic review we aim to identify the type, direction and strength of climate warming effects on aquatic species, communities and ecosystems in mesocosm experiments. Furthermore, we will investigate the context-dependency of the observed effects on several a priori determined effect moderators (ecological and methodological). Our conclusions will provide recommendations for aquatic scientists designing mesocosm experiments, as well as guidelines for interpretation of experimental results by scientists, policy-makers and the general public. We will conduct a systematic search using multiple online databases to gather evidence from the scientific literature on the effects of warming experimentally tested in aquatic mesocosms. Data from relevant studies will be extracted and used in a random effects meta-analysis to estimate the overall effect sizes of warming experiments on species performance, biodiversity and ecosystem functions. Experimental characteristics (e.g., mesocosm size and shape, replication-level, experimental duration and design, biogeographic region, community type, crossed manipulation) will be further analysed using subgroup analyses.
OceanRep arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/3b10936jData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaPublikationer från Uppsala UniversitetArticle . 2017Data sources: Publikationer från Uppsala UniversitetPublikationer från Uppsala UniversitetOther literature type . 2017 . Peer-reviewedData sources: Publikationer från Uppsala UniversiteteScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2017Data sources: Universitätsbibliographie, Universität Duisburg-EssenDigital Repository at the University of MarylandArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0084-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert OceanRep arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/3b10936jData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaPublikationer från Uppsala UniversitetArticle . 2017Data sources: Publikationer från Uppsala UniversitetPublikationer från Uppsala UniversitetOther literature type . 2017 . Peer-reviewedData sources: Publikationer från Uppsala UniversiteteScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2017Data sources: Universitätsbibliographie, Universität Duisburg-EssenDigital Repository at the University of MarylandArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0084-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Identifying and prioritis...UKRI| Identifying and prioritising nature based climate change adaptation measures for addressing future flood risk: creating a systematic evidence map.Authors: Connelly, Angela; Snow, Andrew; Carter, Jeremy; Lauwerijssen, Rachel;Abstract Background Natural flood management (NFM) measures seek to protect, enhance, emulate, or restore the natural function of rivers as part of approaches to flood risk management (FRM). While there is agreement in both academic and practice/policy literature that NFM, in a general sense, should be part of a holistic FRM strategy to address current and future flood risk, the specifics of how to consistently implement NFM successfully in practice are less well known. This is particularly acute for practitioners in the UK given the nature of the UK’s biophysical and socio-political context. There is a recognition that existing reviews of NFM effectiveness in the UK tend to focus on the natural science basis and it is unclear how studies account for climate change. Further, reviews tend to focus only on UK studies. This systematic map aims to highlight the way in which existing NFM studies, from different disciplinary backgrounds and across Europe, evaluate effectiveness, and the extent to which they account for climate change. This knowledge can help to make recommendations for future areas of research where the multiple issues around understanding effectiveness can be synthesised, and where climate change is systematically taken into account. Methods This systematic map protocol addresses the following question: what approaches exist to evaluate the effectiveness of UK-relevant natural flood management measures? The protocol details the methodology that will be used to conduct a systematic map of the range of peer-reviewed journal papers, policy documents, guidance, and other forms of grey literature which currently exist on NFM to give an overview on the way in which the effectiveness of NFM is conceived. The methods detail the search strategy employed for gathering items across the peer-reviewed academic literature and grey literature. Additionally, the methods outline how the reviewers will approach article screening, and the eligibility criteria to include/exclude articles. The methods section also details the steps taken to ensure consistency across all reviewers, the data coding strategy, and methods for presenting the final systematic map. Together, the methods employed will help to identify current knowledge gaps, and will enable recommendations to be made for future research.
Environmental Eviden... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2020Data sources: The University of Manchester - Institutional Repositorye-space at Manchester Metropolitan UniversityArticle . 2020Data sources: e-space at Manchester Metropolitan Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-020-00192-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Eviden... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2020Data sources: The University of Manchester - Institutional Repositorye-space at Manchester Metropolitan UniversityArticle . 2020Data sources: e-space at Manchester Metropolitan Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-020-00192-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Identifying and prioritis...UKRI| Identifying and prioritising nature based climate change adaptation measures for addressing future flood risk: creating a systematic evidence map.Authors: Connelly, Angela; Snow, Andrew; Carter, Jeremy; Lauwerijssen, Rachel;Abstract Background Natural flood management (NFM) measures seek to protect, enhance, emulate, or restore the natural function of rivers as part of approaches to flood risk management (FRM). While there is agreement in both academic and practice/policy literature that NFM, in a general sense, should be part of a holistic FRM strategy to address current and future flood risk, the specifics of how to consistently implement NFM successfully in practice are less well known. This is particularly acute for practitioners in the UK given the nature of the UK’s biophysical and socio-political context. There is a recognition that existing reviews of NFM effectiveness in the UK tend to focus on the natural science basis and it is unclear how studies account for climate change. Further, reviews tend to focus only on UK studies. This systematic map aims to highlight the way in which existing NFM studies, from different disciplinary backgrounds and across Europe, evaluate effectiveness, and the extent to which they account for climate change. This knowledge can help to make recommendations for future areas of research where the multiple issues around understanding effectiveness can be synthesised, and where climate change is systematically taken into account. Methods This systematic map protocol addresses the following question: what approaches exist to evaluate the effectiveness of UK-relevant natural flood management measures? The protocol details the methodology that will be used to conduct a systematic map of the range of peer-reviewed journal papers, policy documents, guidance, and other forms of grey literature which currently exist on NFM to give an overview on the way in which the effectiveness of NFM is conceived. The methods detail the search strategy employed for gathering items across the peer-reviewed academic literature and grey literature. Additionally, the methods outline how the reviewers will approach article screening, and the eligibility criteria to include/exclude articles. The methods section also details the steps taken to ensure consistency across all reviewers, the data coding strategy, and methods for presenting the final systematic map. Together, the methods employed will help to identify current knowledge gaps, and will enable recommendations to be made for future research.
Environmental Eviden... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2020Data sources: The University of Manchester - Institutional Repositorye-space at Manchester Metropolitan UniversityArticle . 2020Data sources: e-space at Manchester Metropolitan Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-020-00192-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Eviden... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2020Data sources: The University of Manchester - Institutional Repositorye-space at Manchester Metropolitan UniversityArticle . 2020Data sources: e-space at Manchester Metropolitan Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-020-00192-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 France, France, South AfricaPublisher:Springer Science and Business Media LLC Stephen Syampungani; Jessica Clendenning; Davison Gumbo; Robert Nasi; Kaala Moombe; Paxie W. Chirwa; Natasha Ribeiro; Isla Grundy; Nalukui Matakala; Christopher Martius; Moka Kaliwile; Gillian Kabwe; Gillian Petrokofsky;handle: 2263/44030 , 10568/93516
AbstractBackgroundIncreasingly, forests are on the international climate change agenda as land use and cover changes drive forest and carbon loss. The ability of forests to store carbon has created programs such as Reducing Emissions from Deforestation and Degradation plus (REDD+), in order to provide incentives for particular land uses and forest management practices. A critical element to REDD+ is the ability to know the carbon-storage potential of an ecosystem, and the factors likely to affect the rate of carbon accumulation or the maximum amount stored. Most REDD+ initiatives have focused on humid tropical forests because of their large stocks per unit area. Less attention has been paid to the carbon-storage potential of tropical dry forests, woodlands and savannas. Although these ecosystems support a lower biomass per unit area, they are more widespread than humid forests. This proposed systematic review examines miombo woodlands, which are the most extensive vegetation formation in Africa and support over 100 million people. We ask: To what extent have changes in land use and land cover influenced above- and below-ground carbon stocks of miombo woodlands since the 1950s?MethodsWe will search systematically for studies that document the influence of land use and cover change on above and below ground carbon in miombo woodlands since the 1950s. We will consult bibliographic databases and an extensive grey literature network, including government reports and forestry offices. Relevant studies will examine the impacts of human activities, fire and other land use or cover changes that affect wood biomass or soil carbon in the miombo region. All included studies will be assessed for the soundness and scientific validity of their study design. A quantitative synthesis will tabulate estimates of various parameters necessary to assess carbon stocks and changes across climate and geological factors; and a qualitative analysis will describe the governing land and forest policies. Understanding the impact that land uses and the associated changes have on carbon storage in the miombo woodlands will contribute to more informed forest management policies and better guided strategies for the United Nations Framework Convention on Climate Change.
UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2014License: CC BYFull-Text: http://hdl.handle.net/2263/44030Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/93516Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-3-25&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2014License: CC BYFull-Text: http://hdl.handle.net/2263/44030Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/93516Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-3-25&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 France, France, South AfricaPublisher:Springer Science and Business Media LLC Stephen Syampungani; Jessica Clendenning; Davison Gumbo; Robert Nasi; Kaala Moombe; Paxie W. Chirwa; Natasha Ribeiro; Isla Grundy; Nalukui Matakala; Christopher Martius; Moka Kaliwile; Gillian Kabwe; Gillian Petrokofsky;handle: 2263/44030 , 10568/93516
AbstractBackgroundIncreasingly, forests are on the international climate change agenda as land use and cover changes drive forest and carbon loss. The ability of forests to store carbon has created programs such as Reducing Emissions from Deforestation and Degradation plus (REDD+), in order to provide incentives for particular land uses and forest management practices. A critical element to REDD+ is the ability to know the carbon-storage potential of an ecosystem, and the factors likely to affect the rate of carbon accumulation or the maximum amount stored. Most REDD+ initiatives have focused on humid tropical forests because of their large stocks per unit area. Less attention has been paid to the carbon-storage potential of tropical dry forests, woodlands and savannas. Although these ecosystems support a lower biomass per unit area, they are more widespread than humid forests. This proposed systematic review examines miombo woodlands, which are the most extensive vegetation formation in Africa and support over 100 million people. We ask: To what extent have changes in land use and land cover influenced above- and below-ground carbon stocks of miombo woodlands since the 1950s?MethodsWe will search systematically for studies that document the influence of land use and cover change on above and below ground carbon in miombo woodlands since the 1950s. We will consult bibliographic databases and an extensive grey literature network, including government reports and forestry offices. Relevant studies will examine the impacts of human activities, fire and other land use or cover changes that affect wood biomass or soil carbon in the miombo region. All included studies will be assessed for the soundness and scientific validity of their study design. A quantitative synthesis will tabulate estimates of various parameters necessary to assess carbon stocks and changes across climate and geological factors; and a qualitative analysis will describe the governing land and forest policies. Understanding the impact that land uses and the associated changes have on carbon storage in the miombo woodlands will contribute to more informed forest management policies and better guided strategies for the United Nations Framework Convention on Climate Change.
UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2014License: CC BYFull-Text: http://hdl.handle.net/2263/44030Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/93516Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-3-25&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2014License: CC BYFull-Text: http://hdl.handle.net/2263/44030Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/93516Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-3-25&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Sweden, FinlandPublisher:Springer Science and Business Media LLC Alena Holzknecht; Örjan Berglund; Magnus Land; Jacynthe Dessureault-Rompré; Lars Elsgaard; Kristiina Lång;Abstract Background Cultivated peatlands are widespread in temperate and boreal climate zones. For example, in Europe about 15% of the pristine peatland area have been lost through drainage for agricultural use. When drained, these organic soils are a significant source of greenhouse gas (GHG) emissions. To reach climate goals, the agricultural sector must reduce its GHG emissions, and one measure that has been discussed is changing land use from cropland to ley production or perennial green fallow. This management change leads to lower reported emissions, at least when using the IPCC default emission factors (EF) for croplands and grasslands on organic soils (IPCC 2014). However, there was a limited background dataset available for developing the EFs, and other variables than management affect the comparison of the land use options when the data originates from varying sites and years. Thus, the implications for future policies remain uncertain. This protocol describes the methodology to conduct a systematic review to answer the question of whether ley production or perennial green fallow can be suggested as a valid alternative to annual cropping to decrease GHG emissions on organic soils in temperate and boreal climate. Methods Publications will be searched in different databases and bibliographies of relevant review articles. The comprehensiveness of the search will be tested through a list of benchmark articles identified by the protocol development team. The screening will be performed at title and abstract level and at full text level, including repeatability tests. Eligible populations are organic agricultural soils in temperate and boreal climate regions. Interventions are grasslands without tillage for at least 3 years, and comparators are annual cropping systems within the same study as the intervention. The outcome must be gas fluxes of either carbon dioxide (CO2), nitrous oxide (N2O), or methane (CH4), or any combination of these gases. Studies will go through critical appraisal, checking for internal and external validity, and finally data extraction. If possible, a meta-analysis about the climate impact of perennial green fallow compared to annual cropping on organic soils will be performed.
SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-023-00310-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-023-00310-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Sweden, FinlandPublisher:Springer Science and Business Media LLC Alena Holzknecht; Örjan Berglund; Magnus Land; Jacynthe Dessureault-Rompré; Lars Elsgaard; Kristiina Lång;Abstract Background Cultivated peatlands are widespread in temperate and boreal climate zones. For example, in Europe about 15% of the pristine peatland area have been lost through drainage for agricultural use. When drained, these organic soils are a significant source of greenhouse gas (GHG) emissions. To reach climate goals, the agricultural sector must reduce its GHG emissions, and one measure that has been discussed is changing land use from cropland to ley production or perennial green fallow. This management change leads to lower reported emissions, at least when using the IPCC default emission factors (EF) for croplands and grasslands on organic soils (IPCC 2014). However, there was a limited background dataset available for developing the EFs, and other variables than management affect the comparison of the land use options when the data originates from varying sites and years. Thus, the implications for future policies remain uncertain. This protocol describes the methodology to conduct a systematic review to answer the question of whether ley production or perennial green fallow can be suggested as a valid alternative to annual cropping to decrease GHG emissions on organic soils in temperate and boreal climate. Methods Publications will be searched in different databases and bibliographies of relevant review articles. The comprehensiveness of the search will be tested through a list of benchmark articles identified by the protocol development team. The screening will be performed at title and abstract level and at full text level, including repeatability tests. Eligible populations are organic agricultural soils in temperate and boreal climate regions. Interventions are grasslands without tillage for at least 3 years, and comparators are annual cropping systems within the same study as the intervention. The outcome must be gas fluxes of either carbon dioxide (CO2), nitrous oxide (N2O), or methane (CH4), or any combination of these gases. Studies will go through critical appraisal, checking for internal and external validity, and finally data extraction. If possible, a meta-analysis about the climate impact of perennial green fallow compared to annual cropping on organic soils will be performed.
SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-023-00310-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-023-00310-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Springer Science and Business Media LLC Robert Munroe; Dilys Roe; Bhaskar Vira; Ivan Castelli; Iris Möller; Nathalie Doswald; Andreas Kontoleon; Thomas J. Spencer; Hannah Reid; Jen Stephens; Alessandra Giuliani;Abstract Background Ecosystem-based approaches for adaptation (EbA) integrate the use of biodiversity and ecosystem services into an overall strategy for helping people adapt to climate change. To date, insight into these approaches has often been based on reports from isolated anecdotal case studies. Although these are informative, and provide evidence that people are using ecosystems to adapt, they provide rather limited insight in terms of measuring and evaluating the effectiveness of EbA, especially when compared with technical or structural adaptation interventions. The body of scientific evidence indicating how effective such approaches are is lacking in some aspects. Where evidence does exist it is often dispersed across a range of related fields, such as natural resource management, disaster risk reduction and agroecology. To date, there has been little attempt to systematically assemble and analyse this evidence. Therefore, the current state of evidence regarding the merits or otherwise of EbA is unknown and it has not been possible to identify prevailing knowledge gaps to inform research and analysis, which will enable policymakers to compare EbA with other adaptation options. Methods This protocol details the methodology to be used to conduct a systematic map of peer-reviewed published journal papers and a limited selection of grey literature, to give a methodical overview of the state of the evidence base for EbA effectiveness, and to identify the current knowledge gaps. It addresses the following question: What is the state of the evidence base regarding the ability of ecosystem-based approaches for adaptation to help people adapt to the impacts of climate change?
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Springer Science and Business Media LLC Robert Munroe; Dilys Roe; Bhaskar Vira; Ivan Castelli; Iris Möller; Nathalie Doswald; Andreas Kontoleon; Thomas J. Spencer; Hannah Reid; Jen Stephens; Alessandra Giuliani;Abstract Background Ecosystem-based approaches for adaptation (EbA) integrate the use of biodiversity and ecosystem services into an overall strategy for helping people adapt to climate change. To date, insight into these approaches has often been based on reports from isolated anecdotal case studies. Although these are informative, and provide evidence that people are using ecosystems to adapt, they provide rather limited insight in terms of measuring and evaluating the effectiveness of EbA, especially when compared with technical or structural adaptation interventions. The body of scientific evidence indicating how effective such approaches are is lacking in some aspects. Where evidence does exist it is often dispersed across a range of related fields, such as natural resource management, disaster risk reduction and agroecology. To date, there has been little attempt to systematically assemble and analyse this evidence. Therefore, the current state of evidence regarding the merits or otherwise of EbA is unknown and it has not been possible to identify prevailing knowledge gaps to inform research and analysis, which will enable policymakers to compare EbA with other adaptation options. Methods This protocol details the methodology to be used to conduct a systematic map of peer-reviewed published journal papers and a limited selection of grey literature, to give a methodical overview of the state of the evidence base for EbA effectiveness, and to identify the current knowledge gaps. It addresses the following question: What is the state of the evidence base regarding the ability of ecosystem-based approaches for adaptation to help people adapt to the impacts of climate change?
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 France, FinlandPublisher:Springer Science and Business Media LLC Gillian Petrokofsky; Hideki Kanamaru; Frédéric Achard; Scott J. Goetz; Hans Joosten; Peter Holmgren; Aleksi Lehtonen; Mary Menton; Andrew S. Pullin; M. Wattenbach;handle: 10568/94325
Le changement climatique et les taux élevés d'émissions mondiales de carbone ont attiré l'attention sur la nécessité de systèmes de surveillance de haute qualité pour évaluer la quantité de carbone présente dans les systèmes terrestres et son évolution dans le temps. Le choix du système à adopter doit être guidé par une bonne science. Il existe un nombre croissant d'informations scientifiques et techniques sur les méthodes de mesure du carbone au sol et par télédétection. L'adéquation et la comparabilité de ces différents systèmes n'ont pas été pleinement évaluées. Un examen systématique comparera les méthodes d'évaluation des stocks de carbone et des changements des stocks de carbone dans les principales catégories d'utilisation des terres, y compris les terres forestières, les terres cultivées, les prairies et les zones humides, dans les réservoirs de carbone terrestres qui peuvent être pris en compte dans le protocole de Kyoto (biomasse aérienne, biomasse souterraine, bois mort, litière et carbone du sol). L'évaluation du carbone dans les produits ligneux récoltés ne sera pas prise en compte dans cette revue. L'élaboration de stratégies d'atténuation efficaces pour réduire les émissions de carbone et de stratégies d'adaptation équitables pour faire face à l'augmentation des températures mondiales reposera sur des informations scientifiques solides et exemptes de biais imposés par les intérêts nationaux et commerciaux. Un examen systématique des méthodes utilisées pour évaluer les stocks de carbone et les variations des stocks de carbone contribuera à l'analyse transparente d'une science complexe et souvent contradictoire. El cambio climático y las altas tasas de emisiones globales de carbono han centrado la atención en la necesidad de sistemas de monitoreo de alta calidad para evaluar cuánto carbono está presente en los sistemas terrestres y cómo cambian con el tiempo. La elección del sistema a adoptar debe guiarse por la buena ciencia. Existe un creciente cuerpo de información científica y técnica sobre los métodos de medición de carbono basados en tierra y de teledetección. La idoneidad y comparabilidad de estos diferentes sistemas no se han evaluado completamente. Una revisión sistemática comparará los métodos de evaluación de las reservas de carbono y los cambios en las reservas de carbono en las categorías clave de uso de la tierra, incluidas las tierras forestales, las tierras de cultivo, los pastizales y los humedales, en los depósitos de carbono terrestre que se pueden contabilizar en virtud del protocolo de Kyoto (biomasa sobre el suelo, biomasa subterránea, madera muerta, basura y carbono del suelo). La evaluación del carbono en los productos de madera recolectada no se considerará en esta revisión. El desarrollo de estrategias de mitigación efectivas para reducir las emisiones de carbono y estrategias de adaptación equitativas para hacer frente al aumento de las temperaturas globales se basará en información científica sólida que esté libre de sesgos impuestos por intereses nacionales y comerciales. Una revisión sistemática de los métodos utilizados para evaluar las reservas de carbono y los cambios en las reservas de carbono contribuirá al análisis transparente de la ciencia compleja y, a menudo, contradictoria. Climate change and high rates of global carbon emissions have focussed attention on the need for high-quality monitoring systems to assess how much carbon is present in terrestrial systems and how these change over time. The choice of system to adopt should be guided by good science. There is a growing body of scientific and technical information on ground-based and remote sensing methods of carbon measurement. The adequacy and comparability of these different systems have not been fully evaluated. A systematic review will compare methods of assessing carbon stocks and carbon stock changes in key land use categories, including, forest land, cropland, grassland, and wetlands, in terrestrial carbon pools that can be accounted for under the Kyoto protocol (above- ground biomass, below-ground biomass, dead wood, litter and soil carbon). Assessing carbon in harvested wood products will not be considered in this review. Developing effective mitigation strategies to reduce carbon emissions and equitable adaptation strategies to cope with increasing global temperatures will rely on robust scientific information that is free from biases imposed by national and commercial interests. A systematic review of the methods used for assessing carbon stocks and carbon stock changes will contribute to the transparent analysis of complex and often contradictory science. ركز تغير المناخ وارتفاع معدلات انبعاثات الكربون العالمية الاهتمام على الحاجة إلى أنظمة مراقبة عالية الجودة لتقييم كمية الكربون الموجودة في الأنظمة الأرضية وكيفية تغيرها بمرور الوقت. يجب أن يسترشد اختيار النظام الذي يجب اعتماده بالعلم الجيد. هناك مجموعة متزايدة من المعلومات العلمية والتقنية حول طرق الاستشعار الأرضي وعن بعد لقياس الكربون. لم يتم تقييم مدى كفاية هذه الأنظمة المختلفة وقابليتها للمقارنة بشكل كامل. ستقارن المراجعة المنهجية طرق تقييم مخزونات الكربون وتغيرات مخزون الكربون في الفئات الرئيسية لاستخدام الأراضي، بما في ذلك أراضي الغابات والأراضي الزراعية والمراعي والأراضي الرطبة، في مجمعات الكربون الأرضية التي يمكن حسابها بموجب بروتوكول كيوتو (الكتلة الحيوية فوق الأرض والكتلة الحيوية تحت الأرض والحطب والقمامة وكربون التربة). لن يتم النظر في تقييم الكربون في منتجات الخشب المقطوع في هذه المراجعة. سيعتمد وضع استراتيجيات تخفيف فعالة للحد من انبعاثات الكربون واستراتيجيات التكيف المنصفة للتعامل مع ارتفاع درجات الحرارة العالمية على معلومات علمية قوية خالية من التحيزات التي تفرضها المصالح الوطنية والتجارية. ستساهم المراجعة المنهجية للطرق المستخدمة لتقييم مخزونات الكربون وتغيرات مخزون الكربون في التحليل الشفاف للعلوم المعقدة والمتناقضة في كثير من الأحيان.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/94325Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 83 citations 83 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/94325Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 France, FinlandPublisher:Springer Science and Business Media LLC Gillian Petrokofsky; Hideki Kanamaru; Frédéric Achard; Scott J. Goetz; Hans Joosten; Peter Holmgren; Aleksi Lehtonen; Mary Menton; Andrew S. Pullin; M. Wattenbach;handle: 10568/94325
Le changement climatique et les taux élevés d'émissions mondiales de carbone ont attiré l'attention sur la nécessité de systèmes de surveillance de haute qualité pour évaluer la quantité de carbone présente dans les systèmes terrestres et son évolution dans le temps. Le choix du système à adopter doit être guidé par une bonne science. Il existe un nombre croissant d'informations scientifiques et techniques sur les méthodes de mesure du carbone au sol et par télédétection. L'adéquation et la comparabilité de ces différents systèmes n'ont pas été pleinement évaluées. Un examen systématique comparera les méthodes d'évaluation des stocks de carbone et des changements des stocks de carbone dans les principales catégories d'utilisation des terres, y compris les terres forestières, les terres cultivées, les prairies et les zones humides, dans les réservoirs de carbone terrestres qui peuvent être pris en compte dans le protocole de Kyoto (biomasse aérienne, biomasse souterraine, bois mort, litière et carbone du sol). L'évaluation du carbone dans les produits ligneux récoltés ne sera pas prise en compte dans cette revue. L'élaboration de stratégies d'atténuation efficaces pour réduire les émissions de carbone et de stratégies d'adaptation équitables pour faire face à l'augmentation des températures mondiales reposera sur des informations scientifiques solides et exemptes de biais imposés par les intérêts nationaux et commerciaux. Un examen systématique des méthodes utilisées pour évaluer les stocks de carbone et les variations des stocks de carbone contribuera à l'analyse transparente d'une science complexe et souvent contradictoire. El cambio climático y las altas tasas de emisiones globales de carbono han centrado la atención en la necesidad de sistemas de monitoreo de alta calidad para evaluar cuánto carbono está presente en los sistemas terrestres y cómo cambian con el tiempo. La elección del sistema a adoptar debe guiarse por la buena ciencia. Existe un creciente cuerpo de información científica y técnica sobre los métodos de medición de carbono basados en tierra y de teledetección. La idoneidad y comparabilidad de estos diferentes sistemas no se han evaluado completamente. Una revisión sistemática comparará los métodos de evaluación de las reservas de carbono y los cambios en las reservas de carbono en las categorías clave de uso de la tierra, incluidas las tierras forestales, las tierras de cultivo, los pastizales y los humedales, en los depósitos de carbono terrestre que se pueden contabilizar en virtud del protocolo de Kyoto (biomasa sobre el suelo, biomasa subterránea, madera muerta, basura y carbono del suelo). La evaluación del carbono en los productos de madera recolectada no se considerará en esta revisión. El desarrollo de estrategias de mitigación efectivas para reducir las emisiones de carbono y estrategias de adaptación equitativas para hacer frente al aumento de las temperaturas globales se basará en información científica sólida que esté libre de sesgos impuestos por intereses nacionales y comerciales. Una revisión sistemática de los métodos utilizados para evaluar las reservas de carbono y los cambios en las reservas de carbono contribuirá al análisis transparente de la ciencia compleja y, a menudo, contradictoria. Climate change and high rates of global carbon emissions have focussed attention on the need for high-quality monitoring systems to assess how much carbon is present in terrestrial systems and how these change over time. The choice of system to adopt should be guided by good science. There is a growing body of scientific and technical information on ground-based and remote sensing methods of carbon measurement. The adequacy and comparability of these different systems have not been fully evaluated. A systematic review will compare methods of assessing carbon stocks and carbon stock changes in key land use categories, including, forest land, cropland, grassland, and wetlands, in terrestrial carbon pools that can be accounted for under the Kyoto protocol (above- ground biomass, below-ground biomass, dead wood, litter and soil carbon). Assessing carbon in harvested wood products will not be considered in this review. Developing effective mitigation strategies to reduce carbon emissions and equitable adaptation strategies to cope with increasing global temperatures will rely on robust scientific information that is free from biases imposed by national and commercial interests. A systematic review of the methods used for assessing carbon stocks and carbon stock changes will contribute to the transparent analysis of complex and often contradictory science. ركز تغير المناخ وارتفاع معدلات انبعاثات الكربون العالمية الاهتمام على الحاجة إلى أنظمة مراقبة عالية الجودة لتقييم كمية الكربون الموجودة في الأنظمة الأرضية وكيفية تغيرها بمرور الوقت. يجب أن يسترشد اختيار النظام الذي يجب اعتماده بالعلم الجيد. هناك مجموعة متزايدة من المعلومات العلمية والتقنية حول طرق الاستشعار الأرضي وعن بعد لقياس الكربون. لم يتم تقييم مدى كفاية هذه الأنظمة المختلفة وقابليتها للمقارنة بشكل كامل. ستقارن المراجعة المنهجية طرق تقييم مخزونات الكربون وتغيرات مخزون الكربون في الفئات الرئيسية لاستخدام الأراضي، بما في ذلك أراضي الغابات والأراضي الزراعية والمراعي والأراضي الرطبة، في مجمعات الكربون الأرضية التي يمكن حسابها بموجب بروتوكول كيوتو (الكتلة الحيوية فوق الأرض والكتلة الحيوية تحت الأرض والحطب والقمامة وكربون التربة). لن يتم النظر في تقييم الكربون في منتجات الخشب المقطوع في هذه المراجعة. سيعتمد وضع استراتيجيات تخفيف فعالة للحد من انبعاثات الكربون واستراتيجيات التكيف المنصفة للتعامل مع ارتفاع درجات الحرارة العالمية على معلومات علمية قوية خالية من التحيزات التي تفرضها المصالح الوطنية والتجارية. ستساهم المراجعة المنهجية للطرق المستخدمة لتقييم مخزونات الكربون وتغيرات مخزون الكربون في التحليل الشفاف للعلوم المعقدة والمتناقضة في كثير من الأحيان.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/94325Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 83 citations 83 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/94325Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United States, United States, United States, United KingdomPublisher:Springer Science and Business Media LLC Authors: Samantha H. Cheng; Sebastien Costedoat; Eleanor J. Sterling; Catherine Chamberlain; +14 AuthorsSamantha H. Cheng; Sebastien Costedoat; Eleanor J. Sterling; Catherine Chamberlain; Arundhati Jagadish; Peter Lichtenthal; A. Justin Nowakowski; Auset Taylor; Jen Tinsman; Steven W. J. Canty; Margaret B. Holland; Kelly W. Jones; Morena Mills; David Morales-Hidalgo; Starry Sprenkle-Hyppolite; Meredith Wiggins; Michael B. Mascia; Carlos L. Muñoz Brenes;pmc: PMC9017726
handle: 10044/1/106110
Abstract Background Natural climate solutions (NCS)—actions to conserve, restore, and modify natural and modified ecosystems to increase carbon storage or avoid greenhouse gas (GHG) emissions—are increasingly regarded as important pathways for climate change mitigation, while contributing to our global conservation efforts, overall planetary resilience, and sustainable development goals. Recently, projections posit that terrestrial-based NCS can potentially capture or avoid the emission of at least 11 Gt (gigatons) of carbon dioxide equivalent a year, or roughly encompassing one third of the emissions reductions needed to meet the Paris Climate Agreement goals by 2030. NCS interventions also purport to provide co-benefits such as improved productivity and livelihoods from sustainable natural resource management, protection of locally and culturally important natural areas, and downstream climate adaptation benefits. Attention on implementing NCS to address climate change across global and national agendas has grown—however, clear understanding of which types of NCS interventions have undergone substantial study versus those that require additional evidence is still lacking. This study aims to conduct a systematic map to collate and describe the current state, distribution, and methods used for evidence on the links between NCS interventions and climate change mitigation outcomes within tropical and sub-tropical terrestrial ecosystems. Results of this study can be used to inform program and policy design and highlight critical knowledge gaps where future evaluation, research, and syntheses are needed. Methods To develop this systematic map, we will search two bibliographic databases (including 11 indices) and 67 organization websites, backward citation chase from 39 existing evidence syntheses, and solicit information from key informants. All searches will be conducted in English and encompass subtropical and tropical terrestrial ecosystems (forests, grasslands, mangroves, agricultural areas). Search results will be screened at title and abstract, and full text levels, recording both the number of excluded articles and reasons for exclusion. Key meta-data from included articles will be coded and reported in a narrative review that will summarize trends in the evidence base, assess gaps in knowledge, and provide insights for policy, practice, and research. The data from this systematic map will be made open access.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022Full-Text: http://hdl.handle.net/10044/1/106110Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital RepositoryColumbia University Academic CommonsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00268-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022Full-Text: http://hdl.handle.net/10044/1/106110Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital RepositoryColumbia University Academic CommonsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00268-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United States, United States, United States, United KingdomPublisher:Springer Science and Business Media LLC Authors: Samantha H. Cheng; Sebastien Costedoat; Eleanor J. Sterling; Catherine Chamberlain; +14 AuthorsSamantha H. Cheng; Sebastien Costedoat; Eleanor J. Sterling; Catherine Chamberlain; Arundhati Jagadish; Peter Lichtenthal; A. Justin Nowakowski; Auset Taylor; Jen Tinsman; Steven W. J. Canty; Margaret B. Holland; Kelly W. Jones; Morena Mills; David Morales-Hidalgo; Starry Sprenkle-Hyppolite; Meredith Wiggins; Michael B. Mascia; Carlos L. Muñoz Brenes;pmc: PMC9017726
handle: 10044/1/106110
Abstract Background Natural climate solutions (NCS)—actions to conserve, restore, and modify natural and modified ecosystems to increase carbon storage or avoid greenhouse gas (GHG) emissions—are increasingly regarded as important pathways for climate change mitigation, while contributing to our global conservation efforts, overall planetary resilience, and sustainable development goals. Recently, projections posit that terrestrial-based NCS can potentially capture or avoid the emission of at least 11 Gt (gigatons) of carbon dioxide equivalent a year, or roughly encompassing one third of the emissions reductions needed to meet the Paris Climate Agreement goals by 2030. NCS interventions also purport to provide co-benefits such as improved productivity and livelihoods from sustainable natural resource management, protection of locally and culturally important natural areas, and downstream climate adaptation benefits. Attention on implementing NCS to address climate change across global and national agendas has grown—however, clear understanding of which types of NCS interventions have undergone substantial study versus those that require additional evidence is still lacking. This study aims to conduct a systematic map to collate and describe the current state, distribution, and methods used for evidence on the links between NCS interventions and climate change mitigation outcomes within tropical and sub-tropical terrestrial ecosystems. Results of this study can be used to inform program and policy design and highlight critical knowledge gaps where future evaluation, research, and syntheses are needed. Methods To develop this systematic map, we will search two bibliographic databases (including 11 indices) and 67 organization websites, backward citation chase from 39 existing evidence syntheses, and solicit information from key informants. All searches will be conducted in English and encompass subtropical and tropical terrestrial ecosystems (forests, grasslands, mangroves, agricultural areas). Search results will be screened at title and abstract, and full text levels, recording both the number of excluded articles and reasons for exclusion. Key meta-data from included articles will be coded and reported in a narrative review that will summarize trends in the evidence base, assess gaps in knowledge, and provide insights for policy, practice, and research. The data from this systematic map will be made open access.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022Full-Text: http://hdl.handle.net/10044/1/106110Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital RepositoryColumbia University Academic CommonsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00268-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022Full-Text: http://hdl.handle.net/10044/1/106110Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital RepositoryColumbia University Academic CommonsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00268-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Springer Science and Business Media LLC Mohamad Nor Azra; Mohd Iqbal Mohd Noor; Yeong Yik Sung; Elizabeth R. Lawrence; Mazlan Abd. Ghaffar;pmid: 39294773
pmc: PMC11378826
Abstract Background The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) has estimated that invasive alien species (IAS) might cause billions of dollars of losses every year across the world. One example is South-East Asia, where IAS have caused an estimated loss of 33.5 billion USD, affecting the environment, human health, and agricultural production. Factors associated with climate change, such as increased carbon dioxide (CO2), heavy precipitation, and elevated temperatures is expected to facilitate biological invasion, leading only to further financial and public health loss. Thus, further study is needed to identify, collate and categorise what evidence exists on the impacts of climate change on fish and shellfish species that contribute to the list of “One Hundred of the World’s Worst Invasive Alien Species” as identified by the International Union for Conservation of Nature’s (IUCN). Such mapping will identify regions more at risk of biological invasion as climate change progresses. Methods We outline a systematic mapping review protocol that follows the Guideline and Standards for Evidence Synthesis in Environmental Management and RepOrting standards for Systematic Evidence Syntheses (ROSES). We describe how peer-reviewed articles will be collected from Web of Science and Scopus, and then analyzed to create knowledge maps on the impact climate change has on invasive species. Finally, we speculate on how our results will aid future management of invasive species in the light of climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00273-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00273-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Springer Science and Business Media LLC Mohamad Nor Azra; Mohd Iqbal Mohd Noor; Yeong Yik Sung; Elizabeth R. Lawrence; Mazlan Abd. Ghaffar;pmid: 39294773
pmc: PMC11378826
Abstract Background The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) has estimated that invasive alien species (IAS) might cause billions of dollars of losses every year across the world. One example is South-East Asia, where IAS have caused an estimated loss of 33.5 billion USD, affecting the environment, human health, and agricultural production. Factors associated with climate change, such as increased carbon dioxide (CO2), heavy precipitation, and elevated temperatures is expected to facilitate biological invasion, leading only to further financial and public health loss. Thus, further study is needed to identify, collate and categorise what evidence exists on the impacts of climate change on fish and shellfish species that contribute to the list of “One Hundred of the World’s Worst Invasive Alien Species” as identified by the International Union for Conservation of Nature’s (IUCN). Such mapping will identify regions more at risk of biological invasion as climate change progresses. Methods We outline a systematic mapping review protocol that follows the Guideline and Standards for Evidence Synthesis in Environmental Management and RepOrting standards for Systematic Evidence Syntheses (ROSES). We describe how peer-reviewed articles will be collected from Web of Science and Scopus, and then analyzed to create knowledge maps on the impact climate change has on invasive species. Finally, we speculate on how our results will aid future management of invasive species in the light of climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00273-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00273-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 South AfricaPublisher:Springer Science and Business Media LLC Authors: Haddaway, Neal R.; Johannesdottir, Solveig L.; Piniewski, Mikołaj; Macura, Biljana;handle: 10210/289962
Abstract Background Pollution of the Baltic Sea continues to be a problem. Major terrestrial sources of nutrient emissions to the Baltic Sea are agriculture and wastewater, both major causes of eutrophication. Wastewater contains nutrients and organic matter that could constitute valuable products such as agricultural fertilizers and source of energy. With the EU’s action plan for circular economy, waste management and resource utilization is central. Thus the integration of resource recovery to wastewater management could create benefits beyond the wastewater sector. There is a growing interest in resource recovery from wastewater. However, there is no systematic overview of the literature on technologies to recover nutrients and carbon from wastewater sources done to date. Methods This systematic map will identify a representative list of studies on ecotechnologies for reusing carbon and nutrients (nitrogen and phosphorus) from domestic wastewater, which includes e.g. sewage sludge and wastewater fractions. Searches will be performed in five bibliographic databases, one search engine and 38 specialist websites. Searches will mainly be performed in English, search for literature in specialist websites will also include Finnish, Polish and Swedish. Coding and meta-data extraction will include information on ecotechnology name and short description, reuse outcome (i.e. reuse of carbon, nitrogen and/or phosphorus), type of reuse (i.e. whether it is explicit or implicit), study country and location, latitude and longitude. All screening and coding will be done after initial consistency checking. The outcomes of this systematic map will be a searchable database of coded studies. Findings will be presented in a geo-informational system (i.e. an evidence atlas) and knowledge gaps and clusters will be visualised via heat maps.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-018-0145-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-018-0145-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 South AfricaPublisher:Springer Science and Business Media LLC Authors: Haddaway, Neal R.; Johannesdottir, Solveig L.; Piniewski, Mikołaj; Macura, Biljana;handle: 10210/289962
Abstract Background Pollution of the Baltic Sea continues to be a problem. Major terrestrial sources of nutrient emissions to the Baltic Sea are agriculture and wastewater, both major causes of eutrophication. Wastewater contains nutrients and organic matter that could constitute valuable products such as agricultural fertilizers and source of energy. With the EU’s action plan for circular economy, waste management and resource utilization is central. Thus the integration of resource recovery to wastewater management could create benefits beyond the wastewater sector. There is a growing interest in resource recovery from wastewater. However, there is no systematic overview of the literature on technologies to recover nutrients and carbon from wastewater sources done to date. Methods This systematic map will identify a representative list of studies on ecotechnologies for reusing carbon and nutrients (nitrogen and phosphorus) from domestic wastewater, which includes e.g. sewage sludge and wastewater fractions. Searches will be performed in five bibliographic databases, one search engine and 38 specialist websites. Searches will mainly be performed in English, search for literature in specialist websites will also include Finnish, Polish and Swedish. Coding and meta-data extraction will include information on ecotechnology name and short description, reuse outcome (i.e. reuse of carbon, nitrogen and/or phosphorus), type of reuse (i.e. whether it is explicit or implicit), study country and location, latitude and longitude. All screening and coding will be done after initial consistency checking. The outcomes of this systematic map will be a searchable database of coded studies. Findings will be presented in a geo-informational system (i.e. an evidence atlas) and knowledge gaps and clusters will be visualised via heat maps.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-018-0145-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-018-0145-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 France, United Kingdom, Australia, United Kingdom, France, United KingdomPublisher:Springer Science and Business Media LLC David Benz; Jessica P. R. Thorn; Gillian Petrokofsky; Rachel Friedman; Katherine J. Willis; Katherine J. Willis; Katherine J. Willis;handle: 10568/76448
AbstractBackgroundAn extensive body of evidence in the field of agro-ecology claims to show the positive effects that maintenance of ecosystem services can have on meeting future food demand by making farms more sustainable, productive and resilient, which then contributes to improved nutrition and livelihoods of farmers. However, inconsistent effects have commonly been reported, while empirical evidence to support assumed improvements is largely lacking. Overall, a coherent synthesis and review of the evidence of these claims is largely absent from the literature.MethodsSystematic searches of peer-reviewed research were conducted in bibliographic databases of Web of Science, SCOPUS, AGRICOLA, AGRIS databases and CAB abstracts, and grey literature from Google Scholar, and 32 subject-specific websites. Searches identified 21,147 articles. After screening, 746 studies were included in the final map.ResultsOf the 19 conservation land management practices considered, soil fertilisation (24 %), tillage (23 %), agroforestry (9 %), and water conservation (7 %) were most commonly studied. Ecosystem services most commonly studied were supporting (55 %) and regulating (33 %), particularly carbon sequestration/storage, nutrient cycling and soil/water regulation/supply. Key data gaps identified included the absence of long-term records (with datasets spanning >20 years), studies located in North and Central Africa, research that focuses on smallholder landscapes, and studies that span different scales (regional and landscape levels).ConclusionsThe study employs systematic mapping combined with an online interactive platform that geographically maps results, which allows users to interrogate different aspects of the evidence through a defined database field structure. While studies are not directly comparable, the database of 746 studies brings together a previously fragmented and multidisciplinary literature base, and collectively provides evidence concerning a wide range of conservation land management practices impacting key ecosystem services. The systematic map is easily updatable, and may be extended for additional coding, analysed to assess the quality of studies, or used to inform future systematic reviews.
CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/10568/76448Data sources: Bielefeld Academic Search Engine (BASE)Oxford University Research ArchiveArticle . 2016License: CC BYData sources: Oxford University Research ArchiveThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-016-0064-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/10568/76448Data sources: Bielefeld Academic Search Engine (BASE)Oxford University Research ArchiveArticle . 2016License: CC BYData sources: Oxford University Research ArchiveThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-016-0064-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 France, United Kingdom, Australia, United Kingdom, France, United KingdomPublisher:Springer Science and Business Media LLC David Benz; Jessica P. R. Thorn; Gillian Petrokofsky; Rachel Friedman; Katherine J. Willis; Katherine J. Willis; Katherine J. Willis;handle: 10568/76448
AbstractBackgroundAn extensive body of evidence in the field of agro-ecology claims to show the positive effects that maintenance of ecosystem services can have on meeting future food demand by making farms more sustainable, productive and resilient, which then contributes to improved nutrition and livelihoods of farmers. However, inconsistent effects have commonly been reported, while empirical evidence to support assumed improvements is largely lacking. Overall, a coherent synthesis and review of the evidence of these claims is largely absent from the literature.MethodsSystematic searches of peer-reviewed research were conducted in bibliographic databases of Web of Science, SCOPUS, AGRICOLA, AGRIS databases and CAB abstracts, and grey literature from Google Scholar, and 32 subject-specific websites. Searches identified 21,147 articles. After screening, 746 studies were included in the final map.ResultsOf the 19 conservation land management practices considered, soil fertilisation (24 %), tillage (23 %), agroforestry (9 %), and water conservation (7 %) were most commonly studied. Ecosystem services most commonly studied were supporting (55 %) and regulating (33 %), particularly carbon sequestration/storage, nutrient cycling and soil/water regulation/supply. Key data gaps identified included the absence of long-term records (with datasets spanning >20 years), studies located in North and Central Africa, research that focuses on smallholder landscapes, and studies that span different scales (regional and landscape levels).ConclusionsThe study employs systematic mapping combined with an online interactive platform that geographically maps results, which allows users to interrogate different aspects of the evidence through a defined database field structure. While studies are not directly comparable, the database of 746 studies brings together a previously fragmented and multidisciplinary literature base, and collectively provides evidence concerning a wide range of conservation land management practices impacting key ecosystem services. The systematic map is easily updatable, and may be extended for additional coding, analysed to assess the quality of studies, or used to inform future systematic reviews.
CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/10568/76448Data sources: Bielefeld Academic Search Engine (BASE)Oxford University Research ArchiveArticle . 2016License: CC BYData sources: Oxford University Research ArchiveThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-016-0064-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/10568/76448Data sources: Bielefeld Academic Search Engine (BASE)Oxford University Research ArchiveArticle . 2016License: CC BYData sources: Oxford University Research ArchiveThe University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-016-0064-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 Germany, United States, SwedenPublisher:Springer Science and Business Media LLC Funded by:NSF | Eco-DAS 2.0: Ecological D...NSF| Eco-DAS 2.0: Ecological Dissertations in the Aquatic SciencesTamar Guy-Haim; Harriet Alexander; Tom W. Bell; Raven L. Bier; Lauren E. Bortolotti; Christian Briseño-Avena; Xiaoli Dong; Alison M. Flanagan; Julia Grosse; Lars Grossmann; Sarah Hasnain; Rachel Hovel; Cora A. Johnston; Dan R. Miller; Mario Muscarella; Akana E. Noto; Alexander J. Reisinger; Heidi J. Smith; Karen Stamieszkin;handle: 1903/27562
Mesocosm experiments have become increasingly popular in climate change research as they bridge the gap between small-scale, less realistic, microcosm experiments, and large-scale, more complex, natural systems. Characteristics of aquatic mesocosm designs (e.g., mesocosm volume, study duration, and replication) vary widely, potentially affecting the magnitude and direction of effect sizes measured in experiments. In this global systematic review we aim to identify the type, direction and strength of climate warming effects on aquatic species, communities and ecosystems in mesocosm experiments. Furthermore, we will investigate the context-dependency of the observed effects on several a priori determined effect moderators (ecological and methodological). Our conclusions will provide recommendations for aquatic scientists designing mesocosm experiments, as well as guidelines for interpretation of experimental results by scientists, policy-makers and the general public. We will conduct a systematic search using multiple online databases to gather evidence from the scientific literature on the effects of warming experimentally tested in aquatic mesocosms. Data from relevant studies will be extracted and used in a random effects meta-analysis to estimate the overall effect sizes of warming experiments on species performance, biodiversity and ecosystem functions. Experimental characteristics (e.g., mesocosm size and shape, replication-level, experimental duration and design, biogeographic region, community type, crossed manipulation) will be further analysed using subgroup analyses.
OceanRep arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/3b10936jData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaPublikationer från Uppsala UniversitetArticle . 2017Data sources: Publikationer från Uppsala UniversitetPublikationer från Uppsala UniversitetOther literature type . 2017 . Peer-reviewedData sources: Publikationer från Uppsala UniversiteteScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2017Data sources: Universitätsbibliographie, Universität Duisburg-EssenDigital Repository at the University of MarylandArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0084-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert OceanRep arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/3b10936jData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaPublikationer från Uppsala UniversitetArticle . 2017Data sources: Publikationer från Uppsala UniversitetPublikationer från Uppsala UniversitetOther literature type . 2017 . Peer-reviewedData sources: Publikationer från Uppsala UniversiteteScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2017Data sources: Universitätsbibliographie, Universität Duisburg-EssenDigital Repository at the University of MarylandArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0084-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 Germany, United States, SwedenPublisher:Springer Science and Business Media LLC Funded by:NSF | Eco-DAS 2.0: Ecological D...NSF| Eco-DAS 2.0: Ecological Dissertations in the Aquatic SciencesTamar Guy-Haim; Harriet Alexander; Tom W. Bell; Raven L. Bier; Lauren E. Bortolotti; Christian Briseño-Avena; Xiaoli Dong; Alison M. Flanagan; Julia Grosse; Lars Grossmann; Sarah Hasnain; Rachel Hovel; Cora A. Johnston; Dan R. Miller; Mario Muscarella; Akana E. Noto; Alexander J. Reisinger; Heidi J. Smith; Karen Stamieszkin;handle: 1903/27562
Mesocosm experiments have become increasingly popular in climate change research as they bridge the gap between small-scale, less realistic, microcosm experiments, and large-scale, more complex, natural systems. Characteristics of aquatic mesocosm designs (e.g., mesocosm volume, study duration, and replication) vary widely, potentially affecting the magnitude and direction of effect sizes measured in experiments. In this global systematic review we aim to identify the type, direction and strength of climate warming effects on aquatic species, communities and ecosystems in mesocosm experiments. Furthermore, we will investigate the context-dependency of the observed effects on several a priori determined effect moderators (ecological and methodological). Our conclusions will provide recommendations for aquatic scientists designing mesocosm experiments, as well as guidelines for interpretation of experimental results by scientists, policy-makers and the general public. We will conduct a systematic search using multiple online databases to gather evidence from the scientific literature on the effects of warming experimentally tested in aquatic mesocosms. Data from relevant studies will be extracted and used in a random effects meta-analysis to estimate the overall effect sizes of warming experiments on species performance, biodiversity and ecosystem functions. Experimental characteristics (e.g., mesocosm size and shape, replication-level, experimental duration and design, biogeographic region, community type, crossed manipulation) will be further analysed using subgroup analyses.
OceanRep arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/3b10936jData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaPublikationer från Uppsala UniversitetArticle . 2017Data sources: Publikationer från Uppsala UniversitetPublikationer från Uppsala UniversitetOther literature type . 2017 . Peer-reviewedData sources: Publikationer från Uppsala UniversiteteScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2017Data sources: Universitätsbibliographie, Universität Duisburg-EssenDigital Repository at the University of MarylandArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0084-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert OceanRep arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/3b10936jData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaPublikationer från Uppsala UniversitetArticle . 2017Data sources: Publikationer från Uppsala UniversitetPublikationer från Uppsala UniversitetOther literature type . 2017 . Peer-reviewedData sources: Publikationer från Uppsala UniversiteteScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of CaliforniaUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2017Data sources: Universitätsbibliographie, Universität Duisburg-EssenDigital Repository at the University of MarylandArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-017-0084-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Identifying and prioritis...UKRI| Identifying and prioritising nature based climate change adaptation measures for addressing future flood risk: creating a systematic evidence map.Authors: Connelly, Angela; Snow, Andrew; Carter, Jeremy; Lauwerijssen, Rachel;Abstract Background Natural flood management (NFM) measures seek to protect, enhance, emulate, or restore the natural function of rivers as part of approaches to flood risk management (FRM). While there is agreement in both academic and practice/policy literature that NFM, in a general sense, should be part of a holistic FRM strategy to address current and future flood risk, the specifics of how to consistently implement NFM successfully in practice are less well known. This is particularly acute for practitioners in the UK given the nature of the UK’s biophysical and socio-political context. There is a recognition that existing reviews of NFM effectiveness in the UK tend to focus on the natural science basis and it is unclear how studies account for climate change. Further, reviews tend to focus only on UK studies. This systematic map aims to highlight the way in which existing NFM studies, from different disciplinary backgrounds and across Europe, evaluate effectiveness, and the extent to which they account for climate change. This knowledge can help to make recommendations for future areas of research where the multiple issues around understanding effectiveness can be synthesised, and where climate change is systematically taken into account. Methods This systematic map protocol addresses the following question: what approaches exist to evaluate the effectiveness of UK-relevant natural flood management measures? The protocol details the methodology that will be used to conduct a systematic map of the range of peer-reviewed journal papers, policy documents, guidance, and other forms of grey literature which currently exist on NFM to give an overview on the way in which the effectiveness of NFM is conceived. The methods detail the search strategy employed for gathering items across the peer-reviewed academic literature and grey literature. Additionally, the methods outline how the reviewers will approach article screening, and the eligibility criteria to include/exclude articles. The methods section also details the steps taken to ensure consistency across all reviewers, the data coding strategy, and methods for presenting the final systematic map. Together, the methods employed will help to identify current knowledge gaps, and will enable recommendations to be made for future research.
Environmental Eviden... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2020Data sources: The University of Manchester - Institutional Repositorye-space at Manchester Metropolitan UniversityArticle . 2020Data sources: e-space at Manchester Metropolitan Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-020-00192-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Eviden... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2020Data sources: The University of Manchester - Institutional Repositorye-space at Manchester Metropolitan UniversityArticle . 2020Data sources: e-space at Manchester Metropolitan Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-020-00192-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Identifying and prioritis...UKRI| Identifying and prioritising nature based climate change adaptation measures for addressing future flood risk: creating a systematic evidence map.Authors: Connelly, Angela; Snow, Andrew; Carter, Jeremy; Lauwerijssen, Rachel;Abstract Background Natural flood management (NFM) measures seek to protect, enhance, emulate, or restore the natural function of rivers as part of approaches to flood risk management (FRM). While there is agreement in both academic and practice/policy literature that NFM, in a general sense, should be part of a holistic FRM strategy to address current and future flood risk, the specifics of how to consistently implement NFM successfully in practice are less well known. This is particularly acute for practitioners in the UK given the nature of the UK’s biophysical and socio-political context. There is a recognition that existing reviews of NFM effectiveness in the UK tend to focus on the natural science basis and it is unclear how studies account for climate change. Further, reviews tend to focus only on UK studies. This systematic map aims to highlight the way in which existing NFM studies, from different disciplinary backgrounds and across Europe, evaluate effectiveness, and the extent to which they account for climate change. This knowledge can help to make recommendations for future areas of research where the multiple issues around understanding effectiveness can be synthesised, and where climate change is systematically taken into account. Methods This systematic map protocol addresses the following question: what approaches exist to evaluate the effectiveness of UK-relevant natural flood management measures? The protocol details the methodology that will be used to conduct a systematic map of the range of peer-reviewed journal papers, policy documents, guidance, and other forms of grey literature which currently exist on NFM to give an overview on the way in which the effectiveness of NFM is conceived. The methods detail the search strategy employed for gathering items across the peer-reviewed academic literature and grey literature. Additionally, the methods outline how the reviewers will approach article screening, and the eligibility criteria to include/exclude articles. The methods section also details the steps taken to ensure consistency across all reviewers, the data coding strategy, and methods for presenting the final systematic map. Together, the methods employed will help to identify current knowledge gaps, and will enable recommendations to be made for future research.
Environmental Eviden... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2020Data sources: The University of Manchester - Institutional Repositorye-space at Manchester Metropolitan UniversityArticle . 2020Data sources: e-space at Manchester Metropolitan Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-020-00192-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Eviden... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2020Data sources: The University of Manchester - Institutional Repositorye-space at Manchester Metropolitan UniversityArticle . 2020Data sources: e-space at Manchester Metropolitan Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-020-00192-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 France, France, South AfricaPublisher:Springer Science and Business Media LLC Stephen Syampungani; Jessica Clendenning; Davison Gumbo; Robert Nasi; Kaala Moombe; Paxie W. Chirwa; Natasha Ribeiro; Isla Grundy; Nalukui Matakala; Christopher Martius; Moka Kaliwile; Gillian Kabwe; Gillian Petrokofsky;handle: 2263/44030 , 10568/93516
AbstractBackgroundIncreasingly, forests are on the international climate change agenda as land use and cover changes drive forest and carbon loss. The ability of forests to store carbon has created programs such as Reducing Emissions from Deforestation and Degradation plus (REDD+), in order to provide incentives for particular land uses and forest management practices. A critical element to REDD+ is the ability to know the carbon-storage potential of an ecosystem, and the factors likely to affect the rate of carbon accumulation or the maximum amount stored. Most REDD+ initiatives have focused on humid tropical forests because of their large stocks per unit area. Less attention has been paid to the carbon-storage potential of tropical dry forests, woodlands and savannas. Although these ecosystems support a lower biomass per unit area, they are more widespread than humid forests. This proposed systematic review examines miombo woodlands, which are the most extensive vegetation formation in Africa and support over 100 million people. We ask: To what extent have changes in land use and land cover influenced above- and below-ground carbon stocks of miombo woodlands since the 1950s?MethodsWe will search systematically for studies that document the influence of land use and cover change on above and below ground carbon in miombo woodlands since the 1950s. We will consult bibliographic databases and an extensive grey literature network, including government reports and forestry offices. Relevant studies will examine the impacts of human activities, fire and other land use or cover changes that affect wood biomass or soil carbon in the miombo region. All included studies will be assessed for the soundness and scientific validity of their study design. A quantitative synthesis will tabulate estimates of various parameters necessary to assess carbon stocks and changes across climate and geological factors; and a qualitative analysis will describe the governing land and forest policies. Understanding the impact that land uses and the associated changes have on carbon storage in the miombo woodlands will contribute to more informed forest management policies and better guided strategies for the United Nations Framework Convention on Climate Change.
UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2014License: CC BYFull-Text: http://hdl.handle.net/2263/44030Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/93516Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-3-25&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2014License: CC BYFull-Text: http://hdl.handle.net/2263/44030Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/93516Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-3-25&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2014 France, France, South AfricaPublisher:Springer Science and Business Media LLC Stephen Syampungani; Jessica Clendenning; Davison Gumbo; Robert Nasi; Kaala Moombe; Paxie W. Chirwa; Natasha Ribeiro; Isla Grundy; Nalukui Matakala; Christopher Martius; Moka Kaliwile; Gillian Kabwe; Gillian Petrokofsky;handle: 2263/44030 , 10568/93516
AbstractBackgroundIncreasingly, forests are on the international climate change agenda as land use and cover changes drive forest and carbon loss. The ability of forests to store carbon has created programs such as Reducing Emissions from Deforestation and Degradation plus (REDD+), in order to provide incentives for particular land uses and forest management practices. A critical element to REDD+ is the ability to know the carbon-storage potential of an ecosystem, and the factors likely to affect the rate of carbon accumulation or the maximum amount stored. Most REDD+ initiatives have focused on humid tropical forests because of their large stocks per unit area. Less attention has been paid to the carbon-storage potential of tropical dry forests, woodlands and savannas. Although these ecosystems support a lower biomass per unit area, they are more widespread than humid forests. This proposed systematic review examines miombo woodlands, which are the most extensive vegetation formation in Africa and support over 100 million people. We ask: To what extent have changes in land use and land cover influenced above- and below-ground carbon stocks of miombo woodlands since the 1950s?MethodsWe will search systematically for studies that document the influence of land use and cover change on above and below ground carbon in miombo woodlands since the 1950s. We will consult bibliographic databases and an extensive grey literature network, including government reports and forestry offices. Relevant studies will examine the impacts of human activities, fire and other land use or cover changes that affect wood biomass or soil carbon in the miombo region. All included studies will be assessed for the soundness and scientific validity of their study design. A quantitative synthesis will tabulate estimates of various parameters necessary to assess carbon stocks and changes across climate and geological factors; and a qualitative analysis will describe the governing land and forest policies. Understanding the impact that land uses and the associated changes have on carbon storage in the miombo woodlands will contribute to more informed forest management policies and better guided strategies for the United Nations Framework Convention on Climate Change.
UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2014License: CC BYFull-Text: http://hdl.handle.net/2263/44030Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/93516Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-3-25&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2014License: CC BYFull-Text: http://hdl.handle.net/2263/44030Data sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/93516Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-3-25&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Sweden, FinlandPublisher:Springer Science and Business Media LLC Alena Holzknecht; Örjan Berglund; Magnus Land; Jacynthe Dessureault-Rompré; Lars Elsgaard; Kristiina Lång;Abstract Background Cultivated peatlands are widespread in temperate and boreal climate zones. For example, in Europe about 15% of the pristine peatland area have been lost through drainage for agricultural use. When drained, these organic soils are a significant source of greenhouse gas (GHG) emissions. To reach climate goals, the agricultural sector must reduce its GHG emissions, and one measure that has been discussed is changing land use from cropland to ley production or perennial green fallow. This management change leads to lower reported emissions, at least when using the IPCC default emission factors (EF) for croplands and grasslands on organic soils (IPCC 2014). However, there was a limited background dataset available for developing the EFs, and other variables than management affect the comparison of the land use options when the data originates from varying sites and years. Thus, the implications for future policies remain uncertain. This protocol describes the methodology to conduct a systematic review to answer the question of whether ley production or perennial green fallow can be suggested as a valid alternative to annual cropping to decrease GHG emissions on organic soils in temperate and boreal climate. Methods Publications will be searched in different databases and bibliographies of relevant review articles. The comprehensiveness of the search will be tested through a list of benchmark articles identified by the protocol development team. The screening will be performed at title and abstract level and at full text level, including repeatability tests. Eligible populations are organic agricultural soils in temperate and boreal climate regions. Interventions are grasslands without tillage for at least 3 years, and comparators are annual cropping systems within the same study as the intervention. The outcome must be gas fluxes of either carbon dioxide (CO2), nitrous oxide (N2O), or methane (CH4), or any combination of these gases. Studies will go through critical appraisal, checking for internal and external validity, and finally data extraction. If possible, a meta-analysis about the climate impact of perennial green fallow compared to annual cropping on organic soils will be performed.
SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-023-00310-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-023-00310-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Sweden, FinlandPublisher:Springer Science and Business Media LLC Alena Holzknecht; Örjan Berglund; Magnus Land; Jacynthe Dessureault-Rompré; Lars Elsgaard; Kristiina Lång;Abstract Background Cultivated peatlands are widespread in temperate and boreal climate zones. For example, in Europe about 15% of the pristine peatland area have been lost through drainage for agricultural use. When drained, these organic soils are a significant source of greenhouse gas (GHG) emissions. To reach climate goals, the agricultural sector must reduce its GHG emissions, and one measure that has been discussed is changing land use from cropland to ley production or perennial green fallow. This management change leads to lower reported emissions, at least when using the IPCC default emission factors (EF) for croplands and grasslands on organic soils (IPCC 2014). However, there was a limited background dataset available for developing the EFs, and other variables than management affect the comparison of the land use options when the data originates from varying sites and years. Thus, the implications for future policies remain uncertain. This protocol describes the methodology to conduct a systematic review to answer the question of whether ley production or perennial green fallow can be suggested as a valid alternative to annual cropping to decrease GHG emissions on organic soils in temperate and boreal climate. Methods Publications will be searched in different databases and bibliographies of relevant review articles. The comprehensiveness of the search will be tested through a list of benchmark articles identified by the protocol development team. The screening will be performed at title and abstract level and at full text level, including repeatability tests. Eligible populations are organic agricultural soils in temperate and boreal climate regions. Interventions are grasslands without tillage for at least 3 years, and comparators are annual cropping systems within the same study as the intervention. The outcome must be gas fluxes of either carbon dioxide (CO2), nitrous oxide (N2O), or methane (CH4), or any combination of these gases. Studies will go through critical appraisal, checking for internal and external validity, and finally data extraction. If possible, a meta-analysis about the climate impact of perennial green fallow compared to annual cropping on organic soils will be performed.
SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-023-00310-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert SLU publication data... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-023-00310-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Springer Science and Business Media LLC Robert Munroe; Dilys Roe; Bhaskar Vira; Ivan Castelli; Iris Möller; Nathalie Doswald; Andreas Kontoleon; Thomas J. Spencer; Hannah Reid; Jen Stephens; Alessandra Giuliani;Abstract Background Ecosystem-based approaches for adaptation (EbA) integrate the use of biodiversity and ecosystem services into an overall strategy for helping people adapt to climate change. To date, insight into these approaches has often been based on reports from isolated anecdotal case studies. Although these are informative, and provide evidence that people are using ecosystems to adapt, they provide rather limited insight in terms of measuring and evaluating the effectiveness of EbA, especially when compared with technical or structural adaptation interventions. The body of scientific evidence indicating how effective such approaches are is lacking in some aspects. Where evidence does exist it is often dispersed across a range of related fields, such as natural resource management, disaster risk reduction and agroecology. To date, there has been little attempt to systematically assemble and analyse this evidence. Therefore, the current state of evidence regarding the merits or otherwise of EbA is unknown and it has not been possible to identify prevailing knowledge gaps to inform research and analysis, which will enable policymakers to compare EbA with other adaptation options. Methods This protocol details the methodology to be used to conduct a systematic map of peer-reviewed published journal papers and a limited selection of grey literature, to give a methodical overview of the state of the evidence base for EbA effectiveness, and to identify the current knowledge gaps. It addresses the following question: What is the state of the evidence base regarding the ability of ecosystem-based approaches for adaptation to help people adapt to the impacts of climate change?
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Springer Science and Business Media LLC Robert Munroe; Dilys Roe; Bhaskar Vira; Ivan Castelli; Iris Möller; Nathalie Doswald; Andreas Kontoleon; Thomas J. Spencer; Hannah Reid; Jen Stephens; Alessandra Giuliani;Abstract Background Ecosystem-based approaches for adaptation (EbA) integrate the use of biodiversity and ecosystem services into an overall strategy for helping people adapt to climate change. To date, insight into these approaches has often been based on reports from isolated anecdotal case studies. Although these are informative, and provide evidence that people are using ecosystems to adapt, they provide rather limited insight in terms of measuring and evaluating the effectiveness of EbA, especially when compared with technical or structural adaptation interventions. The body of scientific evidence indicating how effective such approaches are is lacking in some aspects. Where evidence does exist it is often dispersed across a range of related fields, such as natural resource management, disaster risk reduction and agroecology. To date, there has been little attempt to systematically assemble and analyse this evidence. Therefore, the current state of evidence regarding the merits or otherwise of EbA is unknown and it has not been possible to identify prevailing knowledge gaps to inform research and analysis, which will enable policymakers to compare EbA with other adaptation options. Methods This protocol details the methodology to be used to conduct a systematic map of peer-reviewed published journal papers and a limited selection of grey literature, to give a methodical overview of the state of the evidence base for EbA effectiveness, and to identify the current knowledge gaps. It addresses the following question: What is the state of the evidence base regarding the ability of ecosystem-based approaches for adaptation to help people adapt to the impacts of climate change?
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 France, FinlandPublisher:Springer Science and Business Media LLC Gillian Petrokofsky; Hideki Kanamaru; Frédéric Achard; Scott J. Goetz; Hans Joosten; Peter Holmgren; Aleksi Lehtonen; Mary Menton; Andrew S. Pullin; M. Wattenbach;handle: 10568/94325
Le changement climatique et les taux élevés d'émissions mondiales de carbone ont attiré l'attention sur la nécessité de systèmes de surveillance de haute qualité pour évaluer la quantité de carbone présente dans les systèmes terrestres et son évolution dans le temps. Le choix du système à adopter doit être guidé par une bonne science. Il existe un nombre croissant d'informations scientifiques et techniques sur les méthodes de mesure du carbone au sol et par télédétection. L'adéquation et la comparabilité de ces différents systèmes n'ont pas été pleinement évaluées. Un examen systématique comparera les méthodes d'évaluation des stocks de carbone et des changements des stocks de carbone dans les principales catégories d'utilisation des terres, y compris les terres forestières, les terres cultivées, les prairies et les zones humides, dans les réservoirs de carbone terrestres qui peuvent être pris en compte dans le protocole de Kyoto (biomasse aérienne, biomasse souterraine, bois mort, litière et carbone du sol). L'évaluation du carbone dans les produits ligneux récoltés ne sera pas prise en compte dans cette revue. L'élaboration de stratégies d'atténuation efficaces pour réduire les émissions de carbone et de stratégies d'adaptation équitables pour faire face à l'augmentation des températures mondiales reposera sur des informations scientifiques solides et exemptes de biais imposés par les intérêts nationaux et commerciaux. Un examen systématique des méthodes utilisées pour évaluer les stocks de carbone et les variations des stocks de carbone contribuera à l'analyse transparente d'une science complexe et souvent contradictoire. El cambio climático y las altas tasas de emisiones globales de carbono han centrado la atención en la necesidad de sistemas de monitoreo de alta calidad para evaluar cuánto carbono está presente en los sistemas terrestres y cómo cambian con el tiempo. La elección del sistema a adoptar debe guiarse por la buena ciencia. Existe un creciente cuerpo de información científica y técnica sobre los métodos de medición de carbono basados en tierra y de teledetección. La idoneidad y comparabilidad de estos diferentes sistemas no se han evaluado completamente. Una revisión sistemática comparará los métodos de evaluación de las reservas de carbono y los cambios en las reservas de carbono en las categorías clave de uso de la tierra, incluidas las tierras forestales, las tierras de cultivo, los pastizales y los humedales, en los depósitos de carbono terrestre que se pueden contabilizar en virtud del protocolo de Kyoto (biomasa sobre el suelo, biomasa subterránea, madera muerta, basura y carbono del suelo). La evaluación del carbono en los productos de madera recolectada no se considerará en esta revisión. El desarrollo de estrategias de mitigación efectivas para reducir las emisiones de carbono y estrategias de adaptación equitativas para hacer frente al aumento de las temperaturas globales se basará en información científica sólida que esté libre de sesgos impuestos por intereses nacionales y comerciales. Una revisión sistemática de los métodos utilizados para evaluar las reservas de carbono y los cambios en las reservas de carbono contribuirá al análisis transparente de la ciencia compleja y, a menudo, contradictoria. Climate change and high rates of global carbon emissions have focussed attention on the need for high-quality monitoring systems to assess how much carbon is present in terrestrial systems and how these change over time. The choice of system to adopt should be guided by good science. There is a growing body of scientific and technical information on ground-based and remote sensing methods of carbon measurement. The adequacy and comparability of these different systems have not been fully evaluated. A systematic review will compare methods of assessing carbon stocks and carbon stock changes in key land use categories, including, forest land, cropland, grassland, and wetlands, in terrestrial carbon pools that can be accounted for under the Kyoto protocol (above- ground biomass, below-ground biomass, dead wood, litter and soil carbon). Assessing carbon in harvested wood products will not be considered in this review. Developing effective mitigation strategies to reduce carbon emissions and equitable adaptation strategies to cope with increasing global temperatures will rely on robust scientific information that is free from biases imposed by national and commercial interests. A systematic review of the methods used for assessing carbon stocks and carbon stock changes will contribute to the transparent analysis of complex and often contradictory science. ركز تغير المناخ وارتفاع معدلات انبعاثات الكربون العالمية الاهتمام على الحاجة إلى أنظمة مراقبة عالية الجودة لتقييم كمية الكربون الموجودة في الأنظمة الأرضية وكيفية تغيرها بمرور الوقت. يجب أن يسترشد اختيار النظام الذي يجب اعتماده بالعلم الجيد. هناك مجموعة متزايدة من المعلومات العلمية والتقنية حول طرق الاستشعار الأرضي وعن بعد لقياس الكربون. لم يتم تقييم مدى كفاية هذه الأنظمة المختلفة وقابليتها للمقارنة بشكل كامل. ستقارن المراجعة المنهجية طرق تقييم مخزونات الكربون وتغيرات مخزون الكربون في الفئات الرئيسية لاستخدام الأراضي، بما في ذلك أراضي الغابات والأراضي الزراعية والمراعي والأراضي الرطبة، في مجمعات الكربون الأرضية التي يمكن حسابها بموجب بروتوكول كيوتو (الكتلة الحيوية فوق الأرض والكتلة الحيوية تحت الأرض والحطب والقمامة وكربون التربة). لن يتم النظر في تقييم الكربون في منتجات الخشب المقطوع في هذه المراجعة. سيعتمد وضع استراتيجيات تخفيف فعالة للحد من انبعاثات الكربون واستراتيجيات التكيف المنصفة للتعامل مع ارتفاع درجات الحرارة العالمية على معلومات علمية قوية خالية من التحيزات التي تفرضها المصالح الوطنية والتجارية. ستساهم المراجعة المنهجية للطرق المستخدمة لتقييم مخزونات الكربون وتغيرات مخزون الكربون في التحليل الشفاف للعلوم المعقدة والمتناقضة في كثير من الأحيان.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/94325Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 83 citations 83 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/94325Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012 France, FinlandPublisher:Springer Science and Business Media LLC Gillian Petrokofsky; Hideki Kanamaru; Frédéric Achard; Scott J. Goetz; Hans Joosten; Peter Holmgren; Aleksi Lehtonen; Mary Menton; Andrew S. Pullin; M. Wattenbach;handle: 10568/94325
Le changement climatique et les taux élevés d'émissions mondiales de carbone ont attiré l'attention sur la nécessité de systèmes de surveillance de haute qualité pour évaluer la quantité de carbone présente dans les systèmes terrestres et son évolution dans le temps. Le choix du système à adopter doit être guidé par une bonne science. Il existe un nombre croissant d'informations scientifiques et techniques sur les méthodes de mesure du carbone au sol et par télédétection. L'adéquation et la comparabilité de ces différents systèmes n'ont pas été pleinement évaluées. Un examen systématique comparera les méthodes d'évaluation des stocks de carbone et des changements des stocks de carbone dans les principales catégories d'utilisation des terres, y compris les terres forestières, les terres cultivées, les prairies et les zones humides, dans les réservoirs de carbone terrestres qui peuvent être pris en compte dans le protocole de Kyoto (biomasse aérienne, biomasse souterraine, bois mort, litière et carbone du sol). L'évaluation du carbone dans les produits ligneux récoltés ne sera pas prise en compte dans cette revue. L'élaboration de stratégies d'atténuation efficaces pour réduire les émissions de carbone et de stratégies d'adaptation équitables pour faire face à l'augmentation des températures mondiales reposera sur des informations scientifiques solides et exemptes de biais imposés par les intérêts nationaux et commerciaux. Un examen systématique des méthodes utilisées pour évaluer les stocks de carbone et les variations des stocks de carbone contribuera à l'analyse transparente d'une science complexe et souvent contradictoire. El cambio climático y las altas tasas de emisiones globales de carbono han centrado la atención en la necesidad de sistemas de monitoreo de alta calidad para evaluar cuánto carbono está presente en los sistemas terrestres y cómo cambian con el tiempo. La elección del sistema a adoptar debe guiarse por la buena ciencia. Existe un creciente cuerpo de información científica y técnica sobre los métodos de medición de carbono basados en tierra y de teledetección. La idoneidad y comparabilidad de estos diferentes sistemas no se han evaluado completamente. Una revisión sistemática comparará los métodos de evaluación de las reservas de carbono y los cambios en las reservas de carbono en las categorías clave de uso de la tierra, incluidas las tierras forestales, las tierras de cultivo, los pastizales y los humedales, en los depósitos de carbono terrestre que se pueden contabilizar en virtud del protocolo de Kyoto (biomasa sobre el suelo, biomasa subterránea, madera muerta, basura y carbono del suelo). La evaluación del carbono en los productos de madera recolectada no se considerará en esta revisión. El desarrollo de estrategias de mitigación efectivas para reducir las emisiones de carbono y estrategias de adaptación equitativas para hacer frente al aumento de las temperaturas globales se basará en información científica sólida que esté libre de sesgos impuestos por intereses nacionales y comerciales. Una revisión sistemática de los métodos utilizados para evaluar las reservas de carbono y los cambios en las reservas de carbono contribuirá al análisis transparente de la ciencia compleja y, a menudo, contradictoria. Climate change and high rates of global carbon emissions have focussed attention on the need for high-quality monitoring systems to assess how much carbon is present in terrestrial systems and how these change over time. The choice of system to adopt should be guided by good science. There is a growing body of scientific and technical information on ground-based and remote sensing methods of carbon measurement. The adequacy and comparability of these different systems have not been fully evaluated. A systematic review will compare methods of assessing carbon stocks and carbon stock changes in key land use categories, including, forest land, cropland, grassland, and wetlands, in terrestrial carbon pools that can be accounted for under the Kyoto protocol (above- ground biomass, below-ground biomass, dead wood, litter and soil carbon). Assessing carbon in harvested wood products will not be considered in this review. Developing effective mitigation strategies to reduce carbon emissions and equitable adaptation strategies to cope with increasing global temperatures will rely on robust scientific information that is free from biases imposed by national and commercial interests. A systematic review of the methods used for assessing carbon stocks and carbon stock changes will contribute to the transparent analysis of complex and often contradictory science. ركز تغير المناخ وارتفاع معدلات انبعاثات الكربون العالمية الاهتمام على الحاجة إلى أنظمة مراقبة عالية الجودة لتقييم كمية الكربون الموجودة في الأنظمة الأرضية وكيفية تغيرها بمرور الوقت. يجب أن يسترشد اختيار النظام الذي يجب اعتماده بالعلم الجيد. هناك مجموعة متزايدة من المعلومات العلمية والتقنية حول طرق الاستشعار الأرضي وعن بعد لقياس الكربون. لم يتم تقييم مدى كفاية هذه الأنظمة المختلفة وقابليتها للمقارنة بشكل كامل. ستقارن المراجعة المنهجية طرق تقييم مخزونات الكربون وتغيرات مخزون الكربون في الفئات الرئيسية لاستخدام الأراضي، بما في ذلك أراضي الغابات والأراضي الزراعية والمراعي والأراضي الرطبة، في مجمعات الكربون الأرضية التي يمكن حسابها بموجب بروتوكول كيوتو (الكتلة الحيوية فوق الأرض والكتلة الحيوية تحت الأرض والحطب والقمامة وكربون التربة). لن يتم النظر في تقييم الكربون في منتجات الخشب المقطوع في هذه المراجعة. سيعتمد وضع استراتيجيات تخفيف فعالة للحد من انبعاثات الكربون واستراتيجيات التكيف المنصفة للتعامل مع ارتفاع درجات الحرارة العالمية على معلومات علمية قوية خالية من التحيزات التي تفرضها المصالح الوطنية والتجارية. ستساهم المراجعة المنهجية للطرق المستخدمة لتقييم مخزونات الكربون وتغيرات مخزون الكربون في التحليل الشفاف للعلوم المعقدة والمتناقضة في كثير من الأحيان.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/94325Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 83 citations 83 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/94325Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/2047-2382-1-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United States, United States, United States, United KingdomPublisher:Springer Science and Business Media LLC Authors: Samantha H. Cheng; Sebastien Costedoat; Eleanor J. Sterling; Catherine Chamberlain; +14 AuthorsSamantha H. Cheng; Sebastien Costedoat; Eleanor J. Sterling; Catherine Chamberlain; Arundhati Jagadish; Peter Lichtenthal; A. Justin Nowakowski; Auset Taylor; Jen Tinsman; Steven W. J. Canty; Margaret B. Holland; Kelly W. Jones; Morena Mills; David Morales-Hidalgo; Starry Sprenkle-Hyppolite; Meredith Wiggins; Michael B. Mascia; Carlos L. Muñoz Brenes;pmc: PMC9017726
handle: 10044/1/106110
Abstract Background Natural climate solutions (NCS)—actions to conserve, restore, and modify natural and modified ecosystems to increase carbon storage or avoid greenhouse gas (GHG) emissions—are increasingly regarded as important pathways for climate change mitigation, while contributing to our global conservation efforts, overall planetary resilience, and sustainable development goals. Recently, projections posit that terrestrial-based NCS can potentially capture or avoid the emission of at least 11 Gt (gigatons) of carbon dioxide equivalent a year, or roughly encompassing one third of the emissions reductions needed to meet the Paris Climate Agreement goals by 2030. NCS interventions also purport to provide co-benefits such as improved productivity and livelihoods from sustainable natural resource management, protection of locally and culturally important natural areas, and downstream climate adaptation benefits. Attention on implementing NCS to address climate change across global and national agendas has grown—however, clear understanding of which types of NCS interventions have undergone substantial study versus those that require additional evidence is still lacking. This study aims to conduct a systematic map to collate and describe the current state, distribution, and methods used for evidence on the links between NCS interventions and climate change mitigation outcomes within tropical and sub-tropical terrestrial ecosystems. Results of this study can be used to inform program and policy design and highlight critical knowledge gaps where future evaluation, research, and syntheses are needed. Methods To develop this systematic map, we will search two bibliographic databases (including 11 indices) and 67 organization websites, backward citation chase from 39 existing evidence syntheses, and solicit information from key informants. All searches will be conducted in English and encompass subtropical and tropical terrestrial ecosystems (forests, grasslands, mangroves, agricultural areas). Search results will be screened at title and abstract, and full text levels, recording both the number of excluded articles and reasons for exclusion. Key meta-data from included articles will be coded and reported in a narrative review that will summarize trends in the evidence base, assess gaps in knowledge, and provide insights for policy, practice, and research. The data from this systematic map will be made open access.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022Full-Text: http://hdl.handle.net/10044/1/106110Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital RepositoryColumbia University Academic CommonsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00268-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022Full-Text: http://hdl.handle.net/10044/1/106110Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital RepositoryColumbia University Academic CommonsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00268-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United States, United States, United States, United KingdomPublisher:Springer Science and Business Media LLC Authors: Samantha H. Cheng; Sebastien Costedoat; Eleanor J. Sterling; Catherine Chamberlain; +14 AuthorsSamantha H. Cheng; Sebastien Costedoat; Eleanor J. Sterling; Catherine Chamberlain; Arundhati Jagadish; Peter Lichtenthal; A. Justin Nowakowski; Auset Taylor; Jen Tinsman; Steven W. J. Canty; Margaret B. Holland; Kelly W. Jones; Morena Mills; David Morales-Hidalgo; Starry Sprenkle-Hyppolite; Meredith Wiggins; Michael B. Mascia; Carlos L. Muñoz Brenes;pmc: PMC9017726
handle: 10044/1/106110
Abstract Background Natural climate solutions (NCS)—actions to conserve, restore, and modify natural and modified ecosystems to increase carbon storage or avoid greenhouse gas (GHG) emissions—are increasingly regarded as important pathways for climate change mitigation, while contributing to our global conservation efforts, overall planetary resilience, and sustainable development goals. Recently, projections posit that terrestrial-based NCS can potentially capture or avoid the emission of at least 11 Gt (gigatons) of carbon dioxide equivalent a year, or roughly encompassing one third of the emissions reductions needed to meet the Paris Climate Agreement goals by 2030. NCS interventions also purport to provide co-benefits such as improved productivity and livelihoods from sustainable natural resource management, protection of locally and culturally important natural areas, and downstream climate adaptation benefits. Attention on implementing NCS to address climate change across global and national agendas has grown—however, clear understanding of which types of NCS interventions have undergone substantial study versus those that require additional evidence is still lacking. This study aims to conduct a systematic map to collate and describe the current state, distribution, and methods used for evidence on the links between NCS interventions and climate change mitigation outcomes within tropical and sub-tropical terrestrial ecosystems. Results of this study can be used to inform program and policy design and highlight critical knowledge gaps where future evaluation, research, and syntheses are needed. Methods To develop this systematic map, we will search two bibliographic databases (including 11 indices) and 67 organization websites, backward citation chase from 39 existing evidence syntheses, and solicit information from key informants. All searches will be conducted in English and encompass subtropical and tropical terrestrial ecosystems (forests, grasslands, mangroves, agricultural areas). Search results will be screened at title and abstract, and full text levels, recording both the number of excluded articles and reasons for exclusion. Key meta-data from included articles will be coded and reported in a narrative review that will summarize trends in the evidence base, assess gaps in knowledge, and provide insights for policy, practice, and research. The data from this systematic map will be made open access.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022Full-Text: http://hdl.handle.net/10044/1/106110Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital RepositoryColumbia University Academic CommonsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00268-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2022Full-Text: http://hdl.handle.net/10044/1/106110Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2022License: CC BYData sources: Spiral - Imperial College Digital RepositoryColumbia University Academic CommonsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00268-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Springer Science and Business Media LLC Mohamad Nor Azra; Mohd Iqbal Mohd Noor; Yeong Yik Sung; Elizabeth R. Lawrence; Mazlan Abd. Ghaffar;pmid: 39294773
pmc: PMC11378826
Abstract Background The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) has estimated that invasive alien species (IAS) might cause billions of dollars of losses every year across the world. One example is South-East Asia, where IAS have caused an estimated loss of 33.5 billion USD, affecting the environment, human health, and agricultural production. Factors associated with climate change, such as increased carbon dioxide (CO2), heavy precipitation, and elevated temperatures is expected to facilitate biological invasion, leading only to further financial and public health loss. Thus, further study is needed to identify, collate and categorise what evidence exists on the impacts of climate change on fish and shellfish species that contribute to the list of “One Hundred of the World’s Worst Invasive Alien Species” as identified by the International Union for Conservation of Nature’s (IUCN). Such mapping will identify regions more at risk of biological invasion as climate change progresses. Methods We outline a systematic mapping review protocol that follows the Guideline and Standards for Evidence Synthesis in Environmental Management and RepOrting standards for Systematic Evidence Syntheses (ROSES). We describe how peer-reviewed articles will be collected from Web of Science and Scopus, and then analyzed to create knowledge maps on the impact climate change has on invasive species. Finally, we speculate on how our results will aid future management of invasive species in the light of climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00273-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00273-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Springer Science and Business Media LLC Mohamad Nor Azra; Mohd Iqbal Mohd Noor; Yeong Yik Sung; Elizabeth R. Lawrence; Mazlan Abd. Ghaffar;pmid: 39294773
pmc: PMC11378826
Abstract Background The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) has estimated that invasive alien species (IAS) might cause billions of dollars of losses every year across the world. One example is South-East Asia, where IAS have caused an estimated loss of 33.5 billion USD, affecting the environment, human health, and agricultural production. Factors associated with climate change, such as increased carbon dioxide (CO2), heavy precipitation, and elevated temperatures is expected to facilitate biological invasion, leading only to further financial and public health loss. Thus, further study is needed to identify, collate and categorise what evidence exists on the impacts of climate change on fish and shellfish species that contribute to the list of “One Hundred of the World’s Worst Invasive Alien Species” as identified by the International Union for Conservation of Nature’s (IUCN). Such mapping will identify regions more at risk of biological invasion as climate change progresses. Methods We outline a systematic mapping review protocol that follows the Guideline and Standards for Evidence Synthesis in Environmental Management and RepOrting standards for Systematic Evidence Syntheses (ROSES). We describe how peer-reviewed articles will be collected from Web of Science and Scopus, and then analyzed to create knowledge maps on the impact climate change has on invasive species. Finally, we speculate on how our results will aid future management of invasive species in the light of climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00273-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13750-022-00273-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu