- home
- Advanced Search
Filters
Clear All- Energy Research
- 2025-2025
- Open Access
- Restricted
- Embargo
- chemical sciences
- Energy Research
- 2025-2025
- Open Access
- Restricted
- Embargo
- chemical sciences
description Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Toyin Shittu; Aasif A. Dabbawala; Labeeb Ali; Abbas Khaleel; Muhammad Z. Iqbal; Dalaver H. Anjum; Kyriaki Polychronopoulou; Mohammednoor Altarawneh;The regulation of catalyst activity and selectivity using a reducible support for the industrially relevant hydrogenation of 1,3-butadiene to more valuable butene products was achieved. Supported palladium and nickel–palladium catalysts on ceria were prepared and characterized with hydrogen temperature programmed reduction (H2-TPR), hydrogen temperature programmed desorption (H2-TPD), X-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HR-TEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), temperature programmed oxidation (TPO), energy dispersive spectroscopy (EDS), and N2 adsorption–desorption to examine their chemical and physical properties. Pathways guiding the reaction were determined using the density functional theory (DFT). H2-TPR confirmed that palladium oxide was reduced, and nickel oxide species strongly interacted with the CeO2 support. The Ce3+ concentration determined by XPS showed that all catalysts surface contained the Ce reduced state. The catalysts showed a similar BET surface area, with 4Pd–Ce presenting the lowest value due to particle aggregation, which was confirmed from the EDS mapping analysis. Butadiene conversion consistently increased with temperature (40 °C–120 °C) until full conversion was reached on all the Pd catalysts while the maximum conversion on the 4Ni-Ce catalyst was 88 % at 120 °C. Product distribution revealed that 4 % Pd content directed the products toward butane when 40 °C was exceeded. Constructed mechanisms by DFT calculations featured low reaction barriers for the involved surface hydrogenation steps, and thus, they accounted for the observed low temperature of the surface hydrogenation activity. Selective formation of 1-butene partially stemmed from its relatively weak binding to Ni sites in reference to Pd sites. The mapped-out mechanisms entailed a higher reaction barrier for the formation of 2-butene, in agreement with the experimental observation pertinent to its formation at higher temperatures when compared with that of 1-butene.
Materials Science fo... arrow_drop_down Materials Science for Energy TechnologiesArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mset.2024.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Materials Science fo... arrow_drop_down Materials Science for Energy TechnologiesArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mset.2024.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Merin K. Wilson; Dhanya P. Jacob; Aldrin Antony; M.K. Jayaraj; S. Jayalekshmi;Globally, energy demands are massive, and environmental issues are rising against our sustainability. To maximize the use of renewable energy sources, development of efficient energy storage systems is mandatory. Lithium-ion batteries (LIBs) play an indispensable role in powering portable devices and electric vehicles, due to their high specific capacity and long cycle life. Manganese oxide (Mn3O4) is an environmentally friendly anode active material with high theoretical specific capacity of 936 mAh g−1 for applications in Li-ion cells.In the present work, Mn3O4-functionalized carbon nanotubes (FCNT) nanocomposite, coated on carbon cloth (CC) current collector and termed as Mn3O4-FCNT @CC, is used as the anode material. Li-ion coin cells based on this nanocomposite anode show discharge capacity of 1371mAhg−1 and charge capacity of 1141mAhg−1 at current density of 100 mA g−1 with initial Coulombic efficiency of 83%. After 70 cycles, the charge-discharge capacities of the cells are 953mAhg−1 and 958mAhg−1, respectively, with capacity retention of 91% at current rate of 100 mA g−1. These cells are found to deliver reversible charge capacity of 575mAhg−1 after 100 cycles at 1C (∼1 A g−1) and offer prospects of stable operation at high current rates.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nxener.2024.100207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nxener.2024.100207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Royal Society of Chemistry (RSC) Funded by:NSF | Collaborative Research: E..., NSF | CAREER: Fundamental Under..., NSF | I-Corps: Thermophotovolta... +1 projectsNSF| Collaborative Research: EAGER: CET: Efficient and power-dense heat utilization with zero-gap thermophotovoltaics ,NSF| CAREER: Fundamental Understanding of Thermal Transport at the Single Molecule Level ,NSF| I-Corps: Thermophotovoltaic system without a vacuum or air gap ,NSF| Collaborative Research: EAGER: CET: Efficient and power-dense heat utilization with zero-gap thermophotovoltaicsMohammad Habibi; Sai C. Yelishala; Yunxuan Zhu; Eric J. Tervo; Myles A. Steiner; Longji Cui;doi: 10.1039/d4ee04604h
Adding an infrared transparent spacer to far-field thermophotovoltaic (TPV) devices boosts power density. This scalable zero-gap design surpasses vacuum blackbody limit and achieves performance comparable to near-field TPV with nanoscale gaps.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee04604h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee04604h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Authors: José Maria Clemente da Silva Filho; Nelson Fabian Villegas Borrero; Andreia de Morais; Jilian Nei de Freitas; +1 AuthorsJosé Maria Clemente da Silva Filho; Nelson Fabian Villegas Borrero; Andreia de Morais; Jilian Nei de Freitas; Francisco das Chagas Marques;Lead iodide (PbI2) is a 2D layered semiconductor used in several electronic applications, such as solar cells, X-ray, and gamma-ray detectors. Most of its properties have been reported for monocrystals or polycrystalline thick films used in high-energy photon detectors. As for thin films used in other optoelectronic devices, the reported properties are limited to the conditions adopted in manufacturing the devices. Furthermore, very little is known about the properties of films deposited by sputtering. Here, we investigate the optical and structural properties of PbI2 thin films deposited by rf-sputtering a PbI2 target. The deposition temperature significantly influences the film's properties, as determined by X-ray, scanning electron microscopy (SEM), atomic force microscopy (AFM), UV-vis, and Raman spectroscopy. A common characteristic at all temperatures was forming metallic lead (Pb) segregated in the surface of films, with concentration depending on the deposition temperature. These lead clusters were successfully converted into PbI2 using an iodination process, allowing the synthesis of pure PbI2 films without lead segregation. The activation energy for the reaction between Pb clusters and iodine vapor was determined by adopting the Arrhenius equation. It was also observed that converting PbI2 film into perovskite through the two-step process, by immersion of the PbI2 film into methylammonium iodide solution, transforms the segregated lead into perovskite. The sputtering technique allows the deposition of uniform films over large areas compatible with roll-to-roll processes, which are desired to produce large-area detectors and perovskite solar cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nxener.2024.100192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nxener.2024.100192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Royal Society of Chemistry (RSC) Funded by:EC | BOOSTER, EC | EMERGEEC| BOOSTER ,EC| EMERGESarmad Feroze; Andreas Distler; Lirong Dong; Michael Wagner; Iftikhar Ahmed Channa; Felix Hoga; Christoph J. Brabec; Hans-Joachim Egelhaaf;doi: 10.1039/d4ee04036h
Outdoor monitoring of Roll-to-Roll (R2R) printed flexible organic photovoltaic (OPV) modules for building integrated/attached photovoltaics (BIPV/BAPV) applications.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee04036h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee04036h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Royal Society of Chemistry (RSC) Funded by:SNSF | Dynamics of Ionic Additiv..., UKRI | Application Targeted and ...SNSF| Dynamics of Ionic Additive Passivation in Perovskite Solar Cells ,UKRI| Application Targeted and Integrated Photovoltaics - Enhancing UK Capability in SolarMatthias Diethelm; Tino Lukas; Joel Smith; Akash Dasgupta; Pietro Caprioglio; Moritz Futscher; Roland Hany; Henry J. Snaith;This study introduces a new method to analyse mobile ion-related processes in metal halide perovskite devices, which reveals how ion conductivity determines electric field screening and provides new insights into the mixed ionic–electronic behaviour.
Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee02494j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee02494j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Royal Society of Chemistry (RSC) Yan-Song Zhang; Hasan Arif Yetkin; Hakam Agha; Sevan Gharabeiki; Rijeesh Kizhakidathazhath; Lena Merges; Ricardo G. Poeira; Jan P. F. Lagerwall; Phillip J. Dale;doi: 10.1039/d4ee03010a
Self-assembled cholesteric liquid crystals uniquely enable non-spectral coloured and thermochromic covered highly efficient photovoltaic devices for aesthetic integration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee03010a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee03010a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Authors: Mohammad Waseem; G. Sree Lakshmi; Mumtaz Ahmad; Mohd Suhaib;The desirable characteristics of an energy storage system (ESS) to fulfill the energy requirement in electric vehicles (EVs) are high specific energy, significant storage capacity, longer life cycles, high operating efficiency, and low cost. In order to advance electric transportation, it is important to identify the significant characteristics, pros and cons, new scientific developments, potential barriers, and imminent prospects of various energy storage technology. The objective of current research is to analyse and find out the optimal storage technology among different electro-chemical, chemical, electrical, mechanical, and hybrid storage system. Different batteries including lead-acid, nickel-based, lithium-ion, flow, metal-air, solid state, and ZEBRA along with their operating parameters are reviewed. The potential roles of fuel cell, ultracapacitor, flywheel and hybrid storage system technology in EVs are explored. Performance parameters of various battery system are analysed through radar based specified technique to conclude the best storage medium in electric mobility. Additionally, the current study compiles a critical analysis of 264 publications from various sources.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nxener.2024.100202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nxener.2024.100202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Royal Society of Chemistry (RSC) Authors: Saied Md Pratik; Grit Kupgan; Jean-Luc Brédas; Veaceslav Coropceanu;doi: 10.1039/d4ee03815k
This work gives a comprehensive description of the fundamental electronic processes taking place in the active layer of PM6:Y6 solar cells. It also points to the role of triplet states, excimer-like states, and defect states in device performance.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee03815k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee03815k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Asmaa R. Heiba; Mostafa M. Omran; Rabab M. Abou Shahba; Abdelghaffar S. Dhmees; Fatma A. Taher; Ehab El Sawy;The anticipated large contribution of renewable energy resources to the sector of energy production strongly motivated the development of energy storage technologies, of which supercapacitors have drawn a lot of attention. In this work, Lanthanum-Strontium-Manganese-oxide (LSMO) perovskite nanoparticles, graphene oxide nanoribbons (GONRs), and LSMO-GONRs composite were synthesized and tested as electrode materials for supercapacitor applications. The LSMO was synthesized using the co-precipitation/calcination method, while the GONRs were synthesized using the oxidative unzipping of multi-walled carbon nanotubes. The physical/chemical structures were studied using XRD, FT-IR, SEM, TEM, SAED, and XPS. In 1 M KOH, the LSMO-GONRs electrode exhibited a specific capacitance of 490F/g compared to 342F/g and 294F/g for GONRs and LSMO electrodes, respectively, at 1 A/g, showcasing a performance that is not just superior but truly impressive, to the different types of perovskite/carbon-based material composites. The fabricated asymmetric SC device of LSMO-GONRs//GONRs exhibited a potential window of 1.7 V, a specific capacitance of 92.3F/g, an energy density of 38 Wh/kg, and a power density of 860 W/kg at 1 A/g. Moreover, the LSMO-GONRs//GONRs device showed excellent capacity retention and Coulombic efficiency after 10,000 cycles at 10 A/g, revealing the promising employment of LSMO-GONRs composite as a highly stable material for supercapacitor applications.
Materials Science fo... arrow_drop_down Materials Science for Energy TechnologiesArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mset.2024.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Materials Science fo... arrow_drop_down Materials Science for Energy TechnologiesArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mset.2024.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Toyin Shittu; Aasif A. Dabbawala; Labeeb Ali; Abbas Khaleel; Muhammad Z. Iqbal; Dalaver H. Anjum; Kyriaki Polychronopoulou; Mohammednoor Altarawneh;The regulation of catalyst activity and selectivity using a reducible support for the industrially relevant hydrogenation of 1,3-butadiene to more valuable butene products was achieved. Supported palladium and nickel–palladium catalysts on ceria were prepared and characterized with hydrogen temperature programmed reduction (H2-TPR), hydrogen temperature programmed desorption (H2-TPD), X-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HR-TEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), temperature programmed oxidation (TPO), energy dispersive spectroscopy (EDS), and N2 adsorption–desorption to examine their chemical and physical properties. Pathways guiding the reaction were determined using the density functional theory (DFT). H2-TPR confirmed that palladium oxide was reduced, and nickel oxide species strongly interacted with the CeO2 support. The Ce3+ concentration determined by XPS showed that all catalysts surface contained the Ce reduced state. The catalysts showed a similar BET surface area, with 4Pd–Ce presenting the lowest value due to particle aggregation, which was confirmed from the EDS mapping analysis. Butadiene conversion consistently increased with temperature (40 °C–120 °C) until full conversion was reached on all the Pd catalysts while the maximum conversion on the 4Ni-Ce catalyst was 88 % at 120 °C. Product distribution revealed that 4 % Pd content directed the products toward butane when 40 °C was exceeded. Constructed mechanisms by DFT calculations featured low reaction barriers for the involved surface hydrogenation steps, and thus, they accounted for the observed low temperature of the surface hydrogenation activity. Selective formation of 1-butene partially stemmed from its relatively weak binding to Ni sites in reference to Pd sites. The mapped-out mechanisms entailed a higher reaction barrier for the formation of 2-butene, in agreement with the experimental observation pertinent to its formation at higher temperatures when compared with that of 1-butene.
Materials Science fo... arrow_drop_down Materials Science for Energy TechnologiesArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mset.2024.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Materials Science fo... arrow_drop_down Materials Science for Energy TechnologiesArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mset.2024.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Merin K. Wilson; Dhanya P. Jacob; Aldrin Antony; M.K. Jayaraj; S. Jayalekshmi;Globally, energy demands are massive, and environmental issues are rising against our sustainability. To maximize the use of renewable energy sources, development of efficient energy storage systems is mandatory. Lithium-ion batteries (LIBs) play an indispensable role in powering portable devices and electric vehicles, due to their high specific capacity and long cycle life. Manganese oxide (Mn3O4) is an environmentally friendly anode active material with high theoretical specific capacity of 936 mAh g−1 for applications in Li-ion cells.In the present work, Mn3O4-functionalized carbon nanotubes (FCNT) nanocomposite, coated on carbon cloth (CC) current collector and termed as Mn3O4-FCNT @CC, is used as the anode material. Li-ion coin cells based on this nanocomposite anode show discharge capacity of 1371mAhg−1 and charge capacity of 1141mAhg−1 at current density of 100 mA g−1 with initial Coulombic efficiency of 83%. After 70 cycles, the charge-discharge capacities of the cells are 953mAhg−1 and 958mAhg−1, respectively, with capacity retention of 91% at current rate of 100 mA g−1. These cells are found to deliver reversible charge capacity of 575mAhg−1 after 100 cycles at 1C (∼1 A g−1) and offer prospects of stable operation at high current rates.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nxener.2024.100207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nxener.2024.100207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Royal Society of Chemistry (RSC) Funded by:NSF | Collaborative Research: E..., NSF | CAREER: Fundamental Under..., NSF | I-Corps: Thermophotovolta... +1 projectsNSF| Collaborative Research: EAGER: CET: Efficient and power-dense heat utilization with zero-gap thermophotovoltaics ,NSF| CAREER: Fundamental Understanding of Thermal Transport at the Single Molecule Level ,NSF| I-Corps: Thermophotovoltaic system without a vacuum or air gap ,NSF| Collaborative Research: EAGER: CET: Efficient and power-dense heat utilization with zero-gap thermophotovoltaicsMohammad Habibi; Sai C. Yelishala; Yunxuan Zhu; Eric J. Tervo; Myles A. Steiner; Longji Cui;doi: 10.1039/d4ee04604h
Adding an infrared transparent spacer to far-field thermophotovoltaic (TPV) devices boosts power density. This scalable zero-gap design surpasses vacuum blackbody limit and achieves performance comparable to near-field TPV with nanoscale gaps.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee04604h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee04604h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Authors: José Maria Clemente da Silva Filho; Nelson Fabian Villegas Borrero; Andreia de Morais; Jilian Nei de Freitas; +1 AuthorsJosé Maria Clemente da Silva Filho; Nelson Fabian Villegas Borrero; Andreia de Morais; Jilian Nei de Freitas; Francisco das Chagas Marques;Lead iodide (PbI2) is a 2D layered semiconductor used in several electronic applications, such as solar cells, X-ray, and gamma-ray detectors. Most of its properties have been reported for monocrystals or polycrystalline thick films used in high-energy photon detectors. As for thin films used in other optoelectronic devices, the reported properties are limited to the conditions adopted in manufacturing the devices. Furthermore, very little is known about the properties of films deposited by sputtering. Here, we investigate the optical and structural properties of PbI2 thin films deposited by rf-sputtering a PbI2 target. The deposition temperature significantly influences the film's properties, as determined by X-ray, scanning electron microscopy (SEM), atomic force microscopy (AFM), UV-vis, and Raman spectroscopy. A common characteristic at all temperatures was forming metallic lead (Pb) segregated in the surface of films, with concentration depending on the deposition temperature. These lead clusters were successfully converted into PbI2 using an iodination process, allowing the synthesis of pure PbI2 films without lead segregation. The activation energy for the reaction between Pb clusters and iodine vapor was determined by adopting the Arrhenius equation. It was also observed that converting PbI2 film into perovskite through the two-step process, by immersion of the PbI2 film into methylammonium iodide solution, transforms the segregated lead into perovskite. The sputtering technique allows the deposition of uniform films over large areas compatible with roll-to-roll processes, which are desired to produce large-area detectors and perovskite solar cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nxener.2024.100192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nxener.2024.100192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Royal Society of Chemistry (RSC) Funded by:EC | BOOSTER, EC | EMERGEEC| BOOSTER ,EC| EMERGESarmad Feroze; Andreas Distler; Lirong Dong; Michael Wagner; Iftikhar Ahmed Channa; Felix Hoga; Christoph J. Brabec; Hans-Joachim Egelhaaf;doi: 10.1039/d4ee04036h
Outdoor monitoring of Roll-to-Roll (R2R) printed flexible organic photovoltaic (OPV) modules for building integrated/attached photovoltaics (BIPV/BAPV) applications.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee04036h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee04036h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Royal Society of Chemistry (RSC) Funded by:SNSF | Dynamics of Ionic Additiv..., UKRI | Application Targeted and ...SNSF| Dynamics of Ionic Additive Passivation in Perovskite Solar Cells ,UKRI| Application Targeted and Integrated Photovoltaics - Enhancing UK Capability in SolarMatthias Diethelm; Tino Lukas; Joel Smith; Akash Dasgupta; Pietro Caprioglio; Moritz Futscher; Roland Hany; Henry J. Snaith;This study introduces a new method to analyse mobile ion-related processes in metal halide perovskite devices, which reveals how ion conductivity determines electric field screening and provides new insights into the mixed ionic–electronic behaviour.
Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee02494j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy & Environment... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee02494j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Royal Society of Chemistry (RSC) Yan-Song Zhang; Hasan Arif Yetkin; Hakam Agha; Sevan Gharabeiki; Rijeesh Kizhakidathazhath; Lena Merges; Ricardo G. Poeira; Jan P. F. Lagerwall; Phillip J. Dale;doi: 10.1039/d4ee03010a
Self-assembled cholesteric liquid crystals uniquely enable non-spectral coloured and thermochromic covered highly efficient photovoltaic devices for aesthetic integration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee03010a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee03010a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Authors: Mohammad Waseem; G. Sree Lakshmi; Mumtaz Ahmad; Mohd Suhaib;The desirable characteristics of an energy storage system (ESS) to fulfill the energy requirement in electric vehicles (EVs) are high specific energy, significant storage capacity, longer life cycles, high operating efficiency, and low cost. In order to advance electric transportation, it is important to identify the significant characteristics, pros and cons, new scientific developments, potential barriers, and imminent prospects of various energy storage technology. The objective of current research is to analyse and find out the optimal storage technology among different electro-chemical, chemical, electrical, mechanical, and hybrid storage system. Different batteries including lead-acid, nickel-based, lithium-ion, flow, metal-air, solid state, and ZEBRA along with their operating parameters are reviewed. The potential roles of fuel cell, ultracapacitor, flywheel and hybrid storage system technology in EVs are explored. Performance parameters of various battery system are analysed through radar based specified technique to conclude the best storage medium in electric mobility. Additionally, the current study compiles a critical analysis of 264 publications from various sources.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nxener.2024.100202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nxener.2024.100202&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Royal Society of Chemistry (RSC) Authors: Saied Md Pratik; Grit Kupgan; Jean-Luc Brédas; Veaceslav Coropceanu;doi: 10.1039/d4ee03815k
This work gives a comprehensive description of the fundamental electronic processes taking place in the active layer of PM6:Y6 solar cells. It also points to the role of triplet states, excimer-like states, and defect states in device performance.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee03815k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee03815k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Asmaa R. Heiba; Mostafa M. Omran; Rabab M. Abou Shahba; Abdelghaffar S. Dhmees; Fatma A. Taher; Ehab El Sawy;The anticipated large contribution of renewable energy resources to the sector of energy production strongly motivated the development of energy storage technologies, of which supercapacitors have drawn a lot of attention. In this work, Lanthanum-Strontium-Manganese-oxide (LSMO) perovskite nanoparticles, graphene oxide nanoribbons (GONRs), and LSMO-GONRs composite were synthesized and tested as electrode materials for supercapacitor applications. The LSMO was synthesized using the co-precipitation/calcination method, while the GONRs were synthesized using the oxidative unzipping of multi-walled carbon nanotubes. The physical/chemical structures were studied using XRD, FT-IR, SEM, TEM, SAED, and XPS. In 1 M KOH, the LSMO-GONRs electrode exhibited a specific capacitance of 490F/g compared to 342F/g and 294F/g for GONRs and LSMO electrodes, respectively, at 1 A/g, showcasing a performance that is not just superior but truly impressive, to the different types of perovskite/carbon-based material composites. The fabricated asymmetric SC device of LSMO-GONRs//GONRs exhibited a potential window of 1.7 V, a specific capacitance of 92.3F/g, an energy density of 38 Wh/kg, and a power density of 860 W/kg at 1 A/g. Moreover, the LSMO-GONRs//GONRs device showed excellent capacity retention and Coulombic efficiency after 10,000 cycles at 10 A/g, revealing the promising employment of LSMO-GONRs composite as a highly stable material for supercapacitor applications.
Materials Science fo... arrow_drop_down Materials Science for Energy TechnologiesArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mset.2024.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Materials Science fo... arrow_drop_down Materials Science for Energy TechnologiesArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.mset.2024.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu