- home
- Advanced Search
- Energy Research
- Open Access
- Closed Access
- Restricted
- biological sciences
- 15. Life on land
- 7. Clean energy
- Energy Research
- Open Access
- Closed Access
- Restricted
- biological sciences
- 15. Life on land
- 7. Clean energy
description Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Pil Joo Kim; Gil Won Kim; Ho Gyeong Chae; Song Rae Cho; Jeong Gu Lee;pmid: 34666093
Plastic film mulching (FM) became a general practice to enhance crop productivity and its net primary production (NPP), but it can increase greenhouse gas (GHG) emissions. The proper addition of organic amendments might effectively decrease the impact of FM on global warming. To evaluate the feasibility of biomass addition on decreasing this negative influence, cover crop biomass as a green manure was incorporated with different recycling levels (0-100% of aboveground biomass) under FM and no-mulching. The net global warming potential (GWP) which integrated with soil C stock change and GHG (N2O and CH4) fluxes with CO2-equivalent was evaluated during maize cultivation. Under the same biomass incorporation, FM significantly enhanced the grain productivity and NPP of maize by 22-61 and 18-58% over no-mulching, respectively. In contrast, FM also highly increased the respired C loss, which was 11-95% higher than NPP increase, over no-mulching. Irrespective with biomass recycling ratio and mulching system, negative NECB which indicates the decrease of soil C stock was observed, mainly due to big harvest removal. FM decreased more soil C stock by 57-158% over no-mulching, but its C stock was clearly increased with increasing biomass addition. FM significantly increased total N2O and CH4 fluxes by 4-61 and 140-600% over no-mulching, respectively. Soil C stock changes mainly decided net GWP scale, but N2O and CH4 fluxes negligibly influenced. As a result, FM highly increased net GWP over no-mulching, while this net GWP was clearly decreased with increasing biomass application. However, cover cropping, and its biomass recycling was not enough to compensate the negative impact of FM on global warming. Therefore, more biomass incorporation might be essential to compensate this negative effect of FM.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.151015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.151015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Spain, Morocco, NetherlandsPublisher:Royal Society of Chemistry (RSC) Michel H.M. Eppink; Giuseppe Olivieri; Jeroen H. de Vree; Maria J. Barbosa; Jesús Ruiz; J. Hans Reith; René H. Wijffels; René H. Wijffels; Dorinde M.M. Kleinegris; R. Bosma; Philippe Willems;doi: 10.1039/c6ee01493c
Model projections show that production of high-value products from microalgae could be profitable nowadays and commodities will become profitable within 10 years.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Repositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2016License: CC BY NC NDWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ee01493c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 296 citations 296 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Repositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2016License: CC BY NC NDWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ee01493c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Frontiers Media SA Gurpreet Kaur Nagi; Shovon Mandal; Suchitra Gaur; Priyanshu Jain; Amritpreet Kaur Minhas;Microalgae offer a great potential to contribute significantly as renewable fuels and documented as a promising platform for algae-based bio refineries. They provide solutions to mitigate the environmental concerns posed by conventional fuel sources; however, the production of microalgal biofuels in large scale production system encounters few technical challenges. High quantity of nutrients requirements and water cost constrain the scaling up microalgal biomass to large scale commercial production. Crop protection against biomass losses due to grazers or pathogens is another stumbling block in microalgal field cultivation. With our existing technologies, unless coupled with high-value or mid-value products, algal biofuel cannot reach the economic target. Many microalgal industries that started targeting biofuel in the last decade had now adopted parallel business plans focusing on algae by-products application as cosmetic supplements, nutraceuticals, oils, natural color, and animal feed. This review provides the current status and proposes a framework for key supply demand, challenges for cost-effective and sustainable use of water and nutrient. Emphasis is placed on the future industrial market status of value added by products of microalgal biomass. The cost factor for biorefinery process development needs to be addressed before its potential to be exploited for various value-added products with algal biofuel.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.735141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.735141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Jackson Nkoh Nkoh; Ni Ni; Hai-long Lu; Hong-wei Lai; Hong-wei Lai; Ren-kou Xu; Xian He; Wen-rui Zhao; Chenyang Xu; Ren-yong Shi; Jiu-yu Li; Peng Guan; Xiumin Cui; Zhao-dong Liu; Wei Qian;pmid: 34280864
Forest soil acidification caused by acid deposition is a serious threat to the forest ecosystem. To investigate the liming effects of biomass ash (BA) and alkaline slag (AS) on the acidic topsoil and subsoil, a three-year field experiment under artificial Masson pine was conducted at Langxi, Anhui province in Southern China. The surface application of BA and AS significantly increased the soil pH, and thus decreased exchangeable acidity and active Al in the topsoil. Soil exchangeable Ca2+ and Mg2+ in topsoil were significantly increased by the surface application of BA and AS, while an increase in soil exchangeable K+ was only observed in BA treatments. The soil acidity and active Al in subsoil were decreased by the surface application of AS. Compared with the control, soluble monomeric and exchangeable Al in the subsoil was decreased by 38.0% and 29.4% after 3 years of AS surface application. There was a minimal effect on soluble monomeric and exchangeable Al after the application of BA. The soil exchangeable Ca2+ and Mg2+ in the subsoil increased respectively by 54% and 141% after surface application of 10 t ha-1 AS. The decrease of soil active Al and increase of base cations in subsoil were mainly attributed to the high migration capacity of base cations in AS. In conclusion, the effect of surface application of AS was superior to BA in ameliorating soil acidity and alleviating soil Al toxicity in the subsoil of this Ultisol.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.113306&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.113306&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Australia, United StatesPublisher:Elsevier BV Aganto Seno; Irwan Isnain; Steven Victor; Miguel D. Fortes; Rob Coles; Maxwell Salik; Frederick T. Short; Frederick T. Short; Jay Andrew;pmid: 24746094
Seagrass systems of the Western Pacific region are biodiverse habitats, providing vital services to ecosystems and humans over a vast geographic range. SeagrassNet is a worldwide monitoring program that collects data on seagrass habitats, including the ten locations across the Western Pacific reported here where change at various scales was rapidly detected. Three sites remote from human influence were stable. Seagrasses declined largely due to increased nutrient loading (4 sites) and increased sedimentation (3 sites), the two most common stressors of seagrass worldwide. Two sites experienced near-total loss from of excess sedimentation, followed by partial recovery once sedimentation was reduced. Species shifts were observed at every site with recovering sites colonized by pioneer species. Regulation of watersheds is essential if marine protected areas are to preserve seagrass meadows. Seagrasses in the Western Pacific experience stress due to human impacts despite the vastness of the ocean area and low development pressures.
Marine Pollution Bul... arrow_drop_down Marine Pollution BulletinArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of New Hampshire: Scholars RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpolbul.2014.03.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 64 citations 64 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Marine Pollution Bul... arrow_drop_down Marine Pollution BulletinArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of New Hampshire: Scholars RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpolbul.2014.03.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Wiley Richard K Olson; Kathy Hibbard; Stephen D. Prince; Dominique Bachelet; William J. Parton; Daolan Zheng; Stephen J. Del Grosso; Stephen J. Del Grosso; Thomas J. Stohlgren;doi: 10.1890/07-0850.1
pmid: 18724722
Net primary production (NPP), the difference between CO2 fixed by photosynthesis and CO2 lost to autotrophic respiration, is one of the most important components of the carbon cycle. Our goal was to develop a simple regression model to estimate global NPP using climate and land cover data. Approximately 5600 global data points with observed mean annual NPP, land cover class, precipitation, and temperature were compiled. Precipitation was better correlated with NPP than temperature, and it explained much more of the variability in mean annual NPP for grass- or shrub-dominated systems (r2 = 0.68) than for tree-dominated systems (r2 = 0.39). For a given precipitation level, tree-dominated systems had significantly higher NPP (approximately 100-150 g C m(-2) yr(-1)) than non-tree-dominated systems. Consequently, previous empirical models developed to predict NPP based on precipitation and temperature (e.g., the Miami model) tended to overestimate NPP for non-tree-dominated systems. Our new model developed at the National Center for Ecological Analysis and Synthesis (the NCEAS model) predicts NPP for tree-dominated systems based on precipitation and temperature; but for non-tree-dominated systems NPP is solely a function of precipitation because including a temperature function increased model error for these systems. Lower NPP in non-tree-dominated systems is likely related to decreased water and nutrient use efficiency and higher nutrient loss rates from more frequent fire disturbances. Late 20th century aboveground and total NPP for global potential native vegetation using the NCEAS model are estimated to be approximately 28 Pg and approximately 46 Pg C/yr, respectively. The NCEAS model estimated an approximately 13% increase in global total NPP for potential vegetation from 1901 to 2000 based on changing precipitation and temperature patterns.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/07-0850.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 328 citations 328 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/07-0850.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Springer Science and Business Media LLC Funded by:NSF | A rapid Assessment of Pos..., NSF | Collaborative Research: B...NSF| A rapid Assessment of Post-fire Changes in Biophysical Variables, Carbon Stocks, and Soil Microbial Processes in the Tallest Angiosperm Forest ,NSF| Collaborative Research: Biophysical and Ecological Constraints on Maximum Tree Height:Insights From the Three Tallest Tree Species.Authors: Stephen C. Sillett; Cameron B. Williams; George W. Koch; Marie E. Antoine;pmid: 25542214
Structural and physiological changes that occur as trees grow taller are associated with increased hydraulic constraints on leaf gas exchange, yet it is unclear if leaf-level constraints influence whole-tree growth as trees approach their maximum size. We examined variation in leaf physiology, leaf area to sapwood area ratio (L/S), and annual aboveground growth across a range of tree heights in Eucalyptus regnans. Leaf photosynthetic capacity did not differ among upper crown leaves of individuals 61.1-92.4 m tall. Maximum daily and integrated diurnal stomatal conductance (g s) averaged 36 and 34% higher, respectively, in upper crown leaves of ~60-m-tall, 80-year-old trees than in ~90-m-tall, 300-year-old trees, with larger differences observed on days with a high vapor pressure deficit (VPD). Greater stomatal regulation in taller trees resulted in similar minimum daily leaf water potentials (Ψ L) in shorter and taller trees over a broad range of VPDs. The long-term stomatal limitation on photosynthesis, as inferred from leaf δ (13)C composition, was also greater in taller trees. The δ (13)C of wood indicated that the bulk of photosynthesis used to fuel wood production in the main trunk and branches occurred in the upper crown. L/S increased with tree height, especially after accounting for size-independent variation in crown structure across 27 trees up to 99.8 m tall. Despite greater stomatal limitation of leaf photosynthesis in taller trees, total L explained 95% of the variation in annual aboveground biomass growth among 15 trees measured for annual biomass growth increment in 2006. Our results support a theoretical model proposing that, in the face of increasing hydraulic constraints with height, whole-tree growth is maximized by a resource trade-off that increases L to maximize light capture rather than by reducing L/S to sustain g s.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-014-3181-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-014-3181-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United StatesPublisher:MDPI AG Abotaleb Salehnasab; Harold E. Burkhart; Mahmoud Bayat; Bagher Khaleghi; Sahar Heidari; Hafiz Umair Masood Awan;doi: 10.3390/su14116777
The Hyrcanian forests of Iran are mainly managed with the single-selection silvicultural technique. Despite significant ecological benefits associated with selection cutting, this type of forest management leads towards more challenging situations where it is difficult to maintain and practice successful forestry than in even-aged systems. Therefore, this study provides relevant management tools in the form of models to estimate low growth levels in Hyrcanian forests. In the present study, estimation of the population growth rate and then the allowable cut rate of these forests using a matrix model have been calculated in the Gorazbon district. For this purpose, the data of 256 permanent sample plots measured during the years between 2003 and 2012, as well as the data recorded about the trees harvested according to the forestry plan, have been used. As a first step, the most frequently occurring tree species were divided into four groups (beech, hornbeam, chestnut-leaved oak, and other species). Compartments of the district were divided into two groups of logged and unlogged compartments. The purpose of this division was to estimate the allowable cut and compare its volume with the volumes of observed and predicted allowable cuts obtained from forestry plans. The results showed that the total operated allowable cut (OAC) in logged compartments was more than the estimated allowable cut (EAC). In unlogged compartments, the total predicted allowable cut (PAC) was more than EAC. A comparison of EAC and OAC showed that hornbeam has been harvested more than its potential. However, chestnut-leaved oak and other species group have depicted opposite trends. Our models provide important advancements for estimating allowable cut that can enhance the goal of practicing sustainable forestry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14116777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14116777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Public Library of Science (PLoS) Authors: Leonardo S. Miranda; Vera L. Imperatriz-Fonseca; Tereza C. Giannini;Although the impacts of climate change on biodiversity are increasing worldwide, few studies have attempted to forecast these impacts on Amazon Tropical Forest. In this study, we estimated the impact of climate change on Amazonian avian assemblages considering range shifts, species loss, vulnerability of ecosystem functioning, future effectiveness of current protected areas and potential climatically stable areas for conservation actions. Species distribution modelling based on two algorithms and three different scenarios of climate change was used to forecast 501 avian species, organized on main ecosystem functions (frugivores, insectivores and nectarivores) for years 2050 and 2070. Considering the entire study area, we estimated that between 4 and 19% of the species will find no suitable habitat. Inside the currently established protected areas, species loss could be over 70%. Our results suggest that frugivores are the most sensitive guild, which could bring consequences on seed dispersal functions and on natural regeneration. Moreover, we identified the western and northern parts of the study area as climatically stable. Climate change will potentially affect avian assemblages in southeastern Amazonia with detrimental consequences to their ecosystem functions. Information provided here is essential to conservation practitioners and decision makers to help on planning their actions.
PLoS ONE arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0215229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0215229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Richard T. Conant; Nan Wang; Kaiqiang Zhang; Guomo Zhou; Shangbin Bai; Yixiang Wang; Yixiang Wang; Yanhua Li;AbstractAcross southern China, Moso bamboo has been encroaching on most neighboring secondary broad-leaved forests and/or coniferous plantations, leading to the land cover changes that alter abiotic and biotic conditions. Little is known about how this conversion alters soil carbon (C) and nitrogen (N). We selected three sites, each with three plots arrayed along the bamboo encroachment pathway: moso bamboo forest (BF); transition zone, mixed forest plots (MF); and broad-leaved forest (BLF), and examined how bamboo encroachment affects soil organic C (SOC), soil total N, microbial biomass C (MBC), microbial biomass N (MBN), water-soluble organic C (WSOC), and water-soluble organic N (WSON) in three forests. Over nine years, moso bamboo encroachment leads to a decrease in SOC and total soil N, an increase in MBC and WSOC, and a decrease in MBN and WSON. Changes in soil C and N occurred mainly in the topsoil. We conclude that moso bamboo encroachment on broadleaved forest not only substantially altered soil C and N pools, but also changed the distribution pattern of C and N in the studied forest soils. Continued bamboo encroachment into evergreen broadleaved forests seems likely to lead to net CO2 emissions to the atmosphere as ecosystem C stocks decline.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep31480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep31480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Pil Joo Kim; Gil Won Kim; Ho Gyeong Chae; Song Rae Cho; Jeong Gu Lee;pmid: 34666093
Plastic film mulching (FM) became a general practice to enhance crop productivity and its net primary production (NPP), but it can increase greenhouse gas (GHG) emissions. The proper addition of organic amendments might effectively decrease the impact of FM on global warming. To evaluate the feasibility of biomass addition on decreasing this negative influence, cover crop biomass as a green manure was incorporated with different recycling levels (0-100% of aboveground biomass) under FM and no-mulching. The net global warming potential (GWP) which integrated with soil C stock change and GHG (N2O and CH4) fluxes with CO2-equivalent was evaluated during maize cultivation. Under the same biomass incorporation, FM significantly enhanced the grain productivity and NPP of maize by 22-61 and 18-58% over no-mulching, respectively. In contrast, FM also highly increased the respired C loss, which was 11-95% higher than NPP increase, over no-mulching. Irrespective with biomass recycling ratio and mulching system, negative NECB which indicates the decrease of soil C stock was observed, mainly due to big harvest removal. FM decreased more soil C stock by 57-158% over no-mulching, but its C stock was clearly increased with increasing biomass addition. FM significantly increased total N2O and CH4 fluxes by 4-61 and 140-600% over no-mulching, respectively. Soil C stock changes mainly decided net GWP scale, but N2O and CH4 fluxes negligibly influenced. As a result, FM highly increased net GWP over no-mulching, while this net GWP was clearly decreased with increasing biomass application. However, cover cropping, and its biomass recycling was not enough to compensate the negative impact of FM on global warming. Therefore, more biomass incorporation might be essential to compensate this negative effect of FM.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.151015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.151015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Spain, Morocco, NetherlandsPublisher:Royal Society of Chemistry (RSC) Michel H.M. Eppink; Giuseppe Olivieri; Jeroen H. de Vree; Maria J. Barbosa; Jesús Ruiz; J. Hans Reith; René H. Wijffels; René H. Wijffels; Dorinde M.M. Kleinegris; R. Bosma; Philippe Willems;doi: 10.1039/c6ee01493c
Model projections show that production of high-value products from microalgae could be profitable nowadays and commodities will become profitable within 10 years.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Repositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2016License: CC BY NC NDWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ee01493c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 296 citations 296 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Repositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2016License: CC BY NC NDWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ee01493c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Frontiers Media SA Gurpreet Kaur Nagi; Shovon Mandal; Suchitra Gaur; Priyanshu Jain; Amritpreet Kaur Minhas;Microalgae offer a great potential to contribute significantly as renewable fuels and documented as a promising platform for algae-based bio refineries. They provide solutions to mitigate the environmental concerns posed by conventional fuel sources; however, the production of microalgal biofuels in large scale production system encounters few technical challenges. High quantity of nutrients requirements and water cost constrain the scaling up microalgal biomass to large scale commercial production. Crop protection against biomass losses due to grazers or pathogens is another stumbling block in microalgal field cultivation. With our existing technologies, unless coupled with high-value or mid-value products, algal biofuel cannot reach the economic target. Many microalgal industries that started targeting biofuel in the last decade had now adopted parallel business plans focusing on algae by-products application as cosmetic supplements, nutraceuticals, oils, natural color, and animal feed. This review provides the current status and proposes a framework for key supply demand, challenges for cost-effective and sustainable use of water and nutrient. Emphasis is placed on the future industrial market status of value added by products of microalgal biomass. The cost factor for biorefinery process development needs to be addressed before its potential to be exploited for various value-added products with algal biofuel.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.735141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.735141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Jackson Nkoh Nkoh; Ni Ni; Hai-long Lu; Hong-wei Lai; Hong-wei Lai; Ren-kou Xu; Xian He; Wen-rui Zhao; Chenyang Xu; Ren-yong Shi; Jiu-yu Li; Peng Guan; Xiumin Cui; Zhao-dong Liu; Wei Qian;pmid: 34280864
Forest soil acidification caused by acid deposition is a serious threat to the forest ecosystem. To investigate the liming effects of biomass ash (BA) and alkaline slag (AS) on the acidic topsoil and subsoil, a three-year field experiment under artificial Masson pine was conducted at Langxi, Anhui province in Southern China. The surface application of BA and AS significantly increased the soil pH, and thus decreased exchangeable acidity and active Al in the topsoil. Soil exchangeable Ca2+ and Mg2+ in topsoil were significantly increased by the surface application of BA and AS, while an increase in soil exchangeable K+ was only observed in BA treatments. The soil acidity and active Al in subsoil were decreased by the surface application of AS. Compared with the control, soluble monomeric and exchangeable Al in the subsoil was decreased by 38.0% and 29.4% after 3 years of AS surface application. There was a minimal effect on soluble monomeric and exchangeable Al after the application of BA. The soil exchangeable Ca2+ and Mg2+ in the subsoil increased respectively by 54% and 141% after surface application of 10 t ha-1 AS. The decrease of soil active Al and increase of base cations in subsoil were mainly attributed to the high migration capacity of base cations in AS. In conclusion, the effect of surface application of AS was superior to BA in ameliorating soil acidity and alleviating soil Al toxicity in the subsoil of this Ultisol.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.113306&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.113306&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Australia, United StatesPublisher:Elsevier BV Aganto Seno; Irwan Isnain; Steven Victor; Miguel D. Fortes; Rob Coles; Maxwell Salik; Frederick T. Short; Frederick T. Short; Jay Andrew;pmid: 24746094
Seagrass systems of the Western Pacific region are biodiverse habitats, providing vital services to ecosystems and humans over a vast geographic range. SeagrassNet is a worldwide monitoring program that collects data on seagrass habitats, including the ten locations across the Western Pacific reported here where change at various scales was rapidly detected. Three sites remote from human influence were stable. Seagrasses declined largely due to increased nutrient loading (4 sites) and increased sedimentation (3 sites), the two most common stressors of seagrass worldwide. Two sites experienced near-total loss from of excess sedimentation, followed by partial recovery once sedimentation was reduced. Species shifts were observed at every site with recovering sites colonized by pioneer species. Regulation of watersheds is essential if marine protected areas are to preserve seagrass meadows. Seagrasses in the Western Pacific experience stress due to human impacts despite the vastness of the ocean area and low development pressures.
Marine Pollution Bul... arrow_drop_down Marine Pollution BulletinArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of New Hampshire: Scholars RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpolbul.2014.03.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 64 citations 64 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Marine Pollution Bul... arrow_drop_down Marine Pollution BulletinArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of New Hampshire: Scholars RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpolbul.2014.03.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Wiley Richard K Olson; Kathy Hibbard; Stephen D. Prince; Dominique Bachelet; William J. Parton; Daolan Zheng; Stephen J. Del Grosso; Stephen J. Del Grosso; Thomas J. Stohlgren;doi: 10.1890/07-0850.1
pmid: 18724722
Net primary production (NPP), the difference between CO2 fixed by photosynthesis and CO2 lost to autotrophic respiration, is one of the most important components of the carbon cycle. Our goal was to develop a simple regression model to estimate global NPP using climate and land cover data. Approximately 5600 global data points with observed mean annual NPP, land cover class, precipitation, and temperature were compiled. Precipitation was better correlated with NPP than temperature, and it explained much more of the variability in mean annual NPP for grass- or shrub-dominated systems (r2 = 0.68) than for tree-dominated systems (r2 = 0.39). For a given precipitation level, tree-dominated systems had significantly higher NPP (approximately 100-150 g C m(-2) yr(-1)) than non-tree-dominated systems. Consequently, previous empirical models developed to predict NPP based on precipitation and temperature (e.g., the Miami model) tended to overestimate NPP for non-tree-dominated systems. Our new model developed at the National Center for Ecological Analysis and Synthesis (the NCEAS model) predicts NPP for tree-dominated systems based on precipitation and temperature; but for non-tree-dominated systems NPP is solely a function of precipitation because including a temperature function increased model error for these systems. Lower NPP in non-tree-dominated systems is likely related to decreased water and nutrient use efficiency and higher nutrient loss rates from more frequent fire disturbances. Late 20th century aboveground and total NPP for global potential native vegetation using the NCEAS model are estimated to be approximately 28 Pg and approximately 46 Pg C/yr, respectively. The NCEAS model estimated an approximately 13% increase in global total NPP for potential vegetation from 1901 to 2000 based on changing precipitation and temperature patterns.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/07-0850.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 328 citations 328 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/07-0850.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Springer Science and Business Media LLC Funded by:NSF | A rapid Assessment of Pos..., NSF | Collaborative Research: B...NSF| A rapid Assessment of Post-fire Changes in Biophysical Variables, Carbon Stocks, and Soil Microbial Processes in the Tallest Angiosperm Forest ,NSF| Collaborative Research: Biophysical and Ecological Constraints on Maximum Tree Height:Insights From the Three Tallest Tree Species.Authors: Stephen C. Sillett; Cameron B. Williams; George W. Koch; Marie E. Antoine;pmid: 25542214
Structural and physiological changes that occur as trees grow taller are associated with increased hydraulic constraints on leaf gas exchange, yet it is unclear if leaf-level constraints influence whole-tree growth as trees approach their maximum size. We examined variation in leaf physiology, leaf area to sapwood area ratio (L/S), and annual aboveground growth across a range of tree heights in Eucalyptus regnans. Leaf photosynthetic capacity did not differ among upper crown leaves of individuals 61.1-92.4 m tall. Maximum daily and integrated diurnal stomatal conductance (g s) averaged 36 and 34% higher, respectively, in upper crown leaves of ~60-m-tall, 80-year-old trees than in ~90-m-tall, 300-year-old trees, with larger differences observed on days with a high vapor pressure deficit (VPD). Greater stomatal regulation in taller trees resulted in similar minimum daily leaf water potentials (Ψ L) in shorter and taller trees over a broad range of VPDs. The long-term stomatal limitation on photosynthesis, as inferred from leaf δ (13)C composition, was also greater in taller trees. The δ (13)C of wood indicated that the bulk of photosynthesis used to fuel wood production in the main trunk and branches occurred in the upper crown. L/S increased with tree height, especially after accounting for size-independent variation in crown structure across 27 trees up to 99.8 m tall. Despite greater stomatal limitation of leaf photosynthesis in taller trees, total L explained 95% of the variation in annual aboveground biomass growth among 15 trees measured for annual biomass growth increment in 2006. Our results support a theoretical model proposing that, in the face of increasing hydraulic constraints with height, whole-tree growth is maximized by a resource trade-off that increases L to maximize light capture rather than by reducing L/S to sustain g s.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-014-3181-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-014-3181-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United StatesPublisher:MDPI AG Abotaleb Salehnasab; Harold E. Burkhart; Mahmoud Bayat; Bagher Khaleghi; Sahar Heidari; Hafiz Umair Masood Awan;doi: 10.3390/su14116777
The Hyrcanian forests of Iran are mainly managed with the single-selection silvicultural technique. Despite significant ecological benefits associated with selection cutting, this type of forest management leads towards more challenging situations where it is difficult to maintain and practice successful forestry than in even-aged systems. Therefore, this study provides relevant management tools in the form of models to estimate low growth levels in Hyrcanian forests. In the present study, estimation of the population growth rate and then the allowable cut rate of these forests using a matrix model have been calculated in the Gorazbon district. For this purpose, the data of 256 permanent sample plots measured during the years between 2003 and 2012, as well as the data recorded about the trees harvested according to the forestry plan, have been used. As a first step, the most frequently occurring tree species were divided into four groups (beech, hornbeam, chestnut-leaved oak, and other species). Compartments of the district were divided into two groups of logged and unlogged compartments. The purpose of this division was to estimate the allowable cut and compare its volume with the volumes of observed and predicted allowable cuts obtained from forestry plans. The results showed that the total operated allowable cut (OAC) in logged compartments was more than the estimated allowable cut (EAC). In unlogged compartments, the total predicted allowable cut (PAC) was more than EAC. A comparison of EAC and OAC showed that hornbeam has been harvested more than its potential. However, chestnut-leaved oak and other species group have depicted opposite trends. Our models provide important advancements for estimating allowable cut that can enhance the goal of practicing sustainable forestry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14116777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14116777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Public Library of Science (PLoS) Authors: Leonardo S. Miranda; Vera L. Imperatriz-Fonseca; Tereza C. Giannini;Although the impacts of climate change on biodiversity are increasing worldwide, few studies have attempted to forecast these impacts on Amazon Tropical Forest. In this study, we estimated the impact of climate change on Amazonian avian assemblages considering range shifts, species loss, vulnerability of ecosystem functioning, future effectiveness of current protected areas and potential climatically stable areas for conservation actions. Species distribution modelling based on two algorithms and three different scenarios of climate change was used to forecast 501 avian species, organized on main ecosystem functions (frugivores, insectivores and nectarivores) for years 2050 and 2070. Considering the entire study area, we estimated that between 4 and 19% of the species will find no suitable habitat. Inside the currently established protected areas, species loss could be over 70%. Our results suggest that frugivores are the most sensitive guild, which could bring consequences on seed dispersal functions and on natural regeneration. Moreover, we identified the western and northern parts of the study area as climatically stable. Climate change will potentially affect avian assemblages in southeastern Amazonia with detrimental consequences to their ecosystem functions. Information provided here is essential to conservation practitioners and decision makers to help on planning their actions.
PLoS ONE arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0215229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PLoS ONE arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0215229&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Richard T. Conant; Nan Wang; Kaiqiang Zhang; Guomo Zhou; Shangbin Bai; Yixiang Wang; Yixiang Wang; Yanhua Li;AbstractAcross southern China, Moso bamboo has been encroaching on most neighboring secondary broad-leaved forests and/or coniferous plantations, leading to the land cover changes that alter abiotic and biotic conditions. Little is known about how this conversion alters soil carbon (C) and nitrogen (N). We selected three sites, each with three plots arrayed along the bamboo encroachment pathway: moso bamboo forest (BF); transition zone, mixed forest plots (MF); and broad-leaved forest (BLF), and examined how bamboo encroachment affects soil organic C (SOC), soil total N, microbial biomass C (MBC), microbial biomass N (MBN), water-soluble organic C (WSOC), and water-soluble organic N (WSON) in three forests. Over nine years, moso bamboo encroachment leads to a decrease in SOC and total soil N, an increase in MBC and WSOC, and a decrease in MBN and WSON. Changes in soil C and N occurred mainly in the topsoil. We conclude that moso bamboo encroachment on broadleaved forest not only substantially altered soil C and N pools, but also changed the distribution pattern of C and N in the studied forest soils. Continued bamboo encroachment into evergreen broadleaved forests seems likely to lead to net CO2 emissions to the atmosphere as ecosystem C stocks decline.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep31480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/srep31480&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu