- home
- Advanced Search
- Energy Research
- engineering and technology
- Energy Research
- engineering and technology
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Alexey A. Petrov; Daniil A. Lukyanov; Oleg A. Kopytko; Julia V. Novoselova; Elena V. Alekseeva; Oleg V. Levin;Conductive polymers are widely used as active and auxiliary materials for organic photovoltaic cells due to their easily tunable properties, high electronic conductivity, and light absorption. Several conductive polymers show the cathodic photogalvanic effect in pristine state. Recently, photoelectrochemical oxygen reduction has been demonstrated for nickel complexes of Salen-type ligands. Herein, we report an unexpected inversion of the photogalvanic effect caused by doping of the NiSalen polymers with anionic porphyrins. The observed effect was studied by means of UV-Vis spectroscopy, cyclic voltammetry and chopped light chronoamperometry. While pristine NiSalens exhibit cathodic photopolarization, doping with porphyrins inverts the polarization. As a result, photoelectrochemical oxidation of the ascorbate proceeds smoothly on the NiSalen electrode doped with zinc porphyrins. The highest photocurrents were observed on NiSalen polymer with o-phenylene imine bridge, doped with anionic zinc porphyrin. Assuming this, porphyrin serves both as a catalytic center for the oxidation of ascorbate and an internal electron donor, facilitating the photoinduced charge transport and anodic depolarization.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11060729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11060729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Funded by:RSF | Li-ion batteries safety i...RSF| Li-ion batteries safety improvement by means of self-activating electrode coatings of switchable resistanceAuthors: Evgenii V. Beletskii; Elena V. Alekseeva; Dar’ya V. Spiridonova; Andrei N. Yankin; +1 AuthorsEvgenii V. Beletskii; Elena V. Alekseeva; Dar’ya V. Spiridonova; Andrei N. Yankin; Oleg V. Levin;doi: 10.3390/en12244652
Electrochemical cells using LiFePO4 cathode material are considered one of the safest and most resistant to overcharging among Li-ion batteries. However, if LiFePO4-based electrodes are exposed to high potentials, surface and structural changes may occur in the electrode material. In this study Li/LiFePO4 half-cells were overcharged under different modes with variable cut-off voltages and charge currents. The change in voltage profile, discharge capacity, surface layers composition, and crystalline structure were characterized after overcharge cycles. It was demonstrated that the cathode material is resistant to short-term overcharging up to 5 V, but undergoes irreversible changes with increasing overcharge time or potential. Thus, despite the well-known tolerance of LiFePO4-based batteries to overcharge, a long overcharge time or high cut-off voltage leads to destructive changes in the cathode and should be avoided.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12244652&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12244652&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Alexey A. Petrov; Daniil A. Lukyanov; Oleg A. Kopytko; Julia V. Novoselova; Elena V. Alekseeva; Oleg V. Levin;Conductive polymers are widely used as active and auxiliary materials for organic photovoltaic cells due to their easily tunable properties, high electronic conductivity, and light absorption. Several conductive polymers show the cathodic photogalvanic effect in pristine state. Recently, photoelectrochemical oxygen reduction has been demonstrated for nickel complexes of Salen-type ligands. Herein, we report an unexpected inversion of the photogalvanic effect caused by doping of the NiSalen polymers with anionic porphyrins. The observed effect was studied by means of UV-Vis spectroscopy, cyclic voltammetry and chopped light chronoamperometry. While pristine NiSalens exhibit cathodic photopolarization, doping with porphyrins inverts the polarization. As a result, photoelectrochemical oxidation of the ascorbate proceeds smoothly on the NiSalen electrode doped with zinc porphyrins. The highest photocurrents were observed on NiSalen polymer with o-phenylene imine bridge, doped with anionic zinc porphyrin. Assuming this, porphyrin serves both as a catalytic center for the oxidation of ascorbate and an internal electron donor, facilitating the photoinduced charge transport and anodic depolarization.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11060729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11060729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Funded by:RSF | Li-ion batteries safety i...RSF| Li-ion batteries safety improvement by means of self-activating electrode coatings of switchable resistanceAuthors: Evgenii V. Beletskii; Elena V. Alekseeva; Dar’ya V. Spiridonova; Andrei N. Yankin; +1 AuthorsEvgenii V. Beletskii; Elena V. Alekseeva; Dar’ya V. Spiridonova; Andrei N. Yankin; Oleg V. Levin;doi: 10.3390/en12244652
Electrochemical cells using LiFePO4 cathode material are considered one of the safest and most resistant to overcharging among Li-ion batteries. However, if LiFePO4-based electrodes are exposed to high potentials, surface and structural changes may occur in the electrode material. In this study Li/LiFePO4 half-cells were overcharged under different modes with variable cut-off voltages and charge currents. The change in voltage profile, discharge capacity, surface layers composition, and crystalline structure were characterized after overcharge cycles. It was demonstrated that the cathode material is resistant to short-term overcharging up to 5 V, but undergoes irreversible changes with increasing overcharge time or potential. Thus, despite the well-known tolerance of LiFePO4-based batteries to overcharge, a long overcharge time or high cut-off voltage leads to destructive changes in the cathode and should be avoided.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12244652&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12244652&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu