- home
- Advanced Search
- Energy Research
- engineering and technology
- Energy Research
- engineering and technology
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Royal Society of Chemistry (RSC) Funded by:FCT | SFRH/BD/147811/2019, FCT | BlueEnergyFCT| SFRH/BD/147811/2019 ,FCT| BlueEnergyC. Rodrigues; D. Nunes; D. Clemente; N. Mathias; J. M. Correia; P. Rosa-Santos; F. Taveira-Pinto; T. Morais; A. Pereira; J. Ventura;doi: 10.1039/d0ee01258k
This review details the groundwork made in the most recent years on the development of TENGs for wave energy conversion systems and discusses future perspectives in the scope of autonomous, self-powered sensor buoys and other offshore floating platforms.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01258k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 157 citations 157 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01258k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Cátia Rodrigues; Daniel Silva; La Salete Martins; Madalena M. Dias; João Ventura; João P. Araújo; Alberto M. Pereira; J. C. R. E. Oliveira;Abstract With the ever increasing power dissipation in electrical devices, new thermal management solutions are in high demand to maintain an optimal operating temperature and efficient performance. In particular, recently developed magnetically-activated thermal switches (MATSs) provide an alternative to existing devices, using the magnetic and thermal properties of superparamagnetic nanofluids to dissipate heat in a controlled manner. However, the presence of moving parts is a major drawback in these systems that must still be addressed. Herein, we present a compact and automatized MATS composed by an encapsulated superparamagnetic nanofluid and an electromagnet allowing to activate the MATS without any moving part. We investigate the effect of different temperature gradients ( 10 , 26 and 40 °C) and powers applied to the coil (6.5, 15, 25 and 39 W) on the performance of this novel MATS. The results show that the highest ( 44.4 % ) and fastest ( 0.6 °C/s) temperature variation occur for the highest studied temperature gradient. On the other hand, with increasing power, there is also an increase in the efficiency of the heat exchange process between the two surfaces. These results remove one of the main barriers preventing the actual application of magnetic thermal switches and opens new venues for the design of efficient thermal management devices.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.111881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.111881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Royal Society of Chemistry (RSC) Funded by:FCT | SFRH/BD/147811/2019, FCT | BlueEnergyFCT| SFRH/BD/147811/2019 ,FCT| BlueEnergyC. Rodrigues; D. Nunes; D. Clemente; N. Mathias; J. M. Correia; P. Rosa-Santos; F. Taveira-Pinto; T. Morais; A. Pereira; J. Ventura;doi: 10.1039/d0ee01258k
This review details the groundwork made in the most recent years on the development of TENGs for wave energy conversion systems and discusses future perspectives in the scope of autonomous, self-powered sensor buoys and other offshore floating platforms.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01258k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 157 citations 157 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01258k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Cátia Rodrigues; Daniel Silva; La Salete Martins; Madalena M. Dias; João Ventura; João P. Araújo; Alberto M. Pereira; J. C. R. E. Oliveira;Abstract With the ever increasing power dissipation in electrical devices, new thermal management solutions are in high demand to maintain an optimal operating temperature and efficient performance. In particular, recently developed magnetically-activated thermal switches (MATSs) provide an alternative to existing devices, using the magnetic and thermal properties of superparamagnetic nanofluids to dissipate heat in a controlled manner. However, the presence of moving parts is a major drawback in these systems that must still be addressed. Herein, we present a compact and automatized MATS composed by an encapsulated superparamagnetic nanofluid and an electromagnet allowing to activate the MATS without any moving part. We investigate the effect of different temperature gradients ( 10 , 26 and 40 °C) and powers applied to the coil (6.5, 15, 25 and 39 W) on the performance of this novel MATS. The results show that the highest ( 44.4 % ) and fastest ( 0.6 °C/s) temperature variation occur for the highest studied temperature gradient. On the other hand, with increasing power, there is also an increase in the efficiency of the heat exchange process between the two surfaces. These results remove one of the main barriers preventing the actual application of magnetic thermal switches and opens new venues for the design of efficient thermal management devices.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.111881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.111881&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu