- home
- Advanced Search
- Energy Research
- other engineering and technologies
- Energy Research
- other engineering and technologies
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors:Camila Barreneche;
Camila Barreneche;Camila Barreneche
Camila Barreneche in OpenAIRELuisa F. Cabeza;
Luisa F. Cabeza
Luisa F. Cabeza in OpenAIREM. Elena Navarro;
+2 AuthorsM. Elena Navarro
M. Elena Navarro in OpenAIRECamila Barreneche;
Camila Barreneche;Camila Barreneche
Camila Barreneche in OpenAIRELuisa F. Cabeza;
Luisa F. Cabeza
Luisa F. Cabeza in OpenAIREM. Elena Navarro;
A. Inés Fernández;M. Elena Navarro
M. Elena Navarro in OpenAIREM. Niubó;
M. Niubó
M. Niubó in OpenAIREAbstract In recent years, the overall energy consumption is increasing significantly and the energy consumption in the building sector represents over 30% of the global ones in developed countries. Thermal energy storage (TES) using phase change materials (PCM), which are materials able to store high amounts of energy as latent heat, is suggested as a possible solution to decrease the energy consumption. The authors of this paper developed materials able to encapsulate/stabilize PCM in addition to isolate an industrial residue from the steel recycling process: electrical arc furnace dust (EAFD). This waste is a hazardous dust, and when it is combined with a polymeric matrix produce dense sheet materials suitable for multilayered constructive systems. In this paper the physical, mechanical, thermal and acoustical characterization of two new materials with EAFD and PCM in a polymeric matrix for constructive system is presented. The results are compared with those obtained for one commercial dense sheet material available in the market, Texsound commercialized by TEXSA (Spain). The new dense sheet materials developed in this paper have similar acoustic properties compared to the results obtained for the commercial material and are competitive with it, even better because the new material incorporates PCM which increases the thermal inertia of final constructive system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2013.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2013.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: A. Inés Fernández;M. Niubó;
Cristian Solé;M. Niubó
M. Niubó in OpenAIREMercè Segarra;
+5 AuthorsMercè Segarra
Mercè Segarra in OpenAIREA. Inés Fernández;M. Niubó;
Cristian Solé;M. Niubó
M. Niubó in OpenAIREMercè Segarra;
Ferran Espiell;Mercè Segarra
Mercè Segarra in OpenAIRECamila Barreneche;
Camila Barreneche; José M. Chimenos;Camila Barreneche
Camila Barreneche in OpenAIRELuisa F. Cabeza;
Luisa F. Cabeza
Luisa F. Cabeza in OpenAIREAbstract Energy consumption for thermal comfort in buildings reached 20–40% of total energy consumption in the developed countries. This study evaluates the performance of a composite material with enhanced thermal inertia formulated with a solid waste to be used in buildings. The feasibility of incorporating electric arc furnace dust (EAFD) was evaluated. EAFD is a special waste used as filler in a polymer matrix. Paraffin wax is added with two functions: on one side as lubricant agent to promote a correct mixing between the inorganic filler and the polymeric matrix. Moreover, paraffin acts as phase change material (PCM) due to their high thermal energy storage (TES) capacity as latent heat from the phase change. In order to evaluate the performance as part of building systems of new material developed in this paper, several composite formulations were prepared and tensile strength test were performed, the thermal properties were analyzed by differential scanning calorimetry (DSC) and airborne noise acoustic properties were tested using an experimental cabin based on the UNE-EN-ISO140. The results were compared with a commercial material for acoustic insulation in constructive solutions. The material developed was a 3 mm dense sheet able to be used in combination with other materials as constructive systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2013.02.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2013.02.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu