Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Energy and Buildings
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development and characterization of new shape-stabilized phase change material (PCM)—Polymer including electrical arc furnace dust (EAFD), for acoustic and thermal comfort in buildings

Authors: A. Inés Fernández; M. Niubó; Cristian Solé; Mercè Segarra; Ferran Espiell; Camila Barreneche; Camila Barreneche; +2 Authors

Development and characterization of new shape-stabilized phase change material (PCM)—Polymer including electrical arc furnace dust (EAFD), for acoustic and thermal comfort in buildings

Abstract

Abstract Energy consumption for thermal comfort in buildings reached 20–40% of total energy consumption in the developed countries. This study evaluates the performance of a composite material with enhanced thermal inertia formulated with a solid waste to be used in buildings. The feasibility of incorporating electric arc furnace dust (EAFD) was evaluated. EAFD is a special waste used as filler in a polymer matrix. Paraffin wax is added with two functions: on one side as lubricant agent to promote a correct mixing between the inorganic filler and the polymeric matrix. Moreover, paraffin acts as phase change material (PCM) due to their high thermal energy storage (TES) capacity as latent heat from the phase change. In order to evaluate the performance as part of building systems of new material developed in this paper, several composite formulations were prepared and tensile strength test were performed, the thermal properties were analyzed by differential scanning calorimetry (DSC) and airborne noise acoustic properties were tested using an experimental cabin based on the UNE-EN-ISO140. The results were compared with a commercial material for acoustic insulation in constructive solutions. The material developed was a 3 mm dense sheet able to be used in combination with other materials as constructive systems.

Keywords

Electrical arc furnace dust, Thermal energy storage, Phase change material

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Top 10%