- home
- Advanced Search
- Energy Research
- other engineering and technologies
- 6. Clean water
- Energy Conversion and Management
- Energy Research
- other engineering and technologies
- 6. Clean water
- Energy Conversion and Management
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Deok Han Kim; Kilsung Kwon; Byung Ho Park; Daejoong Kim;Abstract Waste heat recovery has attracted a significant attention because of the world growth in energy demand. In this paper, we report the study on an energy recovery system utilizing low-grade waste heat below 100 °C. This system called a thermal-driven electrochemical generator is composed of reverse electrodialysis (RED) power generation and thermal separation using waste heat. We especially focus on the experimental characterization of the RED process with ammonium bicarbonate (NH4HCO3) solution, which is known to be easily decomposed at the temperature around 60 °C. We characterized this NH4HCO3-RED system with various parameters including the concentration difference, the membrane type, the inlet flow rate, and the compartment thickness. We found the best power density at the concentrated solution of 1.5 mol L−1 and the diluted solution of 0.01 mol L−1. The maximum power density increases as the inlet flow rate increases or the compartment thickness decreases owing to the decrease in the internal resistance. We obtained the excellent power density of 0.77 W m−2, compared with the previous studies.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.06.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.06.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Deok Han Kim; Kilsung Kwon; Byung Ho Park; Daejoong Kim;Abstract Waste heat recovery has attracted a significant attention because of the world growth in energy demand. In this paper, we report the study on an energy recovery system utilizing low-grade waste heat below 100 °C. This system called a thermal-driven electrochemical generator is composed of reverse electrodialysis (RED) power generation and thermal separation using waste heat. We especially focus on the experimental characterization of the RED process with ammonium bicarbonate (NH4HCO3) solution, which is known to be easily decomposed at the temperature around 60 °C. We characterized this NH4HCO3-RED system with various parameters including the concentration difference, the membrane type, the inlet flow rate, and the compartment thickness. We found the best power density at the concentrated solution of 1.5 mol L−1 and the diluted solution of 0.01 mol L−1. The maximum power density increases as the inlet flow rate increases or the compartment thickness decreases owing to the decrease in the internal resistance. We obtained the excellent power density of 0.77 W m−2, compared with the previous studies.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.06.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.06.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Zhangxiang Wu; Yufeng Zhang; Ying Sheng;Abstract A novel dual functional heat pump and power generation integration system (DFHPPGIS) using a scroll machine as compressor and expander is proposed in this paper. It can be operated in both reverse Carnot cycle (RCC) heat pump mode and organic Rankine cycle (ORC) power generation mode. Compared with single system, this system can improve the utilization efficiency of geothermal water and generate more economic benefits. Three kinds of ORC and RCC working fluids are compared to select refrigerant R245fa as the most suitable fluid for the system. Then the model of DFHPPGIS is built to analyze its energy, exergy and economic performance as the variation of geothermal water inlet temperature. Results of theoretical calculation show that there is a conflict between total cost and payback period of the system. The system with lower total cost shows high payback period and vice versa. Thus, a multi-objective optimization for the system is conducted to determine the optimal geothermal water inlet temperature based on the ideal point decision making method. Exergy loss of the system under the optimal condition is analyzed to reveal which component has the largest exergy loss. The results indicate that in this proposed system, if the total cost based optimized design is chosen, payback period is 136.4% higher than its minimum value. If the method of payback period based optimized design is selected, total cost is 15.3% higher than its minimum value. The system has a heat capacity of 250.19 kW and a power output of 17.83 kW at the optimal geothermal water inlet temperature of 80℃ as well as the total cost and payback period of the system are 37.31 k$ and 4.87 years. In addition, the scroll machine has the largest exergy loss in both RCC and ORC mode, which is the component that needs to be mostly optimized in the further development.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.111962&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.111962&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Zhangxiang Wu; Yufeng Zhang; Ying Sheng;Abstract A novel dual functional heat pump and power generation integration system (DFHPPGIS) using a scroll machine as compressor and expander is proposed in this paper. It can be operated in both reverse Carnot cycle (RCC) heat pump mode and organic Rankine cycle (ORC) power generation mode. Compared with single system, this system can improve the utilization efficiency of geothermal water and generate more economic benefits. Three kinds of ORC and RCC working fluids are compared to select refrigerant R245fa as the most suitable fluid for the system. Then the model of DFHPPGIS is built to analyze its energy, exergy and economic performance as the variation of geothermal water inlet temperature. Results of theoretical calculation show that there is a conflict between total cost and payback period of the system. The system with lower total cost shows high payback period and vice versa. Thus, a multi-objective optimization for the system is conducted to determine the optimal geothermal water inlet temperature based on the ideal point decision making method. Exergy loss of the system under the optimal condition is analyzed to reveal which component has the largest exergy loss. The results indicate that in this proposed system, if the total cost based optimized design is chosen, payback period is 136.4% higher than its minimum value. If the method of payback period based optimized design is selected, total cost is 15.3% higher than its minimum value. The system has a heat capacity of 250.19 kW and a power output of 17.83 kW at the optimal geothermal water inlet temperature of 80℃ as well as the total cost and payback period of the system are 37.31 k$ and 4.87 years. In addition, the scroll machine has the largest exergy loss in both RCC and ORC mode, which is the component that needs to be mostly optimized in the further development.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.111962&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.111962&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:UKRI | Scalable Solar Thermoelec...UKRI| Scalable Solar Thermoelectrics and Photovaltaics. (SUNTRAP)Authors: Hayder Al-Madhhachi; Hayder Al-Madhhachi; Gao Min;A thermoelectric distillation system has recently been demonstrated to have a great potential of improving the efficiency of distillation processes due to the use of waste heat from the hot side of thermoelectric module to assist evaporation while the cold side for condensation. This work investigates the key factors that affect the water production in a thermoelectric distillation system. An experimental investigation was performed to investigate the influence of evaporation temperature, vapour volume, Peltier current and input power on the water production rate. The results of the experiment show that an increase in the sample water temperature from 30 °C to 60 °C led to an increase in total water production by 47%. In addition, an increase in total water production by 58% was obtained by reducing the vapour volume from 600 cm3 to 400 cm3 during a 3-h operation. The maximum water production rate is achieved by appropriate selection and control of the Peltier current to the thermoelectric device based on the operating condition of the distillation system.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.03.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.03.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:UKRI | Scalable Solar Thermoelec...UKRI| Scalable Solar Thermoelectrics and Photovaltaics. (SUNTRAP)Authors: Hayder Al-Madhhachi; Hayder Al-Madhhachi; Gao Min;A thermoelectric distillation system has recently been demonstrated to have a great potential of improving the efficiency of distillation processes due to the use of waste heat from the hot side of thermoelectric module to assist evaporation while the cold side for condensation. This work investigates the key factors that affect the water production in a thermoelectric distillation system. An experimental investigation was performed to investigate the influence of evaporation temperature, vapour volume, Peltier current and input power on the water production rate. The results of the experiment show that an increase in the sample water temperature from 30 °C to 60 °C led to an increase in total water production by 47%. In addition, an increase in total water production by 58% was obtained by reducing the vapour volume from 600 cm3 to 400 cm3 during a 3-h operation. The maximum water production rate is achieved by appropriate selection and control of the Peltier current to the thermoelectric device based on the operating condition of the distillation system.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.03.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.03.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustriaPublisher:Elsevier BV Authors: Hunt, J.; Byers, E.; Prenner, R.; de Freitas, M.A.V.;Abstract There is an enormous untapped potential for hydropower generation in rivers with large head and high flow variation, currently not feasible for conventional hydropower dams. Conventional dams make use of the potential energy, but waste kinetic energy from spillage during periods of high flows. This article studies the possibility of harnessing energy from potential and kinetic energy from hydropower dams with large head and flow variation, analyses its potential, and shows possible technologies. Focus is given to a Moveable Hydro-Electric Power Plant (HEPP) system in which the turbine module can be adjusted according to the flow and water level in the river. During floods the exceeding flows can pass above and below the Moveable HEPP results in a sub-pressure environment after the turbine module, thereby reducing the dam’s downstream head, increasing the pressure difference between the turbine inlet and outlet and the flow through the turbine, which increases the electricity generation of the dam. Dams with head increaser arrangement have been implemented in several dams in the 1930–1950s and now are regaining attention in Middle Europe. The main intention for its implementation is harnessing hydropower generation at run-of-river plants, with low-head, with a 20%–30% cost reduction, lower flooded area at the dam site, the resulting evaporation and the impact on the aquatic fauna. A case study was performed with the proposal of the Aripuana Moveable HEPP in the Madeira River with a 26 ms height dam and a generation capacity of 1400 MW. The increase in generation with the head increaser effect is as high as 21%. The estimated potential for this technology in the Amazon region is 20 GW. Other potential locations are discussed in the article. Dams with head increaser effect have been successfully implemented and have the potential to become a major alternative for base load renewable energy in the future.
IIASA DARE arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.12.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IIASA DARE arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.12.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustriaPublisher:Elsevier BV Authors: Hunt, J.; Byers, E.; Prenner, R.; de Freitas, M.A.V.;Abstract There is an enormous untapped potential for hydropower generation in rivers with large head and high flow variation, currently not feasible for conventional hydropower dams. Conventional dams make use of the potential energy, but waste kinetic energy from spillage during periods of high flows. This article studies the possibility of harnessing energy from potential and kinetic energy from hydropower dams with large head and flow variation, analyses its potential, and shows possible technologies. Focus is given to a Moveable Hydro-Electric Power Plant (HEPP) system in which the turbine module can be adjusted according to the flow and water level in the river. During floods the exceeding flows can pass above and below the Moveable HEPP results in a sub-pressure environment after the turbine module, thereby reducing the dam’s downstream head, increasing the pressure difference between the turbine inlet and outlet and the flow through the turbine, which increases the electricity generation of the dam. Dams with head increaser arrangement have been implemented in several dams in the 1930–1950s and now are regaining attention in Middle Europe. The main intention for its implementation is harnessing hydropower generation at run-of-river plants, with low-head, with a 20%–30% cost reduction, lower flooded area at the dam site, the resulting evaporation and the impact on the aquatic fauna. A case study was performed with the proposal of the Aripuana Moveable HEPP in the Madeira River with a 26 ms height dam and a generation capacity of 1400 MW. The increase in generation with the head increaser effect is as high as 21%. The estimated potential for this technology in the Amazon region is 20 GW. Other potential locations are discussed in the article. Dams with head increaser effect have been successfully implemented and have the potential to become a major alternative for base load renewable energy in the future.
IIASA DARE arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.12.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IIASA DARE arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.12.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1993Publisher:Elsevier BV Authors: Martin J. Blunt; F.John Fayers; Franklin M. Orr;Abstract Oil reservoirs are deep underground, with the oil and gas contained in porous rock at high temperatures and pressures. Around 5 – 20%, of the oil can be produced from the field under its own pressure (primary production), but in most fields water is injected to displace the oil. This still leaves at least 50% of the oil behind in the reservoir. Further recovery can be obtained by injecting carbon dioxide that both displaces and dissolves the remaining oil. At least 71 projects worldwide use CO2 flooding and produce a total of over 170 000 barrels of oil a day, worth around $1.3 billion a year. The cost of producing an extra barrel of oil ranges from $5 to $8 and thus is profitable at the present price of nearly $20 a barrel. In the majority of these cases, the carbon dioxide comes from natural underground sources and is piped to the oil field. The potential use of CO2 flooding would be considerably greater, if large quantities of the gas, extracted from power stations, were available at low cost. For every kilogramme of CO2 injected, approximately one to one quarter of a kilogramme of extra oil will be recovered. For most projects about as much carbon dioxide is disposed of in the reservoir as is generated when the oil is burnt. When CO2 is at a sufficiently high pressure to form mixtures with the crude oil that are miscible in laboratory tests, up to 40% of the oil remaining in the field after water flooding can be recovered. Approximately half the water flooded oil fields in the US could be exploited profitably by CO2 injection. Carbon dioxide flooding of the larger North Sea fields is a particularly attractive prospect, because the crude oil is light (composed of low molecular weight hydrocarbons) and the geology of the reservoirs is less heterogeneous than the American fields. A profitable project would be possible if the gas could be provided and piped to the reservoir at a cost of around $3.50 per thousand cubic feet or less.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1993 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(93)90069-m&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 319 citations 319 popularity Top 1% influence Top 1% impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1993 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(93)90069-m&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1993Publisher:Elsevier BV Authors: Martin J. Blunt; F.John Fayers; Franklin M. Orr;Abstract Oil reservoirs are deep underground, with the oil and gas contained in porous rock at high temperatures and pressures. Around 5 – 20%, of the oil can be produced from the field under its own pressure (primary production), but in most fields water is injected to displace the oil. This still leaves at least 50% of the oil behind in the reservoir. Further recovery can be obtained by injecting carbon dioxide that both displaces and dissolves the remaining oil. At least 71 projects worldwide use CO2 flooding and produce a total of over 170 000 barrels of oil a day, worth around $1.3 billion a year. The cost of producing an extra barrel of oil ranges from $5 to $8 and thus is profitable at the present price of nearly $20 a barrel. In the majority of these cases, the carbon dioxide comes from natural underground sources and is piped to the oil field. The potential use of CO2 flooding would be considerably greater, if large quantities of the gas, extracted from power stations, were available at low cost. For every kilogramme of CO2 injected, approximately one to one quarter of a kilogramme of extra oil will be recovered. For most projects about as much carbon dioxide is disposed of in the reservoir as is generated when the oil is burnt. When CO2 is at a sufficiently high pressure to form mixtures with the crude oil that are miscible in laboratory tests, up to 40% of the oil remaining in the field after water flooding can be recovered. Approximately half the water flooded oil fields in the US could be exploited profitably by CO2 injection. Carbon dioxide flooding of the larger North Sea fields is a particularly attractive prospect, because the crude oil is light (composed of low molecular weight hydrocarbons) and the geology of the reservoirs is less heterogeneous than the American fields. A profitable project would be possible if the gas could be provided and piped to the reservoir at a cost of around $3.50 per thousand cubic feet or less.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1993 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(93)90069-m&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 319 citations 319 popularity Top 1% influence Top 1% impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1993 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(93)90069-m&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Zeting Yu; Daohang Wang; Wenxing Liang; Chunyu Feng;Abstract This study proposed and investigated two novel absorption combined power and cooling cycles using ammonia-water as working fluids driven by low-grade heat sources. The two proposed systems which combined the Kalina cycle and the absorption refrigeration cycle were named the double-pressure series cycle (DSC) and the double-pressure parallel cycle (DPC) according to the different configurations. The thermodynamic and economic models were developed and then the combined system performances were evaluated. The results showed that, under given conditions, the exergy efficiency and the total exergy efficiency of DSC (34.44%, 24.63%) were higher than those of the DPC (30.05%, 23.81%), but the higher cost rate of DSC was achieved, which is 3.6% higher than DPC’s. Moreover, the parameter analysis showed that increasing the heat source temperature and the basic ammonia concentration has a positive effect on the thermodynamic performance of DSC and DPC, while increasing the separation pressure, rectification pressure and the pinch temperature difference led to performance degradation. Furthermore, the multi-objective optimization genetic algorithm (NSGA-Ⅱ) was employed to obtain the Pareto frontier, and the optimal solution was obtained through the comprehensive decision-making method (TOPSIS). The research results can provide references for the establishment and evaluation of innovative combined cycles driven by low-grade waste heat.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114781&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114781&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Zeting Yu; Daohang Wang; Wenxing Liang; Chunyu Feng;Abstract This study proposed and investigated two novel absorption combined power and cooling cycles using ammonia-water as working fluids driven by low-grade heat sources. The two proposed systems which combined the Kalina cycle and the absorption refrigeration cycle were named the double-pressure series cycle (DSC) and the double-pressure parallel cycle (DPC) according to the different configurations. The thermodynamic and economic models were developed and then the combined system performances were evaluated. The results showed that, under given conditions, the exergy efficiency and the total exergy efficiency of DSC (34.44%, 24.63%) were higher than those of the DPC (30.05%, 23.81%), but the higher cost rate of DSC was achieved, which is 3.6% higher than DPC’s. Moreover, the parameter analysis showed that increasing the heat source temperature and the basic ammonia concentration has a positive effect on the thermodynamic performance of DSC and DPC, while increasing the separation pressure, rectification pressure and the pinch temperature difference led to performance degradation. Furthermore, the multi-objective optimization genetic algorithm (NSGA-Ⅱ) was employed to obtain the Pareto frontier, and the optimal solution was obtained through the comprehensive decision-making method (TOPSIS). The research results can provide references for the establishment and evaluation of innovative combined cycles driven by low-grade waste heat.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114781&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114781&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Dongsoo Jung; Ki-Jung Park;Abstract In this study, performance of R430A is examined numerically and experimentally in an effort to replace HFC134a used in refrigeration system of domestic water purifiers. Even though HFC134a is used predominantly in such a system these days, it needs to be phased out in near future in most of the developed countries due to its high global warming potential. To solve this problem, cycle simulation and experiments are carried out with a new refrigerant mixture of 76%R152a/24%R600a using actual water purifiers. This mixture is numbered and listed as R430A by ASHRAE recently. Test results show that the system performance is greatly influenced by the amount of charge due to the small internal volume of the refrigeration system in water purifiers. With the optimum amount of charge of 21–22 g, about 50% of HFC134a, the energy consumption of R430A is 13.4% lower than that of HFC134a. The compressor dome and discharge temperatures and condenser center temperature of R430A are very similar to those of HFC134a for the optimum charge. Overall, R430A, a new long term environmentally safe refrigerant, is a good alternative for HFC134a in domestic water purifiers requiring no major change in the system.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2009.07.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2009.07.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Dongsoo Jung; Ki-Jung Park;Abstract In this study, performance of R430A is examined numerically and experimentally in an effort to replace HFC134a used in refrigeration system of domestic water purifiers. Even though HFC134a is used predominantly in such a system these days, it needs to be phased out in near future in most of the developed countries due to its high global warming potential. To solve this problem, cycle simulation and experiments are carried out with a new refrigerant mixture of 76%R152a/24%R600a using actual water purifiers. This mixture is numbered and listed as R430A by ASHRAE recently. Test results show that the system performance is greatly influenced by the amount of charge due to the small internal volume of the refrigeration system in water purifiers. With the optimum amount of charge of 21–22 g, about 50% of HFC134a, the energy consumption of R430A is 13.4% lower than that of HFC134a. The compressor dome and discharge temperatures and condenser center temperature of R430A are very similar to those of HFC134a for the optimum charge. Overall, R430A, a new long term environmentally safe refrigerant, is a good alternative for HFC134a in domestic water purifiers requiring no major change in the system.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2009.07.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2009.07.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Hongwei Lu; Yanlong Guan; Li He; Yizhong Chen; Jing Li;This study develops a multi-level programming model from a life cycle perspective for performing shale-gas supply chain system. A set of leader-follower-interactive objectives with emphases of environmental, economic and energy concerns are incorporated into the synergistic optimization process, named MGU-MEM-MWL model. The upper-level model quantitatively investigates the life-cycle greenhouse gas (GHG) emissions as controlled by the environmental sector. The middle-level one focuses exclusively on system benefits as determined by the energy sector. The lower-level one aims to recycle water to minimize the life-cycle water supply as required by the enterprises. The capabilities and effectiveness of the developed model are illustrated through real-world case studies of the Barnett, Marcellus, Fayetteville, and Haynesville Shales in the US. An improved multi-level interactive solution algorithm based on satisfactory degree is then presented to improve computational efficiency. Results indicate that: (a) the end-use phase (i.e., gas utilization for electricity generation) would not only dominate the life-cycle GHG emissions, but also account for 76.1% of the life-cycle system profits; (b) operations associated with well hydraulic fracturing would be the largest contributor to the life-cycle freshwater consumption when gas use is not considered, and a majority of freshwater withdrawal would be supplied by surface water; (c) nearly 95% of flowback water would be recycled for hydraulic fracturing activities and only about 5% of flowback water would be treated via CWT facilities in the Marcellus, while most of the wastewater generated from the drilling, fracturing and production operations would be treated via underground injection control wells in the other shale plays. Moreover, the performance of the MGU-MEM-MWL model is enhanced by comparing with the three bi-level programs and the multi-objective approach. Results demonstrate that the MGU-MEM-MWL decisions would provide much comprehensive and systematic policies when considering the hierarchical structure within the shale-gas system.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.12.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu203 citations 203 popularity Top 0.1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.12.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Hongwei Lu; Yanlong Guan; Li He; Yizhong Chen; Jing Li;This study develops a multi-level programming model from a life cycle perspective for performing shale-gas supply chain system. A set of leader-follower-interactive objectives with emphases of environmental, economic and energy concerns are incorporated into the synergistic optimization process, named MGU-MEM-MWL model. The upper-level model quantitatively investigates the life-cycle greenhouse gas (GHG) emissions as controlled by the environmental sector. The middle-level one focuses exclusively on system benefits as determined by the energy sector. The lower-level one aims to recycle water to minimize the life-cycle water supply as required by the enterprises. The capabilities and effectiveness of the developed model are illustrated through real-world case studies of the Barnett, Marcellus, Fayetteville, and Haynesville Shales in the US. An improved multi-level interactive solution algorithm based on satisfactory degree is then presented to improve computational efficiency. Results indicate that: (a) the end-use phase (i.e., gas utilization for electricity generation) would not only dominate the life-cycle GHG emissions, but also account for 76.1% of the life-cycle system profits; (b) operations associated with well hydraulic fracturing would be the largest contributor to the life-cycle freshwater consumption when gas use is not considered, and a majority of freshwater withdrawal would be supplied by surface water; (c) nearly 95% of flowback water would be recycled for hydraulic fracturing activities and only about 5% of flowback water would be treated via CWT facilities in the Marcellus, while most of the wastewater generated from the drilling, fracturing and production operations would be treated via underground injection control wells in the other shale plays. Moreover, the performance of the MGU-MEM-MWL model is enhanced by comparing with the three bi-level programs and the multi-objective approach. Results demonstrate that the MGU-MEM-MWL decisions would provide much comprehensive and systematic policies when considering the hierarchical structure within the shale-gas system.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.12.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu203 citations 203 popularity Top 0.1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.12.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1993Publisher:Elsevier BV Authors: Gilbert R. Stegen; Robert Bacastow; Kathleen H. Cole;Abstract Theoretically, disposing of CO 2 directly into the deep ocean could significantly reduce short-term increases in atmospheric CO 2 concentration. Aside from the technological considerations, important questions arise regarding the optimal disposal depths and locations necessary for the long-term sequestration of CO 2 . These questions form the basis for a series of model simulations of the disposal of CO 2 in the deep sea. An Ocean Carbon Cycle Model (OCCM) was used to simulate the discharge of CO 2 at five sites representing different oceanagraphic environments. The sites were the Northwest Atlantic, Northeast Atlantic, Northwest Pacific, North Pacific Gyre, and the Western Equatorial Pacific. Model simulations indicate that the location and depth of injection can significantly improve long-term storage of CO 2 . Of the sites considered, a deep discharge (>1000m) in the Western Equatorial Pacific showed the greatest effacy of CO 2 sequestration.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1993 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(93)90029-a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1993 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(93)90029-a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1993Publisher:Elsevier BV Authors: Gilbert R. Stegen; Robert Bacastow; Kathleen H. Cole;Abstract Theoretically, disposing of CO 2 directly into the deep ocean could significantly reduce short-term increases in atmospheric CO 2 concentration. Aside from the technological considerations, important questions arise regarding the optimal disposal depths and locations necessary for the long-term sequestration of CO 2 . These questions form the basis for a series of model simulations of the disposal of CO 2 in the deep sea. An Ocean Carbon Cycle Model (OCCM) was used to simulate the discharge of CO 2 at five sites representing different oceanagraphic environments. The sites were the Northwest Atlantic, Northeast Atlantic, Northwest Pacific, North Pacific Gyre, and the Western Equatorial Pacific. Model simulations indicate that the location and depth of injection can significantly improve long-term storage of CO 2 . Of the sites considered, a deep discharge (>1000m) in the Western Equatorial Pacific showed the greatest effacy of CO 2 sequestration.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1993 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(93)90029-a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1993 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(93)90029-a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Jianyong Wang; Chenxing Ren; Yaonan Gao; Haifeng Chen; Jixian Dong;Abstract In this paper, a new geothermal combined cooling, heating and power system that integrates flash power cycle and ammonia-water absorption refrigeration cycle, is proposed to supply electricity, refrigerant water and domestic hot water simultaneously to users. In the system, the refrigeration cycle serves as the bottom cycle of the power cycle by further utilizing the exhausted geothermal water from the flasher of the power cycle, meanwhile all waste heat of the power and refrigeration cycles is recovered for supplying heat, thus effectively improving the energy conversion efficiency of whole system. This paper establishes detailed mathematical models of the proposed system and conducts a valid model validation. Then a preliminary design condition of the system is given and the results show that the exergy efficiency of system could reach 43.69% under the condition of 170 ℃ geothermal water. An exergy loss analysis is carried out based on the design condition, demonstrating that the maximal exergy destruction exists in the condenser of flash cycle, accounting for 48.53% of the total exergy destruction of the system; the components used for separating or mixing fluids including rectification column, absorber and flasher, occupying 17.68%, 9.02% and 9.30% respectively, are prone to generate exergy destructions. Finally a thermodynamic parameter analysis, in order to assess the effects of seven key parameters on the system performance, is performed. The results show that there are an optimal flash pressure (about 300 kPa) and an optimal generator temperature (about 120 ℃) respectively that could make the exergy efficiency of system maximal. Within some scopes, lower turbine back pressure and rectification column pressure, higher ammonia concentration of ammonia-strong solution, bring about higher exergy efficiency of system. Additionally the evaporation pressure and the reflux ratio of rectifier just make little difference on the exergy efficiency of system.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Jianyong Wang; Chenxing Ren; Yaonan Gao; Haifeng Chen; Jixian Dong;Abstract In this paper, a new geothermal combined cooling, heating and power system that integrates flash power cycle and ammonia-water absorption refrigeration cycle, is proposed to supply electricity, refrigerant water and domestic hot water simultaneously to users. In the system, the refrigeration cycle serves as the bottom cycle of the power cycle by further utilizing the exhausted geothermal water from the flasher of the power cycle, meanwhile all waste heat of the power and refrigeration cycles is recovered for supplying heat, thus effectively improving the energy conversion efficiency of whole system. This paper establishes detailed mathematical models of the proposed system and conducts a valid model validation. Then a preliminary design condition of the system is given and the results show that the exergy efficiency of system could reach 43.69% under the condition of 170 ℃ geothermal water. An exergy loss analysis is carried out based on the design condition, demonstrating that the maximal exergy destruction exists in the condenser of flash cycle, accounting for 48.53% of the total exergy destruction of the system; the components used for separating or mixing fluids including rectification column, absorber and flasher, occupying 17.68%, 9.02% and 9.30% respectively, are prone to generate exergy destructions. Finally a thermodynamic parameter analysis, in order to assess the effects of seven key parameters on the system performance, is performed. The results show that there are an optimal flash pressure (about 300 kPa) and an optimal generator temperature (about 120 ℃) respectively that could make the exergy efficiency of system maximal. Within some scopes, lower turbine back pressure and rectification column pressure, higher ammonia concentration of ammonia-strong solution, bring about higher exergy efficiency of system. Additionally the evaporation pressure and the reflux ratio of rectifier just make little difference on the exergy efficiency of system.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Deok Han Kim; Kilsung Kwon; Byung Ho Park; Daejoong Kim;Abstract Waste heat recovery has attracted a significant attention because of the world growth in energy demand. In this paper, we report the study on an energy recovery system utilizing low-grade waste heat below 100 °C. This system called a thermal-driven electrochemical generator is composed of reverse electrodialysis (RED) power generation and thermal separation using waste heat. We especially focus on the experimental characterization of the RED process with ammonium bicarbonate (NH4HCO3) solution, which is known to be easily decomposed at the temperature around 60 °C. We characterized this NH4HCO3-RED system with various parameters including the concentration difference, the membrane type, the inlet flow rate, and the compartment thickness. We found the best power density at the concentrated solution of 1.5 mol L−1 and the diluted solution of 0.01 mol L−1. The maximum power density increases as the inlet flow rate increases or the compartment thickness decreases owing to the decrease in the internal resistance. We obtained the excellent power density of 0.77 W m−2, compared with the previous studies.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.06.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.06.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Deok Han Kim; Kilsung Kwon; Byung Ho Park; Daejoong Kim;Abstract Waste heat recovery has attracted a significant attention because of the world growth in energy demand. In this paper, we report the study on an energy recovery system utilizing low-grade waste heat below 100 °C. This system called a thermal-driven electrochemical generator is composed of reverse electrodialysis (RED) power generation and thermal separation using waste heat. We especially focus on the experimental characterization of the RED process with ammonium bicarbonate (NH4HCO3) solution, which is known to be easily decomposed at the temperature around 60 °C. We characterized this NH4HCO3-RED system with various parameters including the concentration difference, the membrane type, the inlet flow rate, and the compartment thickness. We found the best power density at the concentrated solution of 1.5 mol L−1 and the diluted solution of 0.01 mol L−1. The maximum power density increases as the inlet flow rate increases or the compartment thickness decreases owing to the decrease in the internal resistance. We obtained the excellent power density of 0.77 W m−2, compared with the previous studies.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.06.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.06.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Zhangxiang Wu; Yufeng Zhang; Ying Sheng;Abstract A novel dual functional heat pump and power generation integration system (DFHPPGIS) using a scroll machine as compressor and expander is proposed in this paper. It can be operated in both reverse Carnot cycle (RCC) heat pump mode and organic Rankine cycle (ORC) power generation mode. Compared with single system, this system can improve the utilization efficiency of geothermal water and generate more economic benefits. Three kinds of ORC and RCC working fluids are compared to select refrigerant R245fa as the most suitable fluid for the system. Then the model of DFHPPGIS is built to analyze its energy, exergy and economic performance as the variation of geothermal water inlet temperature. Results of theoretical calculation show that there is a conflict between total cost and payback period of the system. The system with lower total cost shows high payback period and vice versa. Thus, a multi-objective optimization for the system is conducted to determine the optimal geothermal water inlet temperature based on the ideal point decision making method. Exergy loss of the system under the optimal condition is analyzed to reveal which component has the largest exergy loss. The results indicate that in this proposed system, if the total cost based optimized design is chosen, payback period is 136.4% higher than its minimum value. If the method of payback period based optimized design is selected, total cost is 15.3% higher than its minimum value. The system has a heat capacity of 250.19 kW and a power output of 17.83 kW at the optimal geothermal water inlet temperature of 80℃ as well as the total cost and payback period of the system are 37.31 k$ and 4.87 years. In addition, the scroll machine has the largest exergy loss in both RCC and ORC mode, which is the component that needs to be mostly optimized in the further development.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.111962&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.111962&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Zhangxiang Wu; Yufeng Zhang; Ying Sheng;Abstract A novel dual functional heat pump and power generation integration system (DFHPPGIS) using a scroll machine as compressor and expander is proposed in this paper. It can be operated in both reverse Carnot cycle (RCC) heat pump mode and organic Rankine cycle (ORC) power generation mode. Compared with single system, this system can improve the utilization efficiency of geothermal water and generate more economic benefits. Three kinds of ORC and RCC working fluids are compared to select refrigerant R245fa as the most suitable fluid for the system. Then the model of DFHPPGIS is built to analyze its energy, exergy and economic performance as the variation of geothermal water inlet temperature. Results of theoretical calculation show that there is a conflict between total cost and payback period of the system. The system with lower total cost shows high payback period and vice versa. Thus, a multi-objective optimization for the system is conducted to determine the optimal geothermal water inlet temperature based on the ideal point decision making method. Exergy loss of the system under the optimal condition is analyzed to reveal which component has the largest exergy loss. The results indicate that in this proposed system, if the total cost based optimized design is chosen, payback period is 136.4% higher than its minimum value. If the method of payback period based optimized design is selected, total cost is 15.3% higher than its minimum value. The system has a heat capacity of 250.19 kW and a power output of 17.83 kW at the optimal geothermal water inlet temperature of 80℃ as well as the total cost and payback period of the system are 37.31 k$ and 4.87 years. In addition, the scroll machine has the largest exergy loss in both RCC and ORC mode, which is the component that needs to be mostly optimized in the further development.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.111962&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2019.111962&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:UKRI | Scalable Solar Thermoelec...UKRI| Scalable Solar Thermoelectrics and Photovaltaics. (SUNTRAP)Authors: Hayder Al-Madhhachi; Hayder Al-Madhhachi; Gao Min;A thermoelectric distillation system has recently been demonstrated to have a great potential of improving the efficiency of distillation processes due to the use of waste heat from the hot side of thermoelectric module to assist evaporation while the cold side for condensation. This work investigates the key factors that affect the water production in a thermoelectric distillation system. An experimental investigation was performed to investigate the influence of evaporation temperature, vapour volume, Peltier current and input power on the water production rate. The results of the experiment show that an increase in the sample water temperature from 30 °C to 60 °C led to an increase in total water production by 47%. In addition, an increase in total water production by 58% was obtained by reducing the vapour volume from 600 cm3 to 400 cm3 during a 3-h operation. The maximum water production rate is achieved by appropriate selection and control of the Peltier current to the thermoelectric device based on the operating condition of the distillation system.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.03.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.03.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:UKRI | Scalable Solar Thermoelec...UKRI| Scalable Solar Thermoelectrics and Photovaltaics. (SUNTRAP)Authors: Hayder Al-Madhhachi; Hayder Al-Madhhachi; Gao Min;A thermoelectric distillation system has recently been demonstrated to have a great potential of improving the efficiency of distillation processes due to the use of waste heat from the hot side of thermoelectric module to assist evaporation while the cold side for condensation. This work investigates the key factors that affect the water production in a thermoelectric distillation system. An experimental investigation was performed to investigate the influence of evaporation temperature, vapour volume, Peltier current and input power on the water production rate. The results of the experiment show that an increase in the sample water temperature from 30 °C to 60 °C led to an increase in total water production by 47%. In addition, an increase in total water production by 58% was obtained by reducing the vapour volume from 600 cm3 to 400 cm3 during a 3-h operation. The maximum water production rate is achieved by appropriate selection and control of the Peltier current to the thermoelectric device based on the operating condition of the distillation system.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.03.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.03.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustriaPublisher:Elsevier BV Authors: Hunt, J.; Byers, E.; Prenner, R.; de Freitas, M.A.V.;Abstract There is an enormous untapped potential for hydropower generation in rivers with large head and high flow variation, currently not feasible for conventional hydropower dams. Conventional dams make use of the potential energy, but waste kinetic energy from spillage during periods of high flows. This article studies the possibility of harnessing energy from potential and kinetic energy from hydropower dams with large head and flow variation, analyses its potential, and shows possible technologies. Focus is given to a Moveable Hydro-Electric Power Plant (HEPP) system in which the turbine module can be adjusted according to the flow and water level in the river. During floods the exceeding flows can pass above and below the Moveable HEPP results in a sub-pressure environment after the turbine module, thereby reducing the dam’s downstream head, increasing the pressure difference between the turbine inlet and outlet and the flow through the turbine, which increases the electricity generation of the dam. Dams with head increaser arrangement have been implemented in several dams in the 1930–1950s and now are regaining attention in Middle Europe. The main intention for its implementation is harnessing hydropower generation at run-of-river plants, with low-head, with a 20%–30% cost reduction, lower flooded area at the dam site, the resulting evaporation and the impact on the aquatic fauna. A case study was performed with the proposal of the Aripuana Moveable HEPP in the Madeira River with a 26 ms height dam and a generation capacity of 1400 MW. The increase in generation with the head increaser effect is as high as 21%. The estimated potential for this technology in the Amazon region is 20 GW. Other potential locations are discussed in the article. Dams with head increaser effect have been successfully implemented and have the potential to become a major alternative for base load renewable energy in the future.
IIASA DARE arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.12.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IIASA DARE arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.12.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustriaPublisher:Elsevier BV Authors: Hunt, J.; Byers, E.; Prenner, R.; de Freitas, M.A.V.;Abstract There is an enormous untapped potential for hydropower generation in rivers with large head and high flow variation, currently not feasible for conventional hydropower dams. Conventional dams make use of the potential energy, but waste kinetic energy from spillage during periods of high flows. This article studies the possibility of harnessing energy from potential and kinetic energy from hydropower dams with large head and flow variation, analyses its potential, and shows possible technologies. Focus is given to a Moveable Hydro-Electric Power Plant (HEPP) system in which the turbine module can be adjusted according to the flow and water level in the river. During floods the exceeding flows can pass above and below the Moveable HEPP results in a sub-pressure environment after the turbine module, thereby reducing the dam’s downstream head, increasing the pressure difference between the turbine inlet and outlet and the flow through the turbine, which increases the electricity generation of the dam. Dams with head increaser arrangement have been implemented in several dams in the 1930–1950s and now are regaining attention in Middle Europe. The main intention for its implementation is harnessing hydropower generation at run-of-river plants, with low-head, with a 20%–30% cost reduction, lower flooded area at the dam site, the resulting evaporation and the impact on the aquatic fauna. A case study was performed with the proposal of the Aripuana Moveable HEPP in the Madeira River with a 26 ms height dam and a generation capacity of 1400 MW. The increase in generation with the head increaser effect is as high as 21%. The estimated potential for this technology in the Amazon region is 20 GW. Other potential locations are discussed in the article. Dams with head increaser effect have been successfully implemented and have the potential to become a major alternative for base load renewable energy in the future.
IIASA DARE arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.12.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IIASA DARE arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.12.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1993Publisher:Elsevier BV Authors: Martin J. Blunt; F.John Fayers; Franklin M. Orr;Abstract Oil reservoirs are deep underground, with the oil and gas contained in porous rock at high temperatures and pressures. Around 5 – 20%, of the oil can be produced from the field under its own pressure (primary production), but in most fields water is injected to displace the oil. This still leaves at least 50% of the oil behind in the reservoir. Further recovery can be obtained by injecting carbon dioxide that both displaces and dissolves the remaining oil. At least 71 projects worldwide use CO2 flooding and produce a total of over 170 000 barrels of oil a day, worth around $1.3 billion a year. The cost of producing an extra barrel of oil ranges from $5 to $8 and thus is profitable at the present price of nearly $20 a barrel. In the majority of these cases, the carbon dioxide comes from natural underground sources and is piped to the oil field. The potential use of CO2 flooding would be considerably greater, if large quantities of the gas, extracted from power stations, were available at low cost. For every kilogramme of CO2 injected, approximately one to one quarter of a kilogramme of extra oil will be recovered. For most projects about as much carbon dioxide is disposed of in the reservoir as is generated when the oil is burnt. When CO2 is at a sufficiently high pressure to form mixtures with the crude oil that are miscible in laboratory tests, up to 40% of the oil remaining in the field after water flooding can be recovered. Approximately half the water flooded oil fields in the US could be exploited profitably by CO2 injection. Carbon dioxide flooding of the larger North Sea fields is a particularly attractive prospect, because the crude oil is light (composed of low molecular weight hydrocarbons) and the geology of the reservoirs is less heterogeneous than the American fields. A profitable project would be possible if the gas could be provided and piped to the reservoir at a cost of around $3.50 per thousand cubic feet or less.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1993 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(93)90069-m&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 319 citations 319 popularity Top 1% influence Top 1% impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1993 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(93)90069-m&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1993Publisher:Elsevier BV Authors: Martin J. Blunt; F.John Fayers; Franklin M. Orr;Abstract Oil reservoirs are deep underground, with the oil and gas contained in porous rock at high temperatures and pressures. Around 5 – 20%, of the oil can be produced from the field under its own pressure (primary production), but in most fields water is injected to displace the oil. This still leaves at least 50% of the oil behind in the reservoir. Further recovery can be obtained by injecting carbon dioxide that both displaces and dissolves the remaining oil. At least 71 projects worldwide use CO2 flooding and produce a total of over 170 000 barrels of oil a day, worth around $1.3 billion a year. The cost of producing an extra barrel of oil ranges from $5 to $8 and thus is profitable at the present price of nearly $20 a barrel. In the majority of these cases, the carbon dioxide comes from natural underground sources and is piped to the oil field. The potential use of CO2 flooding would be considerably greater, if large quantities of the gas, extracted from power stations, were available at low cost. For every kilogramme of CO2 injected, approximately one to one quarter of a kilogramme of extra oil will be recovered. For most projects about as much carbon dioxide is disposed of in the reservoir as is generated when the oil is burnt. When CO2 is at a sufficiently high pressure to form mixtures with the crude oil that are miscible in laboratory tests, up to 40% of the oil remaining in the field after water flooding can be recovered. Approximately half the water flooded oil fields in the US could be exploited profitably by CO2 injection. Carbon dioxide flooding of the larger North Sea fields is a particularly attractive prospect, because the crude oil is light (composed of low molecular weight hydrocarbons) and the geology of the reservoirs is less heterogeneous than the American fields. A profitable project would be possible if the gas could be provided and piped to the reservoir at a cost of around $3.50 per thousand cubic feet or less.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1993 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(93)90069-m&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 319 citations 319 popularity Top 1% influence Top 1% impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1993 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(93)90069-m&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Zeting Yu; Daohang Wang; Wenxing Liang; Chunyu Feng;Abstract This study proposed and investigated two novel absorption combined power and cooling cycles using ammonia-water as working fluids driven by low-grade heat sources. The two proposed systems which combined the Kalina cycle and the absorption refrigeration cycle were named the double-pressure series cycle (DSC) and the double-pressure parallel cycle (DPC) according to the different configurations. The thermodynamic and economic models were developed and then the combined system performances were evaluated. The results showed that, under given conditions, the exergy efficiency and the total exergy efficiency of DSC (34.44%, 24.63%) were higher than those of the DPC (30.05%, 23.81%), but the higher cost rate of DSC was achieved, which is 3.6% higher than DPC’s. Moreover, the parameter analysis showed that increasing the heat source temperature and the basic ammonia concentration has a positive effect on the thermodynamic performance of DSC and DPC, while increasing the separation pressure, rectification pressure and the pinch temperature difference led to performance degradation. Furthermore, the multi-objective optimization genetic algorithm (NSGA-Ⅱ) was employed to obtain the Pareto frontier, and the optimal solution was obtained through the comprehensive decision-making method (TOPSIS). The research results can provide references for the establishment and evaluation of innovative combined cycles driven by low-grade waste heat.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114781&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114781&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Zeting Yu; Daohang Wang; Wenxing Liang; Chunyu Feng;Abstract This study proposed and investigated two novel absorption combined power and cooling cycles using ammonia-water as working fluids driven by low-grade heat sources. The two proposed systems which combined the Kalina cycle and the absorption refrigeration cycle were named the double-pressure series cycle (DSC) and the double-pressure parallel cycle (DPC) according to the different configurations. The thermodynamic and economic models were developed and then the combined system performances were evaluated. The results showed that, under given conditions, the exergy efficiency and the total exergy efficiency of DSC (34.44%, 24.63%) were higher than those of the DPC (30.05%, 23.81%), but the higher cost rate of DSC was achieved, which is 3.6% higher than DPC’s. Moreover, the parameter analysis showed that increasing the heat source temperature and the basic ammonia concentration has a positive effect on the thermodynamic performance of DSC and DPC, while increasing the separation pressure, rectification pressure and the pinch temperature difference led to performance degradation. Furthermore, the multi-objective optimization genetic algorithm (NSGA-Ⅱ) was employed to obtain the Pareto frontier, and the optimal solution was obtained through the comprehensive decision-making method (TOPSIS). The research results can provide references for the establishment and evaluation of innovative combined cycles driven by low-grade waste heat.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114781&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114781&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Dongsoo Jung; Ki-Jung Park;Abstract In this study, performance of R430A is examined numerically and experimentally in an effort to replace HFC134a used in refrigeration system of domestic water purifiers. Even though HFC134a is used predominantly in such a system these days, it needs to be phased out in near future in most of the developed countries due to its high global warming potential. To solve this problem, cycle simulation and experiments are carried out with a new refrigerant mixture of 76%R152a/24%R600a using actual water purifiers. This mixture is numbered and listed as R430A by ASHRAE recently. Test results show that the system performance is greatly influenced by the amount of charge due to the small internal volume of the refrigeration system in water purifiers. With the optimum amount of charge of 21–22 g, about 50% of HFC134a, the energy consumption of R430A is 13.4% lower than that of HFC134a. The compressor dome and discharge temperatures and condenser center temperature of R430A are very similar to those of HFC134a for the optimum charge. Overall, R430A, a new long term environmentally safe refrigerant, is a good alternative for HFC134a in domestic water purifiers requiring no major change in the system.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2009.07.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2009.07.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Dongsoo Jung; Ki-Jung Park;Abstract In this study, performance of R430A is examined numerically and experimentally in an effort to replace HFC134a used in refrigeration system of domestic water purifiers. Even though HFC134a is used predominantly in such a system these days, it needs to be phased out in near future in most of the developed countries due to its high global warming potential. To solve this problem, cycle simulation and experiments are carried out with a new refrigerant mixture of 76%R152a/24%R600a using actual water purifiers. This mixture is numbered and listed as R430A by ASHRAE recently. Test results show that the system performance is greatly influenced by the amount of charge due to the small internal volume of the refrigeration system in water purifiers. With the optimum amount of charge of 21–22 g, about 50% of HFC134a, the energy consumption of R430A is 13.4% lower than that of HFC134a. The compressor dome and discharge temperatures and condenser center temperature of R430A are very similar to those of HFC134a for the optimum charge. Overall, R430A, a new long term environmentally safe refrigerant, is a good alternative for HFC134a in domestic water purifiers requiring no major change in the system.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2009.07.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2009.07.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Hongwei Lu; Yanlong Guan; Li He; Yizhong Chen; Jing Li;This study develops a multi-level programming model from a life cycle perspective for performing shale-gas supply chain system. A set of leader-follower-interactive objectives with emphases of environmental, economic and energy concerns are incorporated into the synergistic optimization process, named MGU-MEM-MWL model. The upper-level model quantitatively investigates the life-cycle greenhouse gas (GHG) emissions as controlled by the environmental sector. The middle-level one focuses exclusively on system benefits as determined by the energy sector. The lower-level one aims to recycle water to minimize the life-cycle water supply as required by the enterprises. The capabilities and effectiveness of the developed model are illustrated through real-world case studies of the Barnett, Marcellus, Fayetteville, and Haynesville Shales in the US. An improved multi-level interactive solution algorithm based on satisfactory degree is then presented to improve computational efficiency. Results indicate that: (a) the end-use phase (i.e., gas utilization for electricity generation) would not only dominate the life-cycle GHG emissions, but also account for 76.1% of the life-cycle system profits; (b) operations associated with well hydraulic fracturing would be the largest contributor to the life-cycle freshwater consumption when gas use is not considered, and a majority of freshwater withdrawal would be supplied by surface water; (c) nearly 95% of flowback water would be recycled for hydraulic fracturing activities and only about 5% of flowback water would be treated via CWT facilities in the Marcellus, while most of the wastewater generated from the drilling, fracturing and production operations would be treated via underground injection control wells in the other shale plays. Moreover, the performance of the MGU-MEM-MWL model is enhanced by comparing with the three bi-level programs and the multi-objective approach. Results demonstrate that the MGU-MEM-MWL decisions would provide much comprehensive and systematic policies when considering the hierarchical structure within the shale-gas system.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.12.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu203 citations 203 popularity Top 0.1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.12.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Hongwei Lu; Yanlong Guan; Li He; Yizhong Chen; Jing Li;This study develops a multi-level programming model from a life cycle perspective for performing shale-gas supply chain system. A set of leader-follower-interactive objectives with emphases of environmental, economic and energy concerns are incorporated into the synergistic optimization process, named MGU-MEM-MWL model. The upper-level model quantitatively investigates the life-cycle greenhouse gas (GHG) emissions as controlled by the environmental sector. The middle-level one focuses exclusively on system benefits as determined by the energy sector. The lower-level one aims to recycle water to minimize the life-cycle water supply as required by the enterprises. The capabilities and effectiveness of the developed model are illustrated through real-world case studies of the Barnett, Marcellus, Fayetteville, and Haynesville Shales in the US. An improved multi-level interactive solution algorithm based on satisfactory degree is then presented to improve computational efficiency. Results indicate that: (a) the end-use phase (i.e., gas utilization for electricity generation) would not only dominate the life-cycle GHG emissions, but also account for 76.1% of the life-cycle system profits; (b) operations associated with well hydraulic fracturing would be the largest contributor to the life-cycle freshwater consumption when gas use is not considered, and a majority of freshwater withdrawal would be supplied by surface water; (c) nearly 95% of flowback water would be recycled for hydraulic fracturing activities and only about 5% of flowback water would be treated via CWT facilities in the Marcellus, while most of the wastewater generated from the drilling, fracturing and production operations would be treated via underground injection control wells in the other shale plays. Moreover, the performance of the MGU-MEM-MWL model is enhanced by comparing with the three bi-level programs and the multi-objective approach. Results demonstrate that the MGU-MEM-MWL decisions would provide much comprehensive and systematic policies when considering the hierarchical structure within the shale-gas system.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.12.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu203 citations 203 popularity Top 0.1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.12.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1993Publisher:Elsevier BV Authors: Gilbert R. Stegen; Robert Bacastow; Kathleen H. Cole;Abstract Theoretically, disposing of CO 2 directly into the deep ocean could significantly reduce short-term increases in atmospheric CO 2 concentration. Aside from the technological considerations, important questions arise regarding the optimal disposal depths and locations necessary for the long-term sequestration of CO 2 . These questions form the basis for a series of model simulations of the disposal of CO 2 in the deep sea. An Ocean Carbon Cycle Model (OCCM) was used to simulate the discharge of CO 2 at five sites representing different oceanagraphic environments. The sites were the Northwest Atlantic, Northeast Atlantic, Northwest Pacific, North Pacific Gyre, and the Western Equatorial Pacific. Model simulations indicate that the location and depth of injection can significantly improve long-term storage of CO 2 . Of the sites considered, a deep discharge (>1000m) in the Western Equatorial Pacific showed the greatest effacy of CO 2 sequestration.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1993 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(93)90029-a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1993 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(93)90029-a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1993Publisher:Elsevier BV Authors: Gilbert R. Stegen; Robert Bacastow; Kathleen H. Cole;Abstract Theoretically, disposing of CO 2 directly into the deep ocean could significantly reduce short-term increases in atmospheric CO 2 concentration. Aside from the technological considerations, important questions arise regarding the optimal disposal depths and locations necessary for the long-term sequestration of CO 2 . These questions form the basis for a series of model simulations of the disposal of CO 2 in the deep sea. An Ocean Carbon Cycle Model (OCCM) was used to simulate the discharge of CO 2 at five sites representing different oceanagraphic environments. The sites were the Northwest Atlantic, Northeast Atlantic, Northwest Pacific, North Pacific Gyre, and the Western Equatorial Pacific. Model simulations indicate that the location and depth of injection can significantly improve long-term storage of CO 2 . Of the sites considered, a deep discharge (>1000m) in the Western Equatorial Pacific showed the greatest effacy of CO 2 sequestration.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1993 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(93)90029-a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1993 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0196-8904(93)90029-a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Jianyong Wang; Chenxing Ren; Yaonan Gao; Haifeng Chen; Jixian Dong;Abstract In this paper, a new geothermal combined cooling, heating and power system that integrates flash power cycle and ammonia-water absorption refrigeration cycle, is proposed to supply electricity, refrigerant water and domestic hot water simultaneously to users. In the system, the refrigeration cycle serves as the bottom cycle of the power cycle by further utilizing the exhausted geothermal water from the flasher of the power cycle, meanwhile all waste heat of the power and refrigeration cycles is recovered for supplying heat, thus effectively improving the energy conversion efficiency of whole system. This paper establishes detailed mathematical models of the proposed system and conducts a valid model validation. Then a preliminary design condition of the system is given and the results show that the exergy efficiency of system could reach 43.69% under the condition of 170 ℃ geothermal water. An exergy loss analysis is carried out based on the design condition, demonstrating that the maximal exergy destruction exists in the condenser of flash cycle, accounting for 48.53% of the total exergy destruction of the system; the components used for separating or mixing fluids including rectification column, absorber and flasher, occupying 17.68%, 9.02% and 9.30% respectively, are prone to generate exergy destructions. Finally a thermodynamic parameter analysis, in order to assess the effects of seven key parameters on the system performance, is performed. The results show that there are an optimal flash pressure (about 300 kPa) and an optimal generator temperature (about 120 ℃) respectively that could make the exergy efficiency of system maximal. Within some scopes, lower turbine back pressure and rectification column pressure, higher ammonia concentration of ammonia-strong solution, bring about higher exergy efficiency of system. Additionally the evaporation pressure and the reflux ratio of rectifier just make little difference on the exergy efficiency of system.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Jianyong Wang; Chenxing Ren; Yaonan Gao; Haifeng Chen; Jixian Dong;Abstract In this paper, a new geothermal combined cooling, heating and power system that integrates flash power cycle and ammonia-water absorption refrigeration cycle, is proposed to supply electricity, refrigerant water and domestic hot water simultaneously to users. In the system, the refrigeration cycle serves as the bottom cycle of the power cycle by further utilizing the exhausted geothermal water from the flasher of the power cycle, meanwhile all waste heat of the power and refrigeration cycles is recovered for supplying heat, thus effectively improving the energy conversion efficiency of whole system. This paper establishes detailed mathematical models of the proposed system and conducts a valid model validation. Then a preliminary design condition of the system is given and the results show that the exergy efficiency of system could reach 43.69% under the condition of 170 ℃ geothermal water. An exergy loss analysis is carried out based on the design condition, demonstrating that the maximal exergy destruction exists in the condenser of flash cycle, accounting for 48.53% of the total exergy destruction of the system; the components used for separating or mixing fluids including rectification column, absorber and flasher, occupying 17.68%, 9.02% and 9.30% respectively, are prone to generate exergy destructions. Finally a thermodynamic parameter analysis, in order to assess the effects of seven key parameters on the system performance, is performed. The results show that there are an optimal flash pressure (about 300 kPa) and an optimal generator temperature (about 120 ℃) respectively that could make the exergy efficiency of system maximal. Within some scopes, lower turbine back pressure and rectification column pressure, higher ammonia concentration of ammonia-strong solution, bring about higher exergy efficiency of system. Additionally the evaporation pressure and the reflux ratio of rectifier just make little difference on the exergy efficiency of system.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu