- home
- Advanced Search
- Energy Research
- medical and health sciences
- Energy Research
- medical and health sciences
description Publicationkeyboard_double_arrow_right Article , Journal 2017 Germany, Netherlands, Netherlands, United StatesPublisher:Oxford University Press (OUP) Caroline M Williams; Gregory J Ragland; Gustavo Betini; Lauren B Buckley; Zachary A Cheviron; Kathleen Donohue; Joe Hereford; Murray M Humphries; Simeon Lisovski; Katie E Marshall; Paul S Schmidt; Kimberly S Sheldon; Øystein Varpe; Marcel E Visser;Seasonality is a critically important aspect of environmental variability, and strongly shapes all aspects of life for organisms living in highly seasonal environments. Seasonality has played a key role in generating biodiversity, and has driven the evolution of extreme physiological adaptations and behaviors such as migration and hibernation. Fluctuating selection pressures on survival and fecundity between summer and winter provide a complex selective landscape, which can be met by a combination of three outcomes of adaptive evolution: genetic polymorphism, phenotypic plasticity, and bet-hedging. Here, we have identified four important research questions with the goal of advancing our understanding of evolutionary impacts of seasonality. First, we ask how characteristics of environments and species will determine which adaptive response occurs. Relevant characteristics include costs and limits of plasticity, predictability, and reliability of cues, and grain of environmental variation relative to generation time. A second important question is how phenological shifts will amplify or ameliorate selection on physiological hardiness. Shifts in phenology can preserve the thermal niche despite shifts in climate, but may fail to completely conserve the niche or may even expose life stages to conditions that cause mortality. Considering distinct environmental sensitivities of life history stages will be key to refining models that forecast susceptibility to climate change. Third, we must identify critical physiological phenotypes that underlie seasonal adaptation and work toward understanding the genetic architectures of these responses. These architectures are key for predicting evolutionary responses. Pleiotropic genes that regulate multiple responses to changing seasons may facilitate coordination among functionally related traits, or conversely may constrain the expression of optimal phenotypes. Finally, we must advance our understanding of how changes in seasonal fluctuations are impacting ecological interaction networks. We should move beyond simple dyadic interactions, such as predator prey dynamics, and understand how these interactions scale up to affect ecological interaction networks. As global climate change alters many aspects of seasonal variability, including extreme events and changes in mean conditions, organisms must respond appropriately or go extinct. The outcome of adaptation to seasonality will determine responses to climate change.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/5063n1rzData sources: Bielefeld Academic Search Engine (BASE)Integrative and Comparative BiologyArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Electronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CentereScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icb/icx122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 102 citations 102 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/5063n1rzData sources: Bielefeld Academic Search Engine (BASE)Integrative and Comparative BiologyArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Electronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CentereScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icb/icx122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Preprint 2020 Norway, United KingdomPublisher:California Digital Library (CDL) Funded by:UKRI | The phenological optimum ..., FCT | LA 1UKRI| The phenological optimum in space and time ,FCT| LA 1Authors: Christopher Hassall; Kirsty H. Macphie; Jelmer M. Samplonius; James W. Pearce-Higgins; +20 AuthorsChristopher Hassall; Kirsty H. Macphie; Jelmer M. Samplonius; James W. Pearce-Higgins; James W. Pearce-Higgins; Ben C. Sheldon; Nathalie Pettorelli; Malcolm D. Burgess; Malcolm D. Burgess; Stephen J. Thackeray; Øystein Varpe; Katharine Keogan; Katharine Keogan; Angus Atkinson; Jacob Johansson; Jamie C. Weir; Jakob J. Assmann; Owen T. Lewis; Francis Daunt; Dylan Z. Childs; Ella F. Cole; Emily G. Simmonds; Albert B. Phillimore; Tom Hart;pmid: 33318690
Climate warming has caused the seasonal timing of many components of ecological food chains to advance. In the context of trophic interactions, the match-mismatch hypothesis postulates that differential shifts can lead to phenological asynchrony with negative impacts for consumers. However, at present there has been no consistent analysis of the links between temperature change, phenological asynchrony and individual-to-population-level impacts across taxa, trophic levels and biomes at a global scale. Here, we propose five criteria that all need to be met to demonstrate that temperature-mediated trophic asynchrony poses a growing risk to consumers. We conduct a literature review of 109 papers studying 129 taxa, and find that all five criteria are assessed for only two taxa, with the majority of taxa only having one or two criteria assessed. Crucially, nearly every study was conducted in Europe or North America, and most studies were on terrestrial secondary consumers. We thus lack a robust evidence base from which to draw general conclusions about the risk that climate-mediated trophic asynchrony may pose to populations worldwide.
NERC Open Research A... arrow_drop_down https://doi.org/10.32942/osf.i...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefBergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedData sources: Bergen Open Research Archive - UiBNature Ecology & EvolutionArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefEcoEvoRxiv PreprintsPreprint . 2020Full-Text: https://ecoevorxiv.org/jmy67/downloadData sources: EcoEvoRxiv PreprintsUniversity of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.32942/osf.io/jmy67&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 71 citations 71 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down https://doi.org/10.32942/osf.i...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefBergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedData sources: Bergen Open Research Archive - UiBNature Ecology & EvolutionArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefEcoEvoRxiv PreprintsPreprint . 2020Full-Text: https://ecoevorxiv.org/jmy67/downloadData sources: EcoEvoRxiv PreprintsUniversity of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.32942/osf.io/jmy67&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 NorwayPublisher:Wiley Anna Siwertsson; Ulf Lindström; Magnus Aune; Erik Berg; Jofrid Skarðhamar; Øystein Varpe; Raul Primicerio;AbstractRapid warming at high latitudes triggers poleward shifts of species' distributions that impact marine biodiversity. In the open sea, the documented redistributions of fish lead to a borealization of Arctic fauna. A climate‐driven borealization and increased species diversity at high latitudes are also expected in coastal fish communities, but they have not been previously documented on a large, biogeographic scale. Here, we investigate the impact of temperature change over the last 25 years on fish communities along the coast of Norway. The study area, spanning different ecoclimatic zones between 62° and 71° N, harbors over 200 species of boreal and Arctic fish. Several of these fish species are harvested by coastal and indigenous communities, influencing settlement geography and livelihood. The long‐term data on coastal water temperatures and fish species were obtained from monitoring stations and scientific surveys. Water temperature measured at three fixed sampling stations distributed along the coast show increased temperatures during the study period. The fish species distribution and abundance data were obtained from the annually standardized scientific bottom trawl survey program. Fish species richness, which was highest in the south, increased with warming first in the south and then, gradually, further north, eventually affecting biodiversity in the whole study area. Fish community composition showed a distinct latitudinal pattern early in the study, with Arctic fish species confined to the north and boreal species dominating the south. The poleward shifts eventually eroded this zoogeographic pattern, resulting in more boreal fish species in the north and an increased homogenization of species composition along the Norwegian coast. The climate‐driven reorganization of fish communities affects coastal ecosystems that are exposed to fisheries, aquaculture, and other rapidly expanding human activities, stressing the urgent need for a climate adaptation of integrated coastal management.
Brage IMR arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Brage IMR arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 Germany, Netherlands, Netherlands, United StatesPublisher:Oxford University Press (OUP) Caroline M Williams; Gregory J Ragland; Gustavo Betini; Lauren B Buckley; Zachary A Cheviron; Kathleen Donohue; Joe Hereford; Murray M Humphries; Simeon Lisovski; Katie E Marshall; Paul S Schmidt; Kimberly S Sheldon; Øystein Varpe; Marcel E Visser;Seasonality is a critically important aspect of environmental variability, and strongly shapes all aspects of life for organisms living in highly seasonal environments. Seasonality has played a key role in generating biodiversity, and has driven the evolution of extreme physiological adaptations and behaviors such as migration and hibernation. Fluctuating selection pressures on survival and fecundity between summer and winter provide a complex selective landscape, which can be met by a combination of three outcomes of adaptive evolution: genetic polymorphism, phenotypic plasticity, and bet-hedging. Here, we have identified four important research questions with the goal of advancing our understanding of evolutionary impacts of seasonality. First, we ask how characteristics of environments and species will determine which adaptive response occurs. Relevant characteristics include costs and limits of plasticity, predictability, and reliability of cues, and grain of environmental variation relative to generation time. A second important question is how phenological shifts will amplify or ameliorate selection on physiological hardiness. Shifts in phenology can preserve the thermal niche despite shifts in climate, but may fail to completely conserve the niche or may even expose life stages to conditions that cause mortality. Considering distinct environmental sensitivities of life history stages will be key to refining models that forecast susceptibility to climate change. Third, we must identify critical physiological phenotypes that underlie seasonal adaptation and work toward understanding the genetic architectures of these responses. These architectures are key for predicting evolutionary responses. Pleiotropic genes that regulate multiple responses to changing seasons may facilitate coordination among functionally related traits, or conversely may constrain the expression of optimal phenotypes. Finally, we must advance our understanding of how changes in seasonal fluctuations are impacting ecological interaction networks. We should move beyond simple dyadic interactions, such as predator prey dynamics, and understand how these interactions scale up to affect ecological interaction networks. As global climate change alters many aspects of seasonal variability, including extreme events and changes in mean conditions, organisms must respond appropriately or go extinct. The outcome of adaptation to seasonality will determine responses to climate change.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/5063n1rzData sources: Bielefeld Academic Search Engine (BASE)Integrative and Comparative BiologyArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Electronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CentereScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icb/icx122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 102 citations 102 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2017Full-Text: https://escholarship.org/uc/item/5063n1rzData sources: Bielefeld Academic Search Engine (BASE)Integrative and Comparative BiologyArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Electronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CentereScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/icb/icx122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Preprint 2020 Norway, United KingdomPublisher:California Digital Library (CDL) Funded by:UKRI | The phenological optimum ..., FCT | LA 1UKRI| The phenological optimum in space and time ,FCT| LA 1Authors: Christopher Hassall; Kirsty H. Macphie; Jelmer M. Samplonius; James W. Pearce-Higgins; +20 AuthorsChristopher Hassall; Kirsty H. Macphie; Jelmer M. Samplonius; James W. Pearce-Higgins; James W. Pearce-Higgins; Ben C. Sheldon; Nathalie Pettorelli; Malcolm D. Burgess; Malcolm D. Burgess; Stephen J. Thackeray; Øystein Varpe; Katharine Keogan; Katharine Keogan; Angus Atkinson; Jacob Johansson; Jamie C. Weir; Jakob J. Assmann; Owen T. Lewis; Francis Daunt; Dylan Z. Childs; Ella F. Cole; Emily G. Simmonds; Albert B. Phillimore; Tom Hart;pmid: 33318690
Climate warming has caused the seasonal timing of many components of ecological food chains to advance. In the context of trophic interactions, the match-mismatch hypothesis postulates that differential shifts can lead to phenological asynchrony with negative impacts for consumers. However, at present there has been no consistent analysis of the links between temperature change, phenological asynchrony and individual-to-population-level impacts across taxa, trophic levels and biomes at a global scale. Here, we propose five criteria that all need to be met to demonstrate that temperature-mediated trophic asynchrony poses a growing risk to consumers. We conduct a literature review of 109 papers studying 129 taxa, and find that all five criteria are assessed for only two taxa, with the majority of taxa only having one or two criteria assessed. Crucially, nearly every study was conducted in Europe or North America, and most studies were on terrestrial secondary consumers. We thus lack a robust evidence base from which to draw general conclusions about the risk that climate-mediated trophic asynchrony may pose to populations worldwide.
NERC Open Research A... arrow_drop_down https://doi.org/10.32942/osf.i...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefBergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedData sources: Bergen Open Research Archive - UiBNature Ecology & EvolutionArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefEcoEvoRxiv PreprintsPreprint . 2020Full-Text: https://ecoevorxiv.org/jmy67/downloadData sources: EcoEvoRxiv PreprintsUniversity of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.32942/osf.io/jmy67&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 71 citations 71 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down https://doi.org/10.32942/osf.i...Article . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefBergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedData sources: Bergen Open Research Archive - UiBNature Ecology & EvolutionArticle . 2020 . Peer-reviewedLicense: Springer Nature TDMData sources: CrossrefEcoEvoRxiv PreprintsPreprint . 2020Full-Text: https://ecoevorxiv.org/jmy67/downloadData sources: EcoEvoRxiv PreprintsUniversity of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.32942/osf.io/jmy67&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 NorwayPublisher:Wiley Anna Siwertsson; Ulf Lindström; Magnus Aune; Erik Berg; Jofrid Skarðhamar; Øystein Varpe; Raul Primicerio;AbstractRapid warming at high latitudes triggers poleward shifts of species' distributions that impact marine biodiversity. In the open sea, the documented redistributions of fish lead to a borealization of Arctic fauna. A climate‐driven borealization and increased species diversity at high latitudes are also expected in coastal fish communities, but they have not been previously documented on a large, biogeographic scale. Here, we investigate the impact of temperature change over the last 25 years on fish communities along the coast of Norway. The study area, spanning different ecoclimatic zones between 62° and 71° N, harbors over 200 species of boreal and Arctic fish. Several of these fish species are harvested by coastal and indigenous communities, influencing settlement geography and livelihood. The long‐term data on coastal water temperatures and fish species were obtained from monitoring stations and scientific surveys. Water temperature measured at three fixed sampling stations distributed along the coast show increased temperatures during the study period. The fish species distribution and abundance data were obtained from the annually standardized scientific bottom trawl survey program. Fish species richness, which was highest in the south, increased with warming first in the south and then, gradually, further north, eventually affecting biodiversity in the whole study area. Fish community composition showed a distinct latitudinal pattern early in the study, with Arctic fish species confined to the north and boreal species dominating the south. The poleward shifts eventually eroded this zoogeographic pattern, resulting in more boreal fish species in the north and an increased homogenization of species composition along the Norwegian coast. The climate‐driven reorganization of fish communities affects coastal ecosystems that are exposed to fisheries, aquaculture, and other rapidly expanding human activities, stressing the urgent need for a climate adaptation of integrated coastal management.
Brage IMR arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Brage IMR arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu