Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
  • Access
  • Type
  • Year range
  • Field of Science
    Clear
  • Funder
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
4 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • agricultural and veterinary science...

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Samiran Banerjee; orcid Eric G. Lamb;
    Eric G. Lamb
    ORCID
    Harvested from ORCID Public Data File

    Eric G. Lamb in OpenAIRE
    orcid Brian Lanoil;
    Brian Lanoil
    ORCID
    Harvested from ORCID Public Data File

    Brian Lanoil in OpenAIRE
    Sukkyun Han; +3 Authors

    AbstractWe evaluated above‐ and belowground ecosystem changes in a 16 year, combined fertilization and warming experiment in a High Arctic tundra deciduous shrub heath (Alexandra Fiord, Ellesmere Island, NU, Canada). Soil emissions of the three key greenhouse gases (GHGs) (carbon dioxide, methane, and nitrous oxide) were measured in mid‐July 2009 using soil respiration chambers attached to a FTIR system. Soil chemical and biochemical properties including Q10 values for CO2, CH4, and N2O, Bacteria and Archaea assemblage composition, and the diversity and prevalence of key nitrogen cycling genes including bacterial amoA, crenarchaeal amoA, and nosZ were measured. Warming and fertilization caused strong increases in plant community cover and height but had limited effects on GHG fluxes and no substantial effect on soil chemistry or biochemistry. Similarly, there was a surprising lack of directional shifts in the soil microbial community as a whole or any change at all in microbial functional groups associated with CH4 consumption or N2O cycling in any treatment. Thus, it appears that while warming and increased nutrient availability have strongly affected the plant community over the last 16 years, the belowground ecosystem has not yet responded. This resistance of the soil ecosystem has resulted in limited changes in GHG fluxes in response to the experimental treatments.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Global Change Biology
    Article . 2011 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    131
    citations131
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Global Change Biology
      Article . 2011 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Samiran Banerjee; orcid Eric G. Lamb;
    Eric G. Lamb
    ORCID
    Harvested from ORCID Public Data File

    Eric G. Lamb in OpenAIRE
    orcid Brian Lanoil;
    Brian Lanoil
    ORCID
    Harvested from ORCID Public Data File

    Brian Lanoil in OpenAIRE
    Sukkyun Han; +3 Authors

    AbstractWe evaluated above‐ and belowground ecosystem changes in a 16 year, combined fertilization and warming experiment in a High Arctic tundra deciduous shrub heath (Alexandra Fiord, Ellesmere Island, NU, Canada). Soil emissions of the three key greenhouse gases (GHGs) (carbon dioxide, methane, and nitrous oxide) were measured in mid‐July 2009 using soil respiration chambers attached to a FTIR system. Soil chemical and biochemical properties including Q10 values for CO2, CH4, and N2O, Bacteria and Archaea assemblage composition, and the diversity and prevalence of key nitrogen cycling genes including bacterial amoA, crenarchaeal amoA, and nosZ were measured. Warming and fertilization caused strong increases in plant community cover and height but had limited effects on GHG fluxes and no substantial effect on soil chemistry or biochemistry. Similarly, there was a surprising lack of directional shifts in the soil microbial community as a whole or any change at all in microbial functional groups associated with CH4 consumption or N2O cycling in any treatment. Thus, it appears that while warming and increased nutrient availability have strongly affected the plant community over the last 16 years, the belowground ecosystem has not yet responded. This resistance of the soil ecosystem has resulted in limited changes in GHG fluxes in response to the experimental treatments.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Global Change Biology
    Article . 2011 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    131
    citations131
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Global Change Biolog...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Global Change Biology
      Article . 2011 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Steven D. Mamet;
    Steven D. Mamet
    ORCID
    Harvested from ORCID Public Data File

    Steven D. Mamet in OpenAIRE
    orcid Eric G. Lamb;
    Eric G. Lamb
    ORCID
    Harvested from ORCID Public Data File

    Eric G. Lamb in OpenAIRE
    Mitsuaki Ota; orcid Steven D. Siciliano;
    Steven D. Siciliano
    ORCID
    Harvested from ORCID Public Data File

    Steven D. Siciliano in OpenAIRE
    +2 Authors

    AbstractMoisture is critical for plant success in polar deserts but not by the obvious pathway of reduced water stress. We hypothesized that an indirect, nutrient‐linked, pathway resulting from unique water/frozen soil interactions in polar deserts creates nutrient‐rich patches critical for plant growth. These nutrient‐rich patches (diapirs) form deep in High Arctic polar deserts soils from water accumulating at the permafrost freezing front and ultimately rising into the upper soil horizons through cryoturbated convective landforms (frost boils). To determine if diapirs provide an enhanced source of plant‐available N for Salix arctica (Arctic willow), we characterized soil, root, stem, and leaf 15N natural abundance across 24 diapir and non‐diapir frost boils in a High Arctic granitic semi‐desert. When diapir horizons were available, S. arctica increased its subsurface (i.e., diapir) N uptake and plant root biomass doubled within diapir. Plant uptake of enriched 15N injected into organic rich soil patches was 2.5‐fold greater in diapir than in non‐diapir frost boils. S. arctica percent cover was often higher (7.3 ± 1.0 [mean ± SE]) on diapiric frost boils, compared to frost boils without diapirs (4.4 ± 0.7), potentially reflecting the additional 20% nitrogen available in the subsurface of diapiric frost boils. Selective N acquisition from diapirs is a mechanism by which soil moisture indirectly enhances plant growth. Our work suggests that diapirs may be one mechanism contributing to Arctic greening by shrub expansion.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecologyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ecology
    Article . 2017 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    Ecology
    Article . 2018
    addClaim
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecologyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ecology
      Article . 2017 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      Ecology
      Article . 2018
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Steven D. Mamet;
    Steven D. Mamet
    ORCID
    Harvested from ORCID Public Data File

    Steven D. Mamet in OpenAIRE
    orcid Eric G. Lamb;
    Eric G. Lamb
    ORCID
    Harvested from ORCID Public Data File

    Eric G. Lamb in OpenAIRE
    Mitsuaki Ota; orcid Steven D. Siciliano;
    Steven D. Siciliano
    ORCID
    Harvested from ORCID Public Data File

    Steven D. Siciliano in OpenAIRE
    +2 Authors

    AbstractMoisture is critical for plant success in polar deserts but not by the obvious pathway of reduced water stress. We hypothesized that an indirect, nutrient‐linked, pathway resulting from unique water/frozen soil interactions in polar deserts creates nutrient‐rich patches critical for plant growth. These nutrient‐rich patches (diapirs) form deep in High Arctic polar deserts soils from water accumulating at the permafrost freezing front and ultimately rising into the upper soil horizons through cryoturbated convective landforms (frost boils). To determine if diapirs provide an enhanced source of plant‐available N for Salix arctica (Arctic willow), we characterized soil, root, stem, and leaf 15N natural abundance across 24 diapir and non‐diapir frost boils in a High Arctic granitic semi‐desert. When diapir horizons were available, S. arctica increased its subsurface (i.e., diapir) N uptake and plant root biomass doubled within diapir. Plant uptake of enriched 15N injected into organic rich soil patches was 2.5‐fold greater in diapir than in non‐diapir frost boils. S. arctica percent cover was often higher (7.3 ± 1.0 [mean ± SE]) on diapiric frost boils, compared to frost boils without diapirs (4.4 ± 0.7), potentially reflecting the additional 20% nitrogen available in the subsurface of diapiric frost boils. Selective N acquisition from diapirs is a mechanism by which soil moisture indirectly enhances plant growth. Our work suggests that diapirs may be one mechanism contributing to Arctic greening by shrub expansion.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecologyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ecology
    Article . 2017 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    Ecology
    Article . 2018
    addClaim
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecologyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ecology
      Article . 2017 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      Ecology
      Article . 2018
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Juying Wu; Fei Ren; orcid Eric G. Lamb;
    Eric G. Lamb
    ORCID
    Harvested from ORCID Public Data File

    Eric G. Lamb in OpenAIRE
    orcid Roy Vera-Vélez;
    Roy Vera-Vélez
    ORCID
    Harvested from ORCID Public Data File

    Roy Vera-Vélez in OpenAIRE
    +1 Authors

    Precipitation is a primary climatic determinant of grassland productivity, with many global change experiments manipulating precipitation. Here we examine the impacts of precipitation addition and reduction treatment intensity and duration on grassland above- (ANPP) and below- (BNPP) ground net primary productivity in a large-scale meta-analysis. We tested, 1) the double asymmetry model of sensitivity, specifically whether the sensitivity of productivity decreases with treatment intensity under increased precipitation and increases with treatment intensity under decreased precipitation, 2) whether the sensitivity of productivity to precipitation change decreases with treatment length, and 3) how the sensitivity of productivity changes with climate conditions. ANPP showed higher sensitivity than BNPP under increased precipitation but similar sensitivity to BNPP under decreased precipitation. The sensitivity of ANPP and BNPP decreased with increasing treatment intensity (e.g., percentage change in precipitation, ΔPPT) and leveled off in the long-term. With increased precipitation, the sensitivity of productivity decreased with increasing treatment length (e.g., experimental duration) and leveled off in the long-term, whereas the sensitivity increased with increasing treatment length under reduced precipitation. Furthermore, the sensitivity of productivity to precipitation change decreased with increasing mean annual precipitation and temperature. Finally, our meta-analysis shows that above- and belowground net primary productivity have asymmetric responses to precipitation change. Together these results highlight the complex mechanisms underlying the impacts of precipitation change, particularly the intensity and duration of such changes, on grassland productivity.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    26
    citations26
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Juying Wu; Fei Ren; orcid Eric G. Lamb;
    Eric G. Lamb
    ORCID
    Harvested from ORCID Public Data File

    Eric G. Lamb in OpenAIRE
    orcid Roy Vera-Vélez;
    Roy Vera-Vélez
    ORCID
    Harvested from ORCID Public Data File

    Roy Vera-Vélez in OpenAIRE
    +1 Authors

    Precipitation is a primary climatic determinant of grassland productivity, with many global change experiments manipulating precipitation. Here we examine the impacts of precipitation addition and reduction treatment intensity and duration on grassland above- (ANPP) and below- (BNPP) ground net primary productivity in a large-scale meta-analysis. We tested, 1) the double asymmetry model of sensitivity, specifically whether the sensitivity of productivity decreases with treatment intensity under increased precipitation and increases with treatment intensity under decreased precipitation, 2) whether the sensitivity of productivity to precipitation change decreases with treatment length, and 3) how the sensitivity of productivity changes with climate conditions. ANPP showed higher sensitivity than BNPP under increased precipitation but similar sensitivity to BNPP under decreased precipitation. The sensitivity of ANPP and BNPP decreased with increasing treatment intensity (e.g., percentage change in precipitation, ΔPPT) and leveled off in the long-term. With increased precipitation, the sensitivity of productivity decreased with increasing treatment length (e.g., experimental duration) and leveled off in the long-term, whereas the sensitivity increased with increasing treatment length under reduced precipitation. Furthermore, the sensitivity of productivity to precipitation change decreased with increasing mean annual precipitation and temperature. Finally, our meta-analysis shows that above- and belowground net primary productivity have asymmetric responses to precipitation change. Together these results highlight the complex mechanisms underlying the impacts of precipitation change, particularly the intensity and duration of such changes, on grassland productivity.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    26
    citations26
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • Authors: orcid James F. Cahill;
    James F. Cahill
    ORCID
    Harvested from ORCID Public Data File

    James F. Cahill in OpenAIRE
    orcid Eric G. Lamb;
    Eric G. Lamb
    ORCID
    Harvested from ORCID Public Data File

    Eric G. Lamb in OpenAIRE
    orcid Gordon G. McNickle;
    Gordon G. McNickle
    ORCID
    Harvested from ORCID Public Data File

    Gordon G. McNickle in OpenAIRE
    Colleen Cassady St. Clair; +2 Authors

    Plant root growth is modified in the presence of within-species competition and uneven local resource distributions.

    Sciencearrow_drop_down
    Science
    Article . 2010 . Peer-reviewed
    Data sources: Crossref
    Science
    Article . 2010
    addClaim
    274
    citations274
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      Sciencearrow_drop_down
      Science
      Article . 2010 . Peer-reviewed
      Data sources: Crossref
      Science
      Article . 2010
      addClaim
  • Authors: orcid James F. Cahill;
    James F. Cahill
    ORCID
    Harvested from ORCID Public Data File

    James F. Cahill in OpenAIRE
    orcid Eric G. Lamb;
    Eric G. Lamb
    ORCID
    Harvested from ORCID Public Data File

    Eric G. Lamb in OpenAIRE
    orcid Gordon G. McNickle;
    Gordon G. McNickle
    ORCID
    Harvested from ORCID Public Data File

    Gordon G. McNickle in OpenAIRE
    Colleen Cassady St. Clair; +2 Authors

    Plant root growth is modified in the presence of within-species competition and uneven local resource distributions.

    Sciencearrow_drop_down
    Science
    Article . 2010 . Peer-reviewed
    Data sources: Crossref
    Science
    Article . 2010
    addClaim
    274
    citations274
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      Sciencearrow_drop_down
      Science
      Article . 2010 . Peer-reviewed
      Data sources: Crossref
      Science
      Article . 2010
      addClaim
Powered by OpenAIRE graph