Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Science of The Total Environment
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Global pattern and associated drivers of grassland productivity sensitivity to precipitation change

Authors: Juying Wu; Fei Ren; Eric G. Lamb; Roy Vera-Vélez; Chao Wang;

Global pattern and associated drivers of grassland productivity sensitivity to precipitation change

Abstract

Precipitation is a primary climatic determinant of grassland productivity, with many global change experiments manipulating precipitation. Here we examine the impacts of precipitation addition and reduction treatment intensity and duration on grassland above- (ANPP) and below- (BNPP) ground net primary productivity in a large-scale meta-analysis. We tested, 1) the double asymmetry model of sensitivity, specifically whether the sensitivity of productivity decreases with treatment intensity under increased precipitation and increases with treatment intensity under decreased precipitation, 2) whether the sensitivity of productivity to precipitation change decreases with treatment length, and 3) how the sensitivity of productivity changes with climate conditions. ANPP showed higher sensitivity than BNPP under increased precipitation but similar sensitivity to BNPP under decreased precipitation. The sensitivity of ANPP and BNPP decreased with increasing treatment intensity (e.g., percentage change in precipitation, ΔPPT) and leveled off in the long-term. With increased precipitation, the sensitivity of productivity decreased with increasing treatment length (e.g., experimental duration) and leveled off in the long-term, whereas the sensitivity increased with increasing treatment length under reduced precipitation. Furthermore, the sensitivity of productivity to precipitation change decreased with increasing mean annual precipitation and temperature. Finally, our meta-analysis shows that above- and belowground net primary productivity have asymmetric responses to precipitation change. Together these results highlight the complex mechanisms underlying the impacts of precipitation change, particularly the intensity and duration of such changes, on grassland productivity.

Related Organizations
Keywords

Climate Change, Grassland, Ecosystem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Average
Top 10%