- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2011 Saudi ArabiaPublisher:American Chemical Society (ACS) Chen, Wei; Baby, Rakhi Raghavan; Hu, Liangbing; Xie, Xing; Cui, Yi; Alshareef, Husam N.;A simple and scalable method has been developed to fabricate nanostructured MnO2-carbon nanotube (CNT)-sponge hybrid electrodes. A novel supercapacitor, henceforth referred to as "sponge supercapacitor", has been fabricated using these hybrid electrodes with remarkable performance. A specific capacitance of 1,230 F/g (based on the mass of MnO2) can be reached. Capacitors based on CNT-sponge substrates (without MnO2) can be operated even under a high scan rate of 200 V/s, and they exhibit outstanding cycle performance with only 2% degradation after 100,000 cycles under a scan rate of 10 V/s. The MnO2-CNT-sponge supercapacitors show only 4% of degradation after 10,000 cycles at a charge-discharge specific current of 5 A/g. The specific power and energy of the MnO2-CNT-sponge supercapacitors are high with values of 63 kW/kg and 31 Wh/kg, respectively. The attractive performances exhibited by these sponge supercapacitors make them potentially promising candidates for future energy storage systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/nl2023433&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 679 citations 679 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/nl2023433&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Saudi ArabiaPublisher:Royal Society of Chemistry (RSC) Emin Caglan Kumbur; Meng-Qiang Zhao; You-Yu Peng; You-Yu Peng; Yury Gogotsi; Narendra Kurra; Narendra Kurra; Babak Anasori; Husam N. Alshareef; Bilen Akuzum; Mohamed Alhabeb; Ming-Der Ger;doi: 10.1039/c6ee01717g
handle: 10754/619755
Novel, noble-metal-free, solid-state all-titanium carbide (Ti3C2Tx) MXene microsupercapacitors are fabricated, which exhibit high areal capacitance, excellent rate-capability, and are transferable to any surface.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ee01717g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 368 citations 368 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ee01717g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Saudi ArabiaPublisher:Elsevier BV Liang, Hanfeng; Xia, Chuan; Jiang, Qiu; Gandi, Appala; Schwingenschlögl, Udo; Alshareef, Husam N.;handle: 10754/623863
Abstract We report a versatile route for the preparation of metal phosphides using PH3 plasma for supercapacitor applications. The high reactivity of plasma allows rapid and low temperature conversion of hydroxides into monometallic, bimetallic, or even more complex nanostructured phosphides. These same phosphides are much more difficult to synthesize by conventional methods. Further, we present a general strategy for significantly enhancing the electrochemical performance of monometallic phosphides by substituting extrinsic metal atoms. Using NiCoP as a demonstration, we show that the Co substitution into Ni2P not only effectively alters the electronic structure and improves the intrinsic reactivity and electrical conductivity, but also stabilizes Ni species when used as supercapacitor electrode materials. As a result, the NiCoP nanosheet electrodes achieve high electrochemical activity and good stability in 1 M KOH electrolyte. More importantly, our assembled NiCoP nanoplates//graphene films asymmetric supercapacitor devices can deliver a high energy density of 32.9 Wh kg−1 at a power density of 1301 W kg−1, along with outstanding cycling performance (83% capacity retention after 5000 cycles at 20 A g−1). This activity outperforms most of the NiCo-based materials and renders the NiCoP nanoplates a promising candidate for capacitive storage devices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2017.04.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 331 citations 331 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2017.04.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Saudi ArabiaPublisher:American Chemical Society (ACS) Kang Hyuck Lee; Yi-Zhou Zhang; Qiu Jiang; Hyunho Kim; Abdulkader A. Alkenawi; Husam N. Alshareef;Ultrasound is a source of ambient energy that is rarely exploited. In this work, a tissue-mimicking MXene-hydrogel (M-gel) implantable generator has been designed to convert ultrasound power into electric energy. Unlike the present harvesting methods for implantable ultrasound energy harvesters, our M-gel generator is based on an electroacoustic phenomenon known as the streaming vibration potential. Moreover, the output power of the M-gel generator can be improved by coupling with triboelectrification. We demonstrate the potential of this generator for powering implantable devices through quick charging of electric gadgets, buried beneath a centimeter thick piece of beef. The performance is attractive, especially given the extremely simple structure of the generator, consisting of nothing more than encapsulated M-gel. The generator can harvest energy from various ultrasound sources, from ultrasound tips in the lab to the probes used in hospitals and households for imaging and physiotherapy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.9b08462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 102 citations 102 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.9b08462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Saudi ArabiaPublisher:The Electrochemical Society Authors: Jiang, Qiu; Kurra, Narendra; Alshareef, Husam N.;handle: 10754/594184
On-Chip energy storage is currently on high demand as its potentiality for compatible integration with flexible and miniaturized functional electronic devices. Conventional microfabrication has been the widely employed technique in fabricating interdigitated microsupercapacitor devices in a reliable manner. However, developing unconventional lithography techniques can be attractive interms of simplicity with minimal sophistication while not compromising the performance. Here, we propose a simple and versatile strategy to fabricate on-chip microsupercapacitors (MSCs) employing hand-written sacrificial marker ink patterns, both in lift-off and etching modes. As a prototype, this technique is demonstrated for the fabrication of conducting polymer MSCs involving poly(3,4-ethylenedioxythiophene), polyaniline and metal oxide electrode materials. Typical values of energy density in the range of 5-11 mWh/cm3 at power densities of 1-6 W/cm3 are achieved, that are comparable to thin film batteries and superior to the carbon and metal oxide based microsupercapacitors reported in the literature. Fabrication of microsupercapacitor devices on curved surfaces and multi-stack designs are additional assets of this technique. This innovative strategy may be broadened for scalable fabrication of a wide variety of on-chip energy storage devices.
ECS Meeting Abstract... arrow_drop_down ECS Meeting AbstractsArticle . 2016 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: CrossrefAdvanced Functional MaterialsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/ma2016-01/1/18&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert ECS Meeting Abstract... arrow_drop_down ECS Meeting AbstractsArticle . 2016 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: CrossrefAdvanced Functional MaterialsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/ma2016-01/1/18&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Saudi ArabiaPublisher:Springer Science and Business Media LLC Authors: Baby, Rakhi Raghavan; Chen, Wei; Cha, Dong Kyu; Alshareef, Husam N.;handle: 10754/550838
Nanostructured and mesoporous cobalt oxide (Co3O4) nanowire in flower-like arrangements have been directly grown over flexible carbon cloth collectors using solvothermal synthesis for supercapacitor applications. Changes in the morphology and porosity of the nanowire assemblies have been induced by manipulating the calcination temperature (200–300 °C) of the one-dimensional (1-D) structures, resulting in significant impact on their surface area and pseudocapacitive properties. As the calcination temperature increases from 200 to 250 °C, the flower morphology gradually modifies to the point where the electrolyte could access almost all the nanowires over the entire sample volume, resulting in an increase in specific capacitance from 334 to 605 Fg−1, depending on the nanowire electrode morphology. The 300 °C calcination results in the breakdown of the mesoporous morphology and decreases the efficiency of electrolyte diffusion, resulting in a drop in pseudocapacitance after 300 °C. A peak energy density of 44 Wh kg−1 has been obtained at a power density of 20 kW kg−1 for the 250 °C calcined sample.
King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Materials for Renewable and Sustainable EnergyArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40243-013-0017-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Materials for Renewable and Sustainable EnergyArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40243-013-0017-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Saudi ArabiaPublisher:Royal Society of Chemistry (RSC) Xie, Xing; Ye, Meng; Hu, Liangbing; Liu, Nian; McDonough, James R.; Chen, Wei; Alshareef, Husam N.; Criddle, Craig S.; Cui, Yi;doi: 10.1039/c1ee02122b
handle: 10754/561972
The materials that are used to make electrodes and their internal structures significantly affect microbial fuel cell (MFC) performance. In this study, we describe a carbon nanotube (CNT)–sponge composite prepared by coating a sponge with CNTs. Compared to the CNT-coated textile electrodes evaluated in prior studies, CNT–sponge electrodes had lower internal resistance, greater stability, more tunable and uniform macroporous structure (pores up to 1 mm in diameter), and improved mechanical properties. The CNT–sponge composite also provided a three-dimensional scaffold that was favorable for microbial colonization and catalytic decoration. Using a batch-fed H-shaped MFC outfitted with CNT–sponge electrodes, an areal power density of 1.24 W m−2 was achieved when treating domestic wastewater. The maximum volumetric power density of a continuously fed plate-shaped MFC was 182 W m−3. To our knowledge, these are the highest values obtained to date for MFCs fed domestic wastewater: 2.5 times the previously reported maximum areal power density and 12 times the previously reported maximum volumetric power density.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c1ee02122b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 272 citations 272 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c1ee02122b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Saudi ArabiaPublisher:Elsevier BV Sheikh, Arif D.; Bera, Ashok; Haque, Mohammed; Baby, Rakhi Raghavan; Del Gobbo, Silvano; Alshareef, Husam N.; Wu, Tao;handle: 10754/564176
Abstract Organometal trihalide perovskite solar cells have recently attracted lots of attention in the photovoltaic community due to their escalating efficiency and solution processability. The most efficient organometallic mixed-halide sensitized solar cells often employ 2,2′7,7′-tetrakis-( N , N -di- p -methoxyphenyl-amine)-9,9′-spirobifluorene (spiro-MeOTAD) as the hole-transporting material. In this work, we investigated the effect of different atmospheric storage conditions, particularly vacuum, dry nitrogen, and dry air, on the photovoltaic performance of TiO 2 –CH 3 NH 3 PbI 3− x Cl x –spiro-MeOTAD solar cells. We found that spin coating of spiro-MeOTAD in an oxygen atmosphere alone was not adequate to functionalize its hole-transport property completely, and our systematic experiments revealed that the device efficiency depends on the ambient atmospheric conditions during the drying process of spiro-MeOTAD. Complementary incident photon to current conversion efficiency (IPCE), light absorption and photoluminescence quenching measurements allowed us to attribute the atmosphere-dependent efficiency to the improved electronic characteristics of the solar cells. Furthermore, our Fourier transform infrared and electrical impedance measurements unambiguously detected modifications in the spiro-MeOTAD after the drying processes in different gas environments. Our findings demonstrate that proper oxidization and p-doping in functionalizing spiro-MeOTAD play a very critical role in determining device performance. These findings will facilitate the search for alternative hole-transporting materials in high-performance perovskite solar cells with long-term stability.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.01.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 119 citations 119 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.01.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Saudi ArabiaPublisher:Wiley Fihri, Aziz; Sougrat, Rachid; Baby, Rakhi Raghavan; Rahal, Raed; Cha, Dong Kyu; Hedhili, Mohamed N.; Bouhrara, Mohamed; Alshareef, Husam N.; Polshettiwar, Vivek;AbstractNickel oxide and mixed‐metal oxide structures were fabricated by using microwave irradiation in pure water. The nickel oxide self‐assembled into unique rose‐shaped nanostructures. These nickel oxide roses were studied by performing electron tomography with virtual cross‐sections through the particles to understand their morphology from their interior to their surface. These materials exhibited promising performance as nanocatalysts for CO oxidation and in energy storage devices.
ChemSusChem arrow_drop_down ChemSusChemArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201100620&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert ChemSusChem arrow_drop_down ChemSusChemArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201100620&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Saudi ArabiaPublisher:Springer Science and Business Media LLC Chuan Xia; Chuan Xia; Qiu Jiang; Eli Stavitski; Haotian Wang; Peng Zhu; Husam N. Alshareef; Ying Pan; Wentao Liang;handle: 10754/660879
This work was supported by Rice University. This research used the 8-ID (ISS) beamline of the National Synchrotron Light Source II and the Center for Functional Nanomaterials, US Department of Energy Office of Science User Facilities operated for the DOE Office of Science by Brookhaven National Laboratory under contract no. DE-SC0012704. Q.J. and H.N.A. acknowledge the support from King Abdullah University of Science and Technology (KAUST).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0537-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0537-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2011 Saudi ArabiaPublisher:American Chemical Society (ACS) Chen, Wei; Baby, Rakhi Raghavan; Hu, Liangbing; Xie, Xing; Cui, Yi; Alshareef, Husam N.;A simple and scalable method has been developed to fabricate nanostructured MnO2-carbon nanotube (CNT)-sponge hybrid electrodes. A novel supercapacitor, henceforth referred to as "sponge supercapacitor", has been fabricated using these hybrid electrodes with remarkable performance. A specific capacitance of 1,230 F/g (based on the mass of MnO2) can be reached. Capacitors based on CNT-sponge substrates (without MnO2) can be operated even under a high scan rate of 200 V/s, and they exhibit outstanding cycle performance with only 2% degradation after 100,000 cycles under a scan rate of 10 V/s. The MnO2-CNT-sponge supercapacitors show only 4% of degradation after 10,000 cycles at a charge-discharge specific current of 5 A/g. The specific power and energy of the MnO2-CNT-sponge supercapacitors are high with values of 63 kW/kg and 31 Wh/kg, respectively. The attractive performances exhibited by these sponge supercapacitors make them potentially promising candidates for future energy storage systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/nl2023433&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 679 citations 679 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/nl2023433&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Saudi ArabiaPublisher:Royal Society of Chemistry (RSC) Emin Caglan Kumbur; Meng-Qiang Zhao; You-Yu Peng; You-Yu Peng; Yury Gogotsi; Narendra Kurra; Narendra Kurra; Babak Anasori; Husam N. Alshareef; Bilen Akuzum; Mohamed Alhabeb; Ming-Der Ger;doi: 10.1039/c6ee01717g
handle: 10754/619755
Novel, noble-metal-free, solid-state all-titanium carbide (Ti3C2Tx) MXene microsupercapacitors are fabricated, which exhibit high areal capacitance, excellent rate-capability, and are transferable to any surface.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ee01717g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 368 citations 368 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ee01717g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Saudi ArabiaPublisher:Elsevier BV Liang, Hanfeng; Xia, Chuan; Jiang, Qiu; Gandi, Appala; Schwingenschlögl, Udo; Alshareef, Husam N.;handle: 10754/623863
Abstract We report a versatile route for the preparation of metal phosphides using PH3 plasma for supercapacitor applications. The high reactivity of plasma allows rapid and low temperature conversion of hydroxides into monometallic, bimetallic, or even more complex nanostructured phosphides. These same phosphides are much more difficult to synthesize by conventional methods. Further, we present a general strategy for significantly enhancing the electrochemical performance of monometallic phosphides by substituting extrinsic metal atoms. Using NiCoP as a demonstration, we show that the Co substitution into Ni2P not only effectively alters the electronic structure and improves the intrinsic reactivity and electrical conductivity, but also stabilizes Ni species when used as supercapacitor electrode materials. As a result, the NiCoP nanosheet electrodes achieve high electrochemical activity and good stability in 1 M KOH electrolyte. More importantly, our assembled NiCoP nanoplates//graphene films asymmetric supercapacitor devices can deliver a high energy density of 32.9 Wh kg−1 at a power density of 1301 W kg−1, along with outstanding cycling performance (83% capacity retention after 5000 cycles at 20 A g−1). This activity outperforms most of the NiCo-based materials and renders the NiCoP nanoplates a promising candidate for capacitive storage devices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2017.04.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 331 citations 331 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nanoen.2017.04.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Saudi ArabiaPublisher:American Chemical Society (ACS) Kang Hyuck Lee; Yi-Zhou Zhang; Qiu Jiang; Hyunho Kim; Abdulkader A. Alkenawi; Husam N. Alshareef;Ultrasound is a source of ambient energy that is rarely exploited. In this work, a tissue-mimicking MXene-hydrogel (M-gel) implantable generator has been designed to convert ultrasound power into electric energy. Unlike the present harvesting methods for implantable ultrasound energy harvesters, our M-gel generator is based on an electroacoustic phenomenon known as the streaming vibration potential. Moreover, the output power of the M-gel generator can be improved by coupling with triboelectrification. We demonstrate the potential of this generator for powering implantable devices through quick charging of electric gadgets, buried beneath a centimeter thick piece of beef. The performance is attractive, especially given the extremely simple structure of the generator, consisting of nothing more than encapsulated M-gel. The generator can harvest energy from various ultrasound sources, from ultrasound tips in the lab to the probes used in hospitals and households for imaging and physiotherapy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.9b08462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 102 citations 102 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acsnano.9b08462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Saudi ArabiaPublisher:The Electrochemical Society Authors: Jiang, Qiu; Kurra, Narendra; Alshareef, Husam N.;handle: 10754/594184
On-Chip energy storage is currently on high demand as its potentiality for compatible integration with flexible and miniaturized functional electronic devices. Conventional microfabrication has been the widely employed technique in fabricating interdigitated microsupercapacitor devices in a reliable manner. However, developing unconventional lithography techniques can be attractive interms of simplicity with minimal sophistication while not compromising the performance. Here, we propose a simple and versatile strategy to fabricate on-chip microsupercapacitors (MSCs) employing hand-written sacrificial marker ink patterns, both in lift-off and etching modes. As a prototype, this technique is demonstrated for the fabrication of conducting polymer MSCs involving poly(3,4-ethylenedioxythiophene), polyaniline and metal oxide electrode materials. Typical values of energy density in the range of 5-11 mWh/cm3 at power densities of 1-6 W/cm3 are achieved, that are comparable to thin film batteries and superior to the carbon and metal oxide based microsupercapacitors reported in the literature. Fabrication of microsupercapacitor devices on curved surfaces and multi-stack designs are additional assets of this technique. This innovative strategy may be broadened for scalable fabrication of a wide variety of on-chip energy storage devices.
ECS Meeting Abstract... arrow_drop_down ECS Meeting AbstractsArticle . 2016 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: CrossrefAdvanced Functional MaterialsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/ma2016-01/1/18&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert ECS Meeting Abstract... arrow_drop_down ECS Meeting AbstractsArticle . 2016 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: CrossrefAdvanced Functional MaterialsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/ma2016-01/1/18&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Saudi ArabiaPublisher:Springer Science and Business Media LLC Authors: Baby, Rakhi Raghavan; Chen, Wei; Cha, Dong Kyu; Alshareef, Husam N.;handle: 10754/550838
Nanostructured and mesoporous cobalt oxide (Co3O4) nanowire in flower-like arrangements have been directly grown over flexible carbon cloth collectors using solvothermal synthesis for supercapacitor applications. Changes in the morphology and porosity of the nanowire assemblies have been induced by manipulating the calcination temperature (200–300 °C) of the one-dimensional (1-D) structures, resulting in significant impact on their surface area and pseudocapacitive properties. As the calcination temperature increases from 200 to 250 °C, the flower morphology gradually modifies to the point where the electrolyte could access almost all the nanowires over the entire sample volume, resulting in an increase in specific capacitance from 334 to 605 Fg−1, depending on the nanowire electrode morphology. The 300 °C calcination results in the breakdown of the mesoporous morphology and decreases the efficiency of electrolyte diffusion, resulting in a drop in pseudocapacitance after 300 °C. A peak energy density of 44 Wh kg−1 has been obtained at a power density of 20 kW kg−1 for the 250 °C calcined sample.
King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Materials for Renewable and Sustainable EnergyArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40243-013-0017-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert King Abdullah Univer... arrow_drop_down King Abdullah University of Science and Technology: KAUST RepositoryArticle . 2013License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Materials for Renewable and Sustainable EnergyArticle . 2013 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40243-013-0017-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Saudi ArabiaPublisher:Royal Society of Chemistry (RSC) Xie, Xing; Ye, Meng; Hu, Liangbing; Liu, Nian; McDonough, James R.; Chen, Wei; Alshareef, Husam N.; Criddle, Craig S.; Cui, Yi;doi: 10.1039/c1ee02122b
handle: 10754/561972
The materials that are used to make electrodes and their internal structures significantly affect microbial fuel cell (MFC) performance. In this study, we describe a carbon nanotube (CNT)–sponge composite prepared by coating a sponge with CNTs. Compared to the CNT-coated textile electrodes evaluated in prior studies, CNT–sponge electrodes had lower internal resistance, greater stability, more tunable and uniform macroporous structure (pores up to 1 mm in diameter), and improved mechanical properties. The CNT–sponge composite also provided a three-dimensional scaffold that was favorable for microbial colonization and catalytic decoration. Using a batch-fed H-shaped MFC outfitted with CNT–sponge electrodes, an areal power density of 1.24 W m−2 was achieved when treating domestic wastewater. The maximum volumetric power density of a continuously fed plate-shaped MFC was 182 W m−3. To our knowledge, these are the highest values obtained to date for MFCs fed domestic wastewater: 2.5 times the previously reported maximum areal power density and 12 times the previously reported maximum volumetric power density.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c1ee02122b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 272 citations 272 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c1ee02122b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Saudi ArabiaPublisher:Elsevier BV Sheikh, Arif D.; Bera, Ashok; Haque, Mohammed; Baby, Rakhi Raghavan; Del Gobbo, Silvano; Alshareef, Husam N.; Wu, Tao;handle: 10754/564176
Abstract Organometal trihalide perovskite solar cells have recently attracted lots of attention in the photovoltaic community due to their escalating efficiency and solution processability. The most efficient organometallic mixed-halide sensitized solar cells often employ 2,2′7,7′-tetrakis-( N , N -di- p -methoxyphenyl-amine)-9,9′-spirobifluorene (spiro-MeOTAD) as the hole-transporting material. In this work, we investigated the effect of different atmospheric storage conditions, particularly vacuum, dry nitrogen, and dry air, on the photovoltaic performance of TiO 2 –CH 3 NH 3 PbI 3− x Cl x –spiro-MeOTAD solar cells. We found that spin coating of spiro-MeOTAD in an oxygen atmosphere alone was not adequate to functionalize its hole-transport property completely, and our systematic experiments revealed that the device efficiency depends on the ambient atmospheric conditions during the drying process of spiro-MeOTAD. Complementary incident photon to current conversion efficiency (IPCE), light absorption and photoluminescence quenching measurements allowed us to attribute the atmosphere-dependent efficiency to the improved electronic characteristics of the solar cells. Furthermore, our Fourier transform infrared and electrical impedance measurements unambiguously detected modifications in the spiro-MeOTAD after the drying processes in different gas environments. Our findings demonstrate that proper oxidization and p-doping in functionalizing spiro-MeOTAD play a very critical role in determining device performance. These findings will facilitate the search for alternative hole-transporting materials in high-performance perovskite solar cells with long-term stability.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.01.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 119 citations 119 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2015.01.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 Saudi ArabiaPublisher:Wiley Fihri, Aziz; Sougrat, Rachid; Baby, Rakhi Raghavan; Rahal, Raed; Cha, Dong Kyu; Hedhili, Mohamed N.; Bouhrara, Mohamed; Alshareef, Husam N.; Polshettiwar, Vivek;AbstractNickel oxide and mixed‐metal oxide structures were fabricated by using microwave irradiation in pure water. The nickel oxide self‐assembled into unique rose‐shaped nanostructures. These nickel oxide roses were studied by performing electron tomography with virtual cross‐sections through the particles to understand their morphology from their interior to their surface. These materials exhibited promising performance as nanocatalysts for CO oxidation and in energy storage devices.
ChemSusChem arrow_drop_down ChemSusChemArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201100620&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert ChemSusChem arrow_drop_down ChemSusChemArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing Abdullah University of Science and Technology: KAUST RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201100620&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Saudi ArabiaPublisher:Springer Science and Business Media LLC Chuan Xia; Chuan Xia; Qiu Jiang; Eli Stavitski; Haotian Wang; Peng Zhu; Husam N. Alshareef; Ying Pan; Wentao Liang;handle: 10754/660879
This work was supported by Rice University. This research used the 8-ID (ISS) beamline of the National Synchrotron Light Source II and the Center for Functional Nanomaterials, US Department of Energy Office of Science User Facilities operated for the DOE Office of Science by Brookhaven National Laboratory under contract no. DE-SC0012704. Q.J. and H.N.A. acknowledge the support from King Abdullah University of Science and Technology (KAUST).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0537-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0537-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu