- home
- Advanced Search
Filters
Year range
-chevron_right GOCountry
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Thomas Roth; Franziska Wolny; René Köhler; Marco Kipping; Christian Koch; Eric Schneiderlöchner; Holger Neuhaus; Friedrich Lottspeich; Gerd Fischer; Matthias Müller; Stefan Steckemetz;AbstractIn this work, we present our progress in the industrial p-type PERC technology [1, 2]. Based on device simulations we continuously develop an efficiency roadmap for a steady improvement of our PERC (passivated emitter and rear cell) process. Following this simulation based approach, we effectively improve the front side metallization and the emitter characteristics. Currently, our best prototype process has reached a conversion efficiency well over 21% which enables the manufacturing of a 60-cell based module with a power of 310W. Our best cell so far has a conversion efficiency of 21.5% which has been confirmed by the calibration laboratory of Fraunhofer ISE. This is to our knowledge the highest efficiency reported for industrial-size silicon solar cells with screen-printed metal front and rear contacts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Institute of Electrical and Electronics Engineers (IEEE) Andreas Fell; Malcolm Abbott; Keith R. McIntosh; Johannes Greulich; Kean Chern Fong; Pietro P. Altermatt; Martin Hermle; Ingrid G. Romijn; Matthias Müller; Byungsul Min; Anita Ho-Baillie; Heiko Steinkemper; G.J.M. Janssen; Rolf Stangl;-
IEEE Journal of Phot... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)IEEE Journal of PhotovoltaicsArticle . 2015 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2015.2430016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 135 citations 135 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 8visibility views 8 Powered bymore_vert IEEE Journal of Phot... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)IEEE Journal of PhotovoltaicsArticle . 2015 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2015.2430016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Andreas Krause; Franziska Wolny; Matthias Müller; Holger Neuhaus;Abstract With efficiencies of industrial type PERC solar cells exceeding 22% and reduced electrical and optical losses in these high efficiency cells, it becomes more and more important for manufacturers to rely on high quality silicon wafers. In this contribution, we present data of the bulk excess carrier lifetime τ bulk and a doping density independent material quality parameter at maximum power point, the material saturation current density j 0,mat , of different p-type monocrystalline silicon materials. These values are obtained by measuring the effective carrier lifetime of neighbouring wafers of different thickness and thus eliminating the surface recombination contribution. We show that j 0,mat is an adequate parameter to evaluate the bulk quality of a given material. To further validate these findings, we compare the results to PERC cell efficiencies obtained with the same material.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Matthias Müller;AbstractPrecise quantitative assessment of c-Si wafer quality is of crucial importance for the development and manufacturing of high efficiency solar cells. For this purpose, lifetime samples are typically fabricated with very well cleaned and passivated surfaces. Under those conditions the measured effective lifetime τeff is almost equal to the silicon bulk wafer lifetime τwafer, i.e. a material related quality parameter. Those lifetime measurements are typically carried out with a photo-conductance decay method (PCM) e.g. with a Sinton-WCT tool. The measurement result is an effective excess carrier lifetime τeff which typically exhibits a strong dependence on the excess carrier injection density Δn within the wafer. Stating τeff –values thus necessitates to specifiy Δn. The PV community typically reports at a fixed Δn in the range of 1×1014 cm-3 to 1×1016 cm-3 or for varying wafer doping density Ndop at Δn = Ndop/10. The latter allows for a comparison from the point of view of the Shockley-Read-Hall (SRH) formalism. Unfortunately, the impact of a certain lifetime for device performance changes with Ndop, due to the law of mass action. In this paper a wafer doping density dependent Δn which is relevant for the injection density at maximum power point (MPP) is derived. This Δn@MPP shows a contrary behaviour compared to the often used and accepted reporting method to set Δn = Ndop/10. Additionally, a wafer doping density independent material quality parameter, called material saturation current density j0,mat at MPP, is proposed to improve the comparability of measured effective lifetimes of differently doped wafers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.07.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.07.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Aina Alapont Sabater; Andreas Fell; Andreas A. Brand; Matthias Muller; Johannes M. Greulich;Simulation is essential for a comprehensive analysis of the performance of solar cells. The rear contact pitch of passivated emitter and rear cells (PERC cells) is a crucial device parameter that influences not only the electrical performance but also the optical performance of these cells. This article investigates the applicability of the analytical light trapping model by Basore to account for the optical influence of the rear contact pitch as a simpler alternative to ray tracing. First, we manufacture three different groups of cells with different rear contact pitches, where the metallization fraction f met varies between 0 and 54%. Second, the reflectance of the cells is measured. Subsequently, we fit the model parameters R f and R b (internal reflection on the front and back surface, respectively) to the measured reflectance. While we confirm a nonlinear relation between f met and the measurable spectra found in previous works, our results reveal linear relations between f met and R b with the adjusted coefficients of determination of R adj² > 0.97, as well as between f met and the charge carrier generation rates with R adj² > 0.94. These relations allow a simple and rapid optical simulation of f met variation for PERC cells. The same approach is likely applicable to any local contacts also in other cell concepts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2021.3082402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2021.3082402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Byungsul Min; Matthias Muller; Bettina Wolpensinger; Gerd Fischer; Phedon Palinginis; Dirk Holger Neuhaus; Rolf Brendel;This article investigates the impact of the back-surface-field (BSF) thickness variation within a local aluminum contact on the performance of passivated emitter and rear contact solar cells. A significant difference of BSF thickness between contact endings and the center of dash-shaped contacts is verified experimentally by a comprehensive statistical analysis using scanning electron microscopy. The impact of local BSF thickness differences on the cell performance is studied with 3-D technology computer-aided design (TCAD) device simulations. Several device parameters such as BSF thicknesses, the doping concentration in the BSF profile at rear contacts, or the metallized area fraction at the cell rear side are varied. Our simulation study shows that the open-circuit voltage is mainly affected by locally reduced BSF thicknesses, resulting in an efficiency loss up to 0.14%abs or 0.84%abs, respectively, if an area fraction of 1% or 20% within a local contact has reduced BSF thicknesses. This effect can be minimized either by reducing the metallized area fraction at the cell rear side or by increasing the doping concentration in the BSF profile at aluminum rear contacts. In addition, we demonstrate that the 3-D simulations can be approximated with 2-D simulations by applying a single doping profile with an average BSF thickness, calculated with the harmonic mean.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2021.3068603&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2021.3068603&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Christian Kusterer; Franziska Wolny; Torsten Weber; Roman Schiepe; René Köhler; Kerstin Strauch; Günther Grupp-Mueller; Eric Schneiderlöchner; Gerd Fischer; Matthias Müller; Maria Mühlbauer; Holger Neuhaus; Alexander Oehlke; Karl Heinz Stegemann;AbstractIn this work we compare experimental results of an industrial passivated emitter and rear cell (PERC) high volume pilot line production in the SolarWorld Innovations technology center with a simulation model based on 2D Sentaurus Device Simulations The PERC solar cell design shows in a well-controlled experiment a 1.1% absolute higher median efficiency compared to the aluminium back surface field (Al-BSF) solar cell reference group. We derive a calibrated simulation model by the characterization of cells and test structures. We show that the simulation model reproduces well the measured I-V data. In consequence this enables us to estimate the solar cell performance when an applied process or silicon wafer parameters will be changed for further optimization. In the second part of this study we investigate the impact of front and rear side recombination on the solar cell parameters by simulation and sensitivity analysis. We show that the quality of the local BSF underneath the local rear contacts has an important impact on the electrical solar cell performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.07.306&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.07.306&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Matthias Muller; Bettina Wolpensinger; Byungsul Min; Gerd Fischer; Phedon Palinginis; Dirk Holger Neuhaus;Sufficiently deep local back-surface-fields (LBSF) are crucial for achieving low contact recombination and thus high solar cell efficiencies in passivated emitter and rear contact (PERC) solar cells. In this article, we investigate spatial variations of LBSF thickness 1) across dashed contacts, 2) between lateral positions within a cell, and 3) from cell to cell. The objective of this experimental study is to proof the impact of LBSF thickness on open-circuit voltage in PERC solar cells. Our measurements and analysis of variance (ANOVA) reveal that variations in LBSF thickness across dashed contacts exceed observed variations in LBSF thickness between lateral positions within a cell as well as cell-to-cell variations. Thus, we statistically treat all LBSF measurements of a single experimental group of PERC solar cells as one population of measurements. The two investigated experimental sets of PERC cells fired using different fast-firing profiles show a difference in LBSF thickness of about 1 μm. The resulting difference in open-circuit voltages arises to 1.3 mV. ANOVA-based analysis shows for our experimental samples that at least 19 random measurements are necessary in order to resolve LBSF thickness difference of 0.5 μm with sufficient statistical significance.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2020.3026978&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2020.3026978&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Roman Schiepe; Hendrik Sträter; Bernd Bitnar; D. Holger Neuhaus; René Köhler; Matthias Wagner; Alexander Oehlke; Eric Schneiderlöchner; Philipp Richter; Stefan Steckemetz; Franziska Wolny; Gerd Fischer; Matthias Müller; Maria Mühlbauer; Phedon Palinginis; Christian Kusterer;Abstract The efficiency record of industrial type PERC solar cells exceeded 22% at the turn of the year 2015 to 2016. Our best screen-printed PERC solar cell reached 22.04% efficiency while the best cell batch showed a very narrow efficiency distribution. A detailed electrical and optical loss analysis of those industrial type high efficiency PERC solar cells is carried out which enables further optimization and strategic improvements. A variety of characterization data allows for a recombination current density, resistance and optical loss analysis based on numerical device simulation, analytical calculations and raytracing, respectively. The main recombination losses at maximum power point (MPP) occur in the homogenous and selective diffused regions of the emitter. A series resistance loss analysis is analytically performed. The emitter contribution to the lumped series resistance dominates the series resistance losses. The optical loss analysis performed with raytracing shows main reflection and absorption losses in the rear metal layer which is partly due to the light trapping capability of the PERC cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 57 citations 57 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Wiley Alexander Fülle; Torsten Weber; Holger Neuhaus; Stefan Steckemetz; Robby Peibst; Ulrike Baumann; Phedon Palinginis; Gerd Fischer; Matthias Müller; Thorsten Dullweber; Christopher Kranz; Martin Kutzer; Helge Hannebauer;doi: 10.1002/pip.2712
AbstractPassivated emitter and rear cell (PERC) solar cells are currently being introduced into mass production. In this paper, we report a novel PERC solar cell design that applies a screen‐printed rear Al finger grid instead of the conventional full‐area aluminum (Al) rear layer while using the same PERC manufacturing sequence. We name this novel cell concept PERC+ because it offers several advantages. In particular, the Al paste consumption of the PERC+ cells is drastically reduced to 0.15 g instead of 1.6 g for the conventional PERC cells. The Al fingers create 2‐µm‐deeper aluminum back surface fields, which increases the open‐circuit voltage by 4 mV. The five‐busbar Al finger grid enables bifacial applications of the PERC+ cells with front‐side efficiencies up to 20.8% and rear‐side efficiencies up to 16.5% measured with a black chuck. The corresponding bifaciality is 79%. When applied in monofacial modules where the white back sheet acts as external rear reflector, the efficiency of the PERC+ cells is estimated to 20.9%, which is comparable with conventional PERC cells. Whereas Institute for Solar Energy Research Hamelin developed the aforementioned PERC+ results, SolarWorld independently pioneered a very similar bifacial PERC+ cell process starting in 2014. Transfer into mass production has been successfully accomplished, and novel glass–glass bifacial PERC+ modules have been launched at the Intersolar 2015 based on a most simple, lean, and cost‐effective bifacial cell process. These new bifacial PERC+ modules show an increase in annual energy yield between 5% and 25% in simulations, which is confirmed by first outdoor measurements. Copyright © 2015 John Wiley & Sons, Ltd.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 107 citations 107 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Thomas Roth; Franziska Wolny; René Köhler; Marco Kipping; Christian Koch; Eric Schneiderlöchner; Holger Neuhaus; Friedrich Lottspeich; Gerd Fischer; Matthias Müller; Stefan Steckemetz;AbstractIn this work, we present our progress in the industrial p-type PERC technology [1, 2]. Based on device simulations we continuously develop an efficiency roadmap for a steady improvement of our PERC (passivated emitter and rear cell) process. Following this simulation based approach, we effectively improve the front side metallization and the emitter characteristics. Currently, our best prototype process has reached a conversion efficiency well over 21% which enables the manufacturing of a 60-cell based module with a power of 310W. Our best cell so far has a conversion efficiency of 21.5% which has been confirmed by the calibration laboratory of Fraunhofer ISE. This is to our knowledge the highest efficiency reported for industrial-size silicon solar cells with screen-printed metal front and rear contacts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Institute of Electrical and Electronics Engineers (IEEE) Andreas Fell; Malcolm Abbott; Keith R. McIntosh; Johannes Greulich; Kean Chern Fong; Pietro P. Altermatt; Martin Hermle; Ingrid G. Romijn; Matthias Müller; Byungsul Min; Anita Ho-Baillie; Heiko Steinkemper; G.J.M. Janssen; Rolf Stangl;-
IEEE Journal of Phot... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)IEEE Journal of PhotovoltaicsArticle . 2015 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2015.2430016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 135 citations 135 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 8visibility views 8 Powered bymore_vert IEEE Journal of Phot... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)IEEE Journal of PhotovoltaicsArticle . 2015 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2015.2430016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Andreas Krause; Franziska Wolny; Matthias Müller; Holger Neuhaus;Abstract With efficiencies of industrial type PERC solar cells exceeding 22% and reduced electrical and optical losses in these high efficiency cells, it becomes more and more important for manufacturers to rely on high quality silicon wafers. In this contribution, we present data of the bulk excess carrier lifetime τ bulk and a doping density independent material quality parameter at maximum power point, the material saturation current density j 0,mat , of different p-type monocrystalline silicon materials. These values are obtained by measuring the effective carrier lifetime of neighbouring wafers of different thickness and thus eliminating the surface recombination contribution. We show that j 0,mat is an adequate parameter to evaluate the bulk quality of a given material. To further validate these findings, we compare the results to PERC cell efficiencies obtained with the same material.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Matthias Müller;AbstractPrecise quantitative assessment of c-Si wafer quality is of crucial importance for the development and manufacturing of high efficiency solar cells. For this purpose, lifetime samples are typically fabricated with very well cleaned and passivated surfaces. Under those conditions the measured effective lifetime τeff is almost equal to the silicon bulk wafer lifetime τwafer, i.e. a material related quality parameter. Those lifetime measurements are typically carried out with a photo-conductance decay method (PCM) e.g. with a Sinton-WCT tool. The measurement result is an effective excess carrier lifetime τeff which typically exhibits a strong dependence on the excess carrier injection density Δn within the wafer. Stating τeff –values thus necessitates to specifiy Δn. The PV community typically reports at a fixed Δn in the range of 1×1014 cm-3 to 1×1016 cm-3 or for varying wafer doping density Ndop at Δn = Ndop/10. The latter allows for a comparison from the point of view of the Shockley-Read-Hall (SRH) formalism. Unfortunately, the impact of a certain lifetime for device performance changes with Ndop, due to the law of mass action. In this paper a wafer doping density dependent Δn which is relevant for the injection density at maximum power point (MPP) is derived. This Δn@MPP shows a contrary behaviour compared to the often used and accepted reporting method to set Δn = Ndop/10. Additionally, a wafer doping density independent material quality parameter, called material saturation current density j0,mat at MPP, is proposed to improve the comparability of measured effective lifetimes of differently doped wafers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.07.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2016.07.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Aina Alapont Sabater; Andreas Fell; Andreas A. Brand; Matthias Muller; Johannes M. Greulich;Simulation is essential for a comprehensive analysis of the performance of solar cells. The rear contact pitch of passivated emitter and rear cells (PERC cells) is a crucial device parameter that influences not only the electrical performance but also the optical performance of these cells. This article investigates the applicability of the analytical light trapping model by Basore to account for the optical influence of the rear contact pitch as a simpler alternative to ray tracing. First, we manufacture three different groups of cells with different rear contact pitches, where the metallization fraction f met varies between 0 and 54%. Second, the reflectance of the cells is measured. Subsequently, we fit the model parameters R f and R b (internal reflection on the front and back surface, respectively) to the measured reflectance. While we confirm a nonlinear relation between f met and the measurable spectra found in previous works, our results reveal linear relations between f met and R b with the adjusted coefficients of determination of R adj² > 0.97, as well as between f met and the charge carrier generation rates with R adj² > 0.94. These relations allow a simple and rapid optical simulation of f met variation for PERC cells. The same approach is likely applicable to any local contacts also in other cell concepts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2021.3082402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2021.3082402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Byungsul Min; Matthias Muller; Bettina Wolpensinger; Gerd Fischer; Phedon Palinginis; Dirk Holger Neuhaus; Rolf Brendel;This article investigates the impact of the back-surface-field (BSF) thickness variation within a local aluminum contact on the performance of passivated emitter and rear contact solar cells. A significant difference of BSF thickness between contact endings and the center of dash-shaped contacts is verified experimentally by a comprehensive statistical analysis using scanning electron microscopy. The impact of local BSF thickness differences on the cell performance is studied with 3-D technology computer-aided design (TCAD) device simulations. Several device parameters such as BSF thicknesses, the doping concentration in the BSF profile at rear contacts, or the metallized area fraction at the cell rear side are varied. Our simulation study shows that the open-circuit voltage is mainly affected by locally reduced BSF thicknesses, resulting in an efficiency loss up to 0.14%abs or 0.84%abs, respectively, if an area fraction of 1% or 20% within a local contact has reduced BSF thicknesses. This effect can be minimized either by reducing the metallized area fraction at the cell rear side or by increasing the doping concentration in the BSF profile at aluminum rear contacts. In addition, we demonstrate that the 3-D simulations can be approximated with 2-D simulations by applying a single doping profile with an average BSF thickness, calculated with the harmonic mean.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2021.3068603&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2021.3068603&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Christian Kusterer; Franziska Wolny; Torsten Weber; Roman Schiepe; René Köhler; Kerstin Strauch; Günther Grupp-Mueller; Eric Schneiderlöchner; Gerd Fischer; Matthias Müller; Maria Mühlbauer; Holger Neuhaus; Alexander Oehlke; Karl Heinz Stegemann;AbstractIn this work we compare experimental results of an industrial passivated emitter and rear cell (PERC) high volume pilot line production in the SolarWorld Innovations technology center with a simulation model based on 2D Sentaurus Device Simulations The PERC solar cell design shows in a well-controlled experiment a 1.1% absolute higher median efficiency compared to the aluminium back surface field (Al-BSF) solar cell reference group. We derive a calibrated simulation model by the characterization of cells and test structures. We show that the simulation model reproduces well the measured I-V data. In consequence this enables us to estimate the solar cell performance when an applied process or silicon wafer parameters will be changed for further optimization. In the second part of this study we investigate the impact of front and rear side recombination on the solar cell parameters by simulation and sensitivity analysis. We show that the quality of the local BSF underneath the local rear contacts has an important impact on the electrical solar cell performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.07.306&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.07.306&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Matthias Muller; Bettina Wolpensinger; Byungsul Min; Gerd Fischer; Phedon Palinginis; Dirk Holger Neuhaus;Sufficiently deep local back-surface-fields (LBSF) are crucial for achieving low contact recombination and thus high solar cell efficiencies in passivated emitter and rear contact (PERC) solar cells. In this article, we investigate spatial variations of LBSF thickness 1) across dashed contacts, 2) between lateral positions within a cell, and 3) from cell to cell. The objective of this experimental study is to proof the impact of LBSF thickness on open-circuit voltage in PERC solar cells. Our measurements and analysis of variance (ANOVA) reveal that variations in LBSF thickness across dashed contacts exceed observed variations in LBSF thickness between lateral positions within a cell as well as cell-to-cell variations. Thus, we statistically treat all LBSF measurements of a single experimental group of PERC solar cells as one population of measurements. The two investigated experimental sets of PERC cells fired using different fast-firing profiles show a difference in LBSF thickness of about 1 μm. The resulting difference in open-circuit voltages arises to 1.3 mV. ANOVA-based analysis shows for our experimental samples that at least 19 random measurements are necessary in order to resolve LBSF thickness difference of 0.5 μm with sufficient statistical significance.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2020.3026978&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2020.3026978&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Roman Schiepe; Hendrik Sträter; Bernd Bitnar; D. Holger Neuhaus; René Köhler; Matthias Wagner; Alexander Oehlke; Eric Schneiderlöchner; Philipp Richter; Stefan Steckemetz; Franziska Wolny; Gerd Fischer; Matthias Müller; Maria Mühlbauer; Phedon Palinginis; Christian Kusterer;Abstract The efficiency record of industrial type PERC solar cells exceeded 22% at the turn of the year 2015 to 2016. Our best screen-printed PERC solar cell reached 22.04% efficiency while the best cell batch showed a very narrow efficiency distribution. A detailed electrical and optical loss analysis of those industrial type high efficiency PERC solar cells is carried out which enables further optimization and strategic improvements. A variety of characterization data allows for a recombination current density, resistance and optical loss analysis based on numerical device simulation, analytical calculations and raytracing, respectively. The main recombination losses at maximum power point (MPP) occur in the homogenous and selective diffused regions of the emitter. A series resistance loss analysis is analytically performed. The emitter contribution to the lumped series resistance dominates the series resistance losses. The optical loss analysis performed with raytracing shows main reflection and absorption losses in the rear metal layer which is partly due to the light trapping capability of the PERC cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 57 citations 57 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Wiley Alexander Fülle; Torsten Weber; Holger Neuhaus; Stefan Steckemetz; Robby Peibst; Ulrike Baumann; Phedon Palinginis; Gerd Fischer; Matthias Müller; Thorsten Dullweber; Christopher Kranz; Martin Kutzer; Helge Hannebauer;doi: 10.1002/pip.2712
AbstractPassivated emitter and rear cell (PERC) solar cells are currently being introduced into mass production. In this paper, we report a novel PERC solar cell design that applies a screen‐printed rear Al finger grid instead of the conventional full‐area aluminum (Al) rear layer while using the same PERC manufacturing sequence. We name this novel cell concept PERC+ because it offers several advantages. In particular, the Al paste consumption of the PERC+ cells is drastically reduced to 0.15 g instead of 1.6 g for the conventional PERC cells. The Al fingers create 2‐µm‐deeper aluminum back surface fields, which increases the open‐circuit voltage by 4 mV. The five‐busbar Al finger grid enables bifacial applications of the PERC+ cells with front‐side efficiencies up to 20.8% and rear‐side efficiencies up to 16.5% measured with a black chuck. The corresponding bifaciality is 79%. When applied in monofacial modules where the white back sheet acts as external rear reflector, the efficiency of the PERC+ cells is estimated to 20.9%, which is comparable with conventional PERC cells. Whereas Institute for Solar Energy Research Hamelin developed the aforementioned PERC+ results, SolarWorld independently pioneered a very similar bifacial PERC+ cell process starting in 2014. Transfer into mass production has been successfully accomplished, and novel glass–glass bifacial PERC+ modules have been launched at the Intersolar 2015 based on a most simple, lean, and cost‐effective bifacial cell process. These new bifacial PERC+ modules show an increase in annual energy yield between 5% and 25% in simulations, which is confirmed by first outdoor measurements. Copyright © 2015 John Wiley & Sons, Ltd.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 107 citations 107 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu