- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Atul Kulshrestha; Om Prakash Mahela; Mukesh Kumar Gupta; Neeraj Gupta; Nilesh Patel; Tomonobu Senjyu; Mir Sayed Shah Danish; Mahdi Khosravy;doi: 10.3390/en13143519
Penetration level of solar photovoltaic (PV) energy in the utility network is steadily increasing. This changes the fault level and causes protection problems. Furthermore, multi-tapped structure of distribution network deployed to integrate solar PV energy to the grid and supplying loads at the same time also raised the protection challenges. Hence, this manuscript is aimed at introducing an algorithm to identify and classify the faults incident on the network of utilities where penetration level of the solar PV energy is high. This fault recognition algorithm is implemented in four steps: (1) calculation of Stockwell transform-based fault index (STFI) (2) calculation of Wigner distribution function-based fault index (WDFI) (3) calculation of combined fault index (CFI) by multiplying STFI and WDFI (4) calculation of index for ground fault (IGF) used to recognize the involvement of ground in a fault event. The STFI has the merits that its performance is least affected by the noise associated with the current signals and it is effective in identification of the waveform distortions. The WDFI employs energy density of the current signals for estimation of the faults and takes care of the current magnitude. Hence, CFI has the merit that it considers the current magnitude as well as waveform distortion for recognition of the faults. The classification of faults is achieved using the number of faulty phases. An index for ground fault (IGF) based on currents of zero sequence is proposed to classify the two phase faults with and without the ground engagement. Investigated faults include phase to ground, two phases fault without involving ground, two phases fault involving ground and three phase fault. Fault recognition algorithm is tested for fault recognition with the presence of noise, various angles of fault incidence, different impedances involved during faulty event, hybrid lines consisting of overhead line (OHL) and underground cable (UGC) sections, and location of faults on all nodes of the test grid. Fault recognition algorithm is also tested to discriminate the transients due to switching operations of feeders, loads and capacitor banks from the faulty transients. Performance of the fault recognition algorithm is compared with the algorithms based on discrete wavelet transform (DWT), Stockwell transform (ST) and hybrid combination of alienation coefficient and Wigner distribution function (WDF). Effectiveness of the fault recognition algorithm is established using a detailed study on the IEEE-13 nodes test feeder modified to incorporate solar PV plant of capacity 1 MW in MATLAB/Simulink. Algorithm is also validated on practical utility grid of Rajasthan State of India.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/14/3519/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13143519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/14/3519/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13143519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Mahdi Khosravy; Neeraj Gupta; Ishwar K. Sethi; Ninoslav Marina; Kumar Saurav;In the context of efficient generation expansion planning (GEP) and transmission expansion planning (TEP), value assessment method (VAM) is the critical topic to discuss. Presently, two well-known VAMs, min-cut max-flow (MCMF) and load curtailment strategy (LCS), are used for GEP and TEP. MCMF does not follow electrical laws and is unable to calculate congestion cost (CC) and re-dispatch cost (RDC). LCS calculates both, but in iterative way, thus takes a long time to provide solution. In the constrained network, multiple quantities like demand/energy not served (D/ENS) and generation not served (GNS), wheeling loss (WL), CC and RDC are existing together and thus have to be calculated together to encounter the loss in all aspects. Existing methods show limitations in this regard and do not calculate all above described quantities simultaneously. Thus, in this paper, a non-iterative VAM (NVAM) is presented based on electrical laws, which calculates value of the present and the planned systems by incorporating all system quantities of D/ENS, GNS, WL, CC and RDC together. Due to non-iterative batch approach, it is quite faster compared to the above-mentioned traditional VAMs, i.e., MCMF and LCS. Furthermore, comparative results on IEEE-5 bus and IEEE-24 bus power systems show its higher efficiency. The MATLAB code of the introduced NVAM is provided in “Appendix” for further development by the researchers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00202-017-0590-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00202-017-0590-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Seyed Hasan Mirbarati; Najme Heidari; Amirhossein Nikoofard; Mir Sayed Shah Danish; +1 AuthorsSeyed Hasan Mirbarati; Najme Heidari; Amirhossein Nikoofard; Mir Sayed Shah Danish; Mahdi Khosravy;doi: 10.3390/su142215036
In recent years, owing to the effect of fossil fuels on global warming, the exhaustion of oil fields, and the lucrative impacts of renewable energy resources (RESs), the penetration of RESs has been increasing significantly in power systems. An effective way to benefit from all RESs advantages is by applying them in microgrid systems (MGS). Furthermore, MGS can ease the way for utilizing a large amount of RESs, if its economic-environmental-technical aspects of it are taken into account. In this regard, this paper proposes an optimal solution for the energy management of a microgrid by considering a comprehensive study. In the proposed methodology, different distributed energy resources such as wind turbines generator (WTG), energy storage (ES), combined heat and power (CHP), rubbish burning agent (RBA), and diesel generators (DG) are modeled. In addition, electric vehicles (EVs) are considered a load with uncertainty. The objective function of the proposed method is to minimize the microgrid’s total cost by considering the microgrid’s emission cost and technical constraints. In this study, the microgrid’s technical, environmental, and economic aspects are investigated. In addition, the optimization problem is converted into a mixed-integer linear programming method by using the proper linearization method. In this paper, the increasing effect of wind energy penetration rate on the total price also has been studied. The simulation results show that by increasing the wind energy penetration rate by up to 30% of total power, the total cost will decrease by up to 30.9%.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142215036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142215036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Saadat Safiri; Amirhossein Nikoofard; Mahdi Khosravy; Tomonobu Senjyu;IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2022.3217905&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2022.3217905&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Danish, Mir Sayed Shah; Senjyu, Tomonobu; Sabory, Najib Rahman; Khosravy, Mahdi; +3 AuthorsDanish, Mir Sayed Shah; Senjyu, Tomonobu; Sabory, Najib Rahman; Khosravy, Mahdi; Grilli, Maria Luisa; Mikhaylov, Alexey; Majidi, Hemayatullah;doi: 10.3390/su13169313
Aquaponics systems and technologies are growing primary industries in many countries, with high environmental and socio-economic advantages. Aquaponics is a closed-loop system that produces aquatic animals and plants in a new way using recirculated water and nutrients. With a growing world population expected to reach 9.7 billion by 2050, food production sustainability is a primary issue in today’s world agenda, and aquaponics and aquaculture systems can be potential contributors to the challenge. Observing the climate changes and global warming’s impact on the ecosystem, decreasing aqua animal stocks, and responding to increasing demand are turning points in the sustainability era. In the past 15 years, fish production has doubled, thus denoting that aquaponics transforms into commercial scales with a revolutionized production, high efficiency, and fewer resources’ utilization, thus requiring proper operation and management standards and practices. Therefore, this study aims to shape a new framework for sustainable aquaponics modeling and utilization as the all-in-one solution platform covering technical, managerial, socio-economic, institutional, and environmental measures within the suitability requirements. The proposed model in this study offers a systematic approach to the design and implementation of sustainability-efficient aquaponics and aquaculture systems. Through an exhaustive coverage of the topic, this research effort can be counted as a practical reference for researchers, scholars, experts, practitioners, and students in the context of aquaponics and aquaculture studies.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/16/9313/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/16/9313/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Mulusew Ayalew; Baseem Khan; Issaias Giday; Om Prakash Mahela; Mahdi Khosravy; Neeraj Gupta; Tomonobu Senjyu;doi: 10.3390/en15041378
Electrical energy is critical to a country’s socioeconomic progress. Distribution system expansion planning addresses the services that must be installed for the distribution networks to meet the expected load need, while also meeting different operational and technical limitations. The incorporation of distributed generation sources (DGs) alters the operating characteristics of modern power systems, resulting in major economic and technical benefits, such as simplified distribution network expansion planning, lower power losses, and improved voltage profile. Thus, in this study, an analytical method is used to design the expansion planning of the Addis North distribution network considering the integration of optimal sizes of distributed generations for the projected demand growths. To evaluate the capability of the existing Addis North distribution network and its capability to supply reliable power considering future expansion, the load demand forecast for the years 2020–2030 is done using the least square method. The performance evaluation of the existing and the upgraded network considering the existing and forecasted load demand for the years 2030 is done using ETAP software. Accordingly, the results revealed that the existing networks cannot meet the existing load demand of the town, with major problems of increased power loss and a reduced voltage profile. To mitigate this problem, the Addis North feeder-1 distribution network is upgraded and for each study case, the balanced and positive sequence load flow analysis was executed and the maximum total real and reactive power losses were found at bus 29. The result shows that the upgraded network of bus 29 was the optimal location of DG and its size was 9.93 MW. After the optimal size of DG was placed at this bus, the real and reactive power losses of the upgraded networks were 0.2939 MW and 0.219 MVAr, respectively. At bus 29 the maximum power losses reduction and voltage profile improvements were found. The active and reactive power losses were minimized by 21.285% and 19.633% respectively and the voltage profiles were improved by 8.78%. Thus, in the predicted year 2030, DG power sources could cover 61.12% of the feeder-1 power requirements.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1378/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041378&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1378/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041378&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Majid Dehghani; Mohammad Taghipour; Saleh Sadeghi Gougheri; Amirhossein Nikoofard; +2 AuthorsMajid Dehghani; Mohammad Taghipour; Saleh Sadeghi Gougheri; Amirhossein Nikoofard; Gevork B. Gharehpetian; Mahdi Khosravy;doi: 10.3390/en14238035
In Generation Expansion Planning (GEP), the power plants lifetime is one of the most important factors which to the best knowledge of the authors, has not been investigated in the literature. In this article, the power plants lifetime effect on GEP is investigated. In addition, the deep learning-based approaches are widely used for time series forecasting. Therefore, a new version of Long short-term memory (LSTM) networks known as Bi-directional LSTM (BLSTM) networks are used in this paper to forecast annual peak load of the power system. For carbon emissions, the cost of carbon is considered as the penalty of pollution in the objective function. The proposed approach is evaluated by a test network and then applied to Iran power system as a large-scale grid. The simulations by GAMS (General Algebraic Modeling System, Washington, DC, USA) software show that due to consideration of lifetime as a constraint, the total cost of the GEP problem decreases by 5.28% and 7.9% for the test system and Iran power system, respectively.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/23/8035/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14238035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/23/8035/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14238035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Tomonobu Senjyu; Mahdi Khosravy;doi: 10.3390/en15144995
The optimum planning of the electrical power expansion and, accordingly, controlling the power quality are recent critical issues in power management [...]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15144995&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15144995&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Seyed Jalalzad Mahvizani; Hossein Yektamoghadam; Rouzbeh Haghighi; Majid Dehghani; +3 AuthorsSeyed Jalalzad Mahvizani; Hossein Yektamoghadam; Rouzbeh Haghighi; Majid Dehghani; Amirhossein Nikoofard; Mahdi Khosravy; Tomonobu Senjyu;doi: 10.3390/en15031172
In the present climate, due to the cost of investments, pollutants of fossil fuel, and global warming, it seems rational to accept numerous potential benefits of optimal generation expansion planning. Generation expansion planning by regarding these goals and providing the best plan for the future of the power plants reinforces the idea that plants are capable of generating electricity in environmentally friendly circumstances, particularly by reducing greenhouse gas production. This paper has applied a teaching–learning-based optimization algorithm to provide an optimal strategy for power plants and the proposed algorithm has been compared with other optimization methods. Then the game theory approach is implemented to make a competitive situation among power plants. A combined algorithm has been developed to reach the Nash equilibrium point. Moreover, the government role has been considered in order to reduce carbon emission and achieve the green earth policies. Three scenarios have been regarded to evaluate the efficiency of the proposed method. Finally, sensitivity analysis has been applied, and then the simulation results have been discussed.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/3/1172/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15031172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/3/1172/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15031172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Mohammad Faghiri; Shadi Samizadeh; Amirhossein Nikoofard; Mahdi Khosravy; Tomonobu Senjyu;doi: 10.3390/app12073262
Increasing the load demand and penetration of renewable energy sources (RESs) poses real challenges for optimal energy management of distribution networks. Moreover, considering multi-carrier energy systems has increased the efficiency of systems, and provides an opportunity for using the advantages of RESs. In this regard, we adopted a new framework based on the new challenges in the multi-carrier energy micro-grid (MEMG). In the proposed method, a comprehensive MEMG was modeled that benefits from a large assortment of distributed energy resources (DERs), such as micro-turbines, fuel cells, wind turbines, and energy storage. Considering many DERs is necessary, because these resources could cover one another’s disadvantages, which have a great impact on the total cost of the MEMG and decrease the emission impacts of fossil-fuel-based units. Furthermore, waste power plants, inverters, rectifiers, and emission constraints are considered in the proposed method for modeling a practical MEMG. Additionally, for modeling the uncertainty of stochastic parameters, a model based on a multilayer neural network was used in this paper. The results of this study indicate that using a decentralized model, along with stochastic methods for predicting uncertainty, can reduce operational costs in micro-grids and computational complexity compared with optimal centralized programming methods. Finally, the equations and results obtained from the proposed method were evaluated by experiments.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3417/12/7/3262/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12073262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3417/12/7/3262/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12073262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Atul Kulshrestha; Om Prakash Mahela; Mukesh Kumar Gupta; Neeraj Gupta; Nilesh Patel; Tomonobu Senjyu; Mir Sayed Shah Danish; Mahdi Khosravy;doi: 10.3390/en13143519
Penetration level of solar photovoltaic (PV) energy in the utility network is steadily increasing. This changes the fault level and causes protection problems. Furthermore, multi-tapped structure of distribution network deployed to integrate solar PV energy to the grid and supplying loads at the same time also raised the protection challenges. Hence, this manuscript is aimed at introducing an algorithm to identify and classify the faults incident on the network of utilities where penetration level of the solar PV energy is high. This fault recognition algorithm is implemented in four steps: (1) calculation of Stockwell transform-based fault index (STFI) (2) calculation of Wigner distribution function-based fault index (WDFI) (3) calculation of combined fault index (CFI) by multiplying STFI and WDFI (4) calculation of index for ground fault (IGF) used to recognize the involvement of ground in a fault event. The STFI has the merits that its performance is least affected by the noise associated with the current signals and it is effective in identification of the waveform distortions. The WDFI employs energy density of the current signals for estimation of the faults and takes care of the current magnitude. Hence, CFI has the merit that it considers the current magnitude as well as waveform distortion for recognition of the faults. The classification of faults is achieved using the number of faulty phases. An index for ground fault (IGF) based on currents of zero sequence is proposed to classify the two phase faults with and without the ground engagement. Investigated faults include phase to ground, two phases fault without involving ground, two phases fault involving ground and three phase fault. Fault recognition algorithm is tested for fault recognition with the presence of noise, various angles of fault incidence, different impedances involved during faulty event, hybrid lines consisting of overhead line (OHL) and underground cable (UGC) sections, and location of faults on all nodes of the test grid. Fault recognition algorithm is also tested to discriminate the transients due to switching operations of feeders, loads and capacitor banks from the faulty transients. Performance of the fault recognition algorithm is compared with the algorithms based on discrete wavelet transform (DWT), Stockwell transform (ST) and hybrid combination of alienation coefficient and Wigner distribution function (WDF). Effectiveness of the fault recognition algorithm is established using a detailed study on the IEEE-13 nodes test feeder modified to incorporate solar PV plant of capacity 1 MW in MATLAB/Simulink. Algorithm is also validated on practical utility grid of Rajasthan State of India.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/14/3519/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13143519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/14/3519/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13143519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Mahdi Khosravy; Neeraj Gupta; Ishwar K. Sethi; Ninoslav Marina; Kumar Saurav;In the context of efficient generation expansion planning (GEP) and transmission expansion planning (TEP), value assessment method (VAM) is the critical topic to discuss. Presently, two well-known VAMs, min-cut max-flow (MCMF) and load curtailment strategy (LCS), are used for GEP and TEP. MCMF does not follow electrical laws and is unable to calculate congestion cost (CC) and re-dispatch cost (RDC). LCS calculates both, but in iterative way, thus takes a long time to provide solution. In the constrained network, multiple quantities like demand/energy not served (D/ENS) and generation not served (GNS), wheeling loss (WL), CC and RDC are existing together and thus have to be calculated together to encounter the loss in all aspects. Existing methods show limitations in this regard and do not calculate all above described quantities simultaneously. Thus, in this paper, a non-iterative VAM (NVAM) is presented based on electrical laws, which calculates value of the present and the planned systems by incorporating all system quantities of D/ENS, GNS, WL, CC and RDC together. Due to non-iterative batch approach, it is quite faster compared to the above-mentioned traditional VAMs, i.e., MCMF and LCS. Furthermore, comparative results on IEEE-5 bus and IEEE-24 bus power systems show its higher efficiency. The MATLAB code of the introduced NVAM is provided in “Appendix” for further development by the researchers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00202-017-0590-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00202-017-0590-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Seyed Hasan Mirbarati; Najme Heidari; Amirhossein Nikoofard; Mir Sayed Shah Danish; +1 AuthorsSeyed Hasan Mirbarati; Najme Heidari; Amirhossein Nikoofard; Mir Sayed Shah Danish; Mahdi Khosravy;doi: 10.3390/su142215036
In recent years, owing to the effect of fossil fuels on global warming, the exhaustion of oil fields, and the lucrative impacts of renewable energy resources (RESs), the penetration of RESs has been increasing significantly in power systems. An effective way to benefit from all RESs advantages is by applying them in microgrid systems (MGS). Furthermore, MGS can ease the way for utilizing a large amount of RESs, if its economic-environmental-technical aspects of it are taken into account. In this regard, this paper proposes an optimal solution for the energy management of a microgrid by considering a comprehensive study. In the proposed methodology, different distributed energy resources such as wind turbines generator (WTG), energy storage (ES), combined heat and power (CHP), rubbish burning agent (RBA), and diesel generators (DG) are modeled. In addition, electric vehicles (EVs) are considered a load with uncertainty. The objective function of the proposed method is to minimize the microgrid’s total cost by considering the microgrid’s emission cost and technical constraints. In this study, the microgrid’s technical, environmental, and economic aspects are investigated. In addition, the optimization problem is converted into a mixed-integer linear programming method by using the proper linearization method. In this paper, the increasing effect of wind energy penetration rate on the total price also has been studied. The simulation results show that by increasing the wind energy penetration rate by up to 30% of total power, the total cost will decrease by up to 30.9%.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142215036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142215036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Saadat Safiri; Amirhossein Nikoofard; Mahdi Khosravy; Tomonobu Senjyu;IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2022.3217905&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2022.3217905&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Danish, Mir Sayed Shah; Senjyu, Tomonobu; Sabory, Najib Rahman; Khosravy, Mahdi; +3 AuthorsDanish, Mir Sayed Shah; Senjyu, Tomonobu; Sabory, Najib Rahman; Khosravy, Mahdi; Grilli, Maria Luisa; Mikhaylov, Alexey; Majidi, Hemayatullah;doi: 10.3390/su13169313
Aquaponics systems and technologies are growing primary industries in many countries, with high environmental and socio-economic advantages. Aquaponics is a closed-loop system that produces aquatic animals and plants in a new way using recirculated water and nutrients. With a growing world population expected to reach 9.7 billion by 2050, food production sustainability is a primary issue in today’s world agenda, and aquaponics and aquaculture systems can be potential contributors to the challenge. Observing the climate changes and global warming’s impact on the ecosystem, decreasing aqua animal stocks, and responding to increasing demand are turning points in the sustainability era. In the past 15 years, fish production has doubled, thus denoting that aquaponics transforms into commercial scales with a revolutionized production, high efficiency, and fewer resources’ utilization, thus requiring proper operation and management standards and practices. Therefore, this study aims to shape a new framework for sustainable aquaponics modeling and utilization as the all-in-one solution platform covering technical, managerial, socio-economic, institutional, and environmental measures within the suitability requirements. The proposed model in this study offers a systematic approach to the design and implementation of sustainability-efficient aquaponics and aquaculture systems. Through an exhaustive coverage of the topic, this research effort can be counted as a practical reference for researchers, scholars, experts, practitioners, and students in the context of aquaponics and aquaculture studies.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/16/9313/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2071-1050/13/16/9313/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13169313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Mulusew Ayalew; Baseem Khan; Issaias Giday; Om Prakash Mahela; Mahdi Khosravy; Neeraj Gupta; Tomonobu Senjyu;doi: 10.3390/en15041378
Electrical energy is critical to a country’s socioeconomic progress. Distribution system expansion planning addresses the services that must be installed for the distribution networks to meet the expected load need, while also meeting different operational and technical limitations. The incorporation of distributed generation sources (DGs) alters the operating characteristics of modern power systems, resulting in major economic and technical benefits, such as simplified distribution network expansion planning, lower power losses, and improved voltage profile. Thus, in this study, an analytical method is used to design the expansion planning of the Addis North distribution network considering the integration of optimal sizes of distributed generations for the projected demand growths. To evaluate the capability of the existing Addis North distribution network and its capability to supply reliable power considering future expansion, the load demand forecast for the years 2020–2030 is done using the least square method. The performance evaluation of the existing and the upgraded network considering the existing and forecasted load demand for the years 2030 is done using ETAP software. Accordingly, the results revealed that the existing networks cannot meet the existing load demand of the town, with major problems of increased power loss and a reduced voltage profile. To mitigate this problem, the Addis North feeder-1 distribution network is upgraded and for each study case, the balanced and positive sequence load flow analysis was executed and the maximum total real and reactive power losses were found at bus 29. The result shows that the upgraded network of bus 29 was the optimal location of DG and its size was 9.93 MW. After the optimal size of DG was placed at this bus, the real and reactive power losses of the upgraded networks were 0.2939 MW and 0.219 MVAr, respectively. At bus 29 the maximum power losses reduction and voltage profile improvements were found. The active and reactive power losses were minimized by 21.285% and 19.633% respectively and the voltage profiles were improved by 8.78%. Thus, in the predicted year 2030, DG power sources could cover 61.12% of the feeder-1 power requirements.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1378/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041378&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1378/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041378&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Majid Dehghani; Mohammad Taghipour; Saleh Sadeghi Gougheri; Amirhossein Nikoofard; +2 AuthorsMajid Dehghani; Mohammad Taghipour; Saleh Sadeghi Gougheri; Amirhossein Nikoofard; Gevork B. Gharehpetian; Mahdi Khosravy;doi: 10.3390/en14238035
In Generation Expansion Planning (GEP), the power plants lifetime is one of the most important factors which to the best knowledge of the authors, has not been investigated in the literature. In this article, the power plants lifetime effect on GEP is investigated. In addition, the deep learning-based approaches are widely used for time series forecasting. Therefore, a new version of Long short-term memory (LSTM) networks known as Bi-directional LSTM (BLSTM) networks are used in this paper to forecast annual peak load of the power system. For carbon emissions, the cost of carbon is considered as the penalty of pollution in the objective function. The proposed approach is evaluated by a test network and then applied to Iran power system as a large-scale grid. The simulations by GAMS (General Algebraic Modeling System, Washington, DC, USA) software show that due to consideration of lifetime as a constraint, the total cost of the GEP problem decreases by 5.28% and 7.9% for the test system and Iran power system, respectively.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/23/8035/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14238035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/23/8035/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14238035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Tomonobu Senjyu; Mahdi Khosravy;doi: 10.3390/en15144995
The optimum planning of the electrical power expansion and, accordingly, controlling the power quality are recent critical issues in power management [...]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15144995&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15144995&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Seyed Jalalzad Mahvizani; Hossein Yektamoghadam; Rouzbeh Haghighi; Majid Dehghani; +3 AuthorsSeyed Jalalzad Mahvizani; Hossein Yektamoghadam; Rouzbeh Haghighi; Majid Dehghani; Amirhossein Nikoofard; Mahdi Khosravy; Tomonobu Senjyu;doi: 10.3390/en15031172
In the present climate, due to the cost of investments, pollutants of fossil fuel, and global warming, it seems rational to accept numerous potential benefits of optimal generation expansion planning. Generation expansion planning by regarding these goals and providing the best plan for the future of the power plants reinforces the idea that plants are capable of generating electricity in environmentally friendly circumstances, particularly by reducing greenhouse gas production. This paper has applied a teaching–learning-based optimization algorithm to provide an optimal strategy for power plants and the proposed algorithm has been compared with other optimization methods. Then the game theory approach is implemented to make a competitive situation among power plants. A combined algorithm has been developed to reach the Nash equilibrium point. Moreover, the government role has been considered in order to reduce carbon emission and achieve the green earth policies. Three scenarios have been regarded to evaluate the efficiency of the proposed method. Finally, sensitivity analysis has been applied, and then the simulation results have been discussed.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/3/1172/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15031172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/3/1172/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15031172&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Mohammad Faghiri; Shadi Samizadeh; Amirhossein Nikoofard; Mahdi Khosravy; Tomonobu Senjyu;doi: 10.3390/app12073262
Increasing the load demand and penetration of renewable energy sources (RESs) poses real challenges for optimal energy management of distribution networks. Moreover, considering multi-carrier energy systems has increased the efficiency of systems, and provides an opportunity for using the advantages of RESs. In this regard, we adopted a new framework based on the new challenges in the multi-carrier energy micro-grid (MEMG). In the proposed method, a comprehensive MEMG was modeled that benefits from a large assortment of distributed energy resources (DERs), such as micro-turbines, fuel cells, wind turbines, and energy storage. Considering many DERs is necessary, because these resources could cover one another’s disadvantages, which have a great impact on the total cost of the MEMG and decrease the emission impacts of fossil-fuel-based units. Furthermore, waste power plants, inverters, rectifiers, and emission constraints are considered in the proposed method for modeling a practical MEMG. Additionally, for modeling the uncertainty of stochastic parameters, a model based on a multilayer neural network was used in this paper. The results of this study indicate that using a decentralized model, along with stochastic methods for predicting uncertainty, can reduce operational costs in micro-grids and computational complexity compared with optimal centralized programming methods. Finally, the equations and results obtained from the proposed method were evaluated by experiments.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3417/12/7/3262/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12073262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3417/12/7/3262/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app12073262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu