- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Hafiz Fadillah; Sigit Puji Santosa; Leonardo Gunawan; Akbar Afdhal; Agus Purwanto;doi: 10.3390/en13195061
The dynamic behavior of the lithium-ion battery is evaluated by simulating the full battery system and each corresponding component, including the jellyroll and thin-foil electrodes. The thin-foil electrodes were evaluated using a novel design of split Hopkinson tensile bar (SHTB), while the jellyroll was evaluated using the split Hopkinson pressure bar (SHPB). A new stacking method was employed to strengthen the stress wave signal of the thin-foil electrodes in the SHTB simulation. The characteristic of the stress–strain curve should remain the same regardless of the amount of stacking. The jellyroll dynamic properties were characterized by using the SHPB method. The jellyroll was modeled with Fu-Chang foam and modified crushable foam and compared with experimental results at the loading speeds of 20 and 30 m/s. The dynamic behavior compared very well when it was modeled with Fu-Chang foam. These studies show that the dynamic characterization of Li-ion battery components can be evaluated using tensile loading of stacked layers of thin foil aluminum and copper with SHTB methodology as well as the compressive loading of jellyroll using SHPB methodology. Finally, the dynamic performance of the full system battery can be simulated by using the dynamic properties of each component, which were evaluated using the SHTB and SHPB methodologies.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/19/5061/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/19/5061/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Authors: Leonardus Kenny Pratama; Sigit Puji Santosa; Tatacipta Dirgantara; Djarot Widagdo;doi: 10.3390/wevj13010010
Improvement in electric vehicle technology requires the lithium-ion battery system’s safe operations, protecting battery fire damage potential from road debris impact. In this research a design of sandwich panel construction with a lattice structure core is evaluated as the battery protection system. Additive manufacturing technology advancements have paved the way for lattice structure development. The sandwich protective structure designs are evaluated computationally using a non-linear dynamic finite element analysis for various geometry and material parameters. The lattice structure’s optimum shape was obtained based on the highest Specific Energy Absorption (SEA) parameter developed using the ANOVA and Taguchi robust design method. It is found that the octet-cross lattice structure with 40% relative density provided the best performance in terms of absorbing impact energy. Furthermore, the sandwich panel construction with two layers of lattice structure core performed very well in protecting the lithium-ion NCA battery in the ground impact loading conditions, which the impactor velocity is 42 m/s, representing vehicle velocity in highway, and weigh 0.77 kg. The battery shortening met the safety threshold of less than 3 mm deformation.
World Electric Vehic... arrow_drop_down World Electric Vehicle JournalOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2032-6653/13/1/10/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj13010010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert World Electric Vehic... arrow_drop_down World Electric Vehicle JournalOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2032-6653/13/1/10/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj13010010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Cornelius Satria Yudha; Soraya Ulfa Muzayanha; Mintarsih Rahmawati; Hendri Widiyandari; +4 AuthorsCornelius Satria Yudha; Soraya Ulfa Muzayanha; Mintarsih Rahmawati; Hendri Widiyandari; Wahyudi Sutopo; Muhammad Nizam; Sigit Puji Santosa; Agus Purwanto;doi: 10.3390/en13112757
The high throughput and rapid flame-assisted spray pyrolysis method has been adapted to synthesize cathode materials LiNi0.apCo0.15Al0.035O2 (NCA). This method is considered low cost and simple. By varying the precursor solution concentration and sintering temperature, the optimal condition was established at temperature sintering of 800 °C and precursor solution concentration of 1 M. X-ray diffraction patterns showed the as-prepared NCA particles exhibit a pure well-ordered hexagonal layer structure with high crystallinity. Polyhedral shaped micro-sized particles are confirmed by SEM images. Galvanostic charge–discharge tests were conducted using cylindrical full-cell utilizing artificial graphite as the anode. The highest specific initial discharge capacity measured between 2.7 and 4.3 V is 155 mAh g−1 with capacity retention of 92% after cycled at 0.2 C for 50 cycles. Thus, this method is considered as a satisfying approach for NCA mass production.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/11/2757/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/11/2757/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Dita Novizayanti; Eko Agus Prasetio; Manahan Siallagan; Sigit Puji Santosa;doi: 10.3390/wevj12020073
Currently, the adoption of electric vehicles (EV) draws much attention, as the environmental issue of reducing carbon emission is increasing worldwide. However, different countries face different challenges during this transition, particularly developing countries. This research aims to create a framework for the transition to EV in Indonesia through Agent-Based Modeling (ABM). The framework is used as the conceptual design for ABM to investigate the effect of agents’ decision-making processes at the microlevel into the number of adopted EV at the macrolevel. The cluster analysis is equipped to determine the agents’ characteristics based on the categories of the innovation adopters. There are 11 significant variables and four respondents’ clusters: innovators, early majority, late majority, and the uncategorized one. Moreover, Twitter data analytics are utilized to investigate the information engagement coefficient based on the agents’ location. The agents’ characteristics which emerged from this analysis framework will be used as the fundamental for investigating the effect of agents’ specific characteristics and their interaction through ABM for further research. It is expected that this framework will enable the discovery of which incentive scheme or critical technical features effectively increase the uptake of EV according to the agents’ specific characteristics.
World Electric Vehic... arrow_drop_down World Electric Vehicle JournalOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2032-6653/12/2/73/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj12020073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert World Electric Vehic... arrow_drop_down World Electric Vehicle JournalOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2032-6653/12/2/73/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj12020073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Sigit Puji Santosa; Hafiz Fadillah;doi: 10.3390/en17194967
This study presents a comprehensive experimental investigation of the mechanical response of the jellyroll and complete Li-ion 18650 Nickel–Cobalt–Alumina (NCA) battery under axial compression, highlighting the effects of strain rate and state-of-charge (SOC). The jellyroll was subjected to both static (1 mm/min) and dynamic (10–30 m/s) axial compression using a Split-Hopkinson Pressure Bar (SHPB). A key innovation of this work is the investigation of the role of electrolytes under both static and dynamic conditions, revealing their significant impact on stress and strain behavior due to hydrostatic pressure. Additionally, the complete NCA battery was tested under various SOC levels (0–75%) using flat plate compression. The results demonstrate the jellyroll’s sensitivity to strain rate, with increased stress responses at higher loading speeds. Furthermore, the inclusion of electrolytes markedly amplified the stress and strain response. The Fu-Chang model was successfully employed to numerically replicate the observed static and dynamic behaviors. Critically, the full battery tests revealed a negative correlation between voltage cutoff and SOC, with the risk of fire and explosion increasing at higher SOC levels. This research provides novel insights into the safety and mechanical resilience of Li-ion batteries under compression.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17194967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17194967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:MDPI AG Authors: Alvin Reynaldo; Hari Sidik Pramono; Sigit Puji Santosa; Muhammad Aziz;doi: 10.3390/en13205312
Hydrogen has attracted global attention as a clean secondary energy source and has numerous possible applications, including fuel for vehicles. To store the hydrogen effectively, ammonia is considered promising due to high hydrogen density, stability, and total energy efficiency. Adopting ammonia as a fuel in vehicles requires a proper fuel tank design to fulfill the required volumetric content and safety standards, without neglecting the economic objectives. In general, a type-IV pressure vessel is utilized as a fuel tank because it is the lightest one, compared to other types of pressure vessel. This paper focuses on the effort to develop a lightweight type-IV ammonia pressure vessel designed for mobility vehicles. The material combination (liner and composite) and composite stacking sequence are analyzed for both burst and impact tests by using a finite element method. Two polymer materials of polyethylene terephthalate (PET) and polypropylene (PP) are evaluated as the liner considering their ultimate tensile strength, density, cost, and compatibility with ammonia, while carbon-fiber-reinforced polymer (CFRP) and glass-fiber-reinforced polymer (GFRP) are adopted as composite skins. In addition, five composite stacking sequences are analyzed in this study. Von Mises stress and Hashin’s damage initiation criteria are used to evaluate the performance of liner and composite, respectively. As the results, PP-based pressure vessels generate lower stress in the liner compared to PET-based vessels. In addition, CFRP-based pressure vessels have a higher safety margin and are able to generate lower stress in the liner and lower damage initiation criteria in the composite skin. The material combination of PP-CFRP with a stacking sequence of [90/±30/90]3s gives the lowest maximum stress in the liner during the burst test, while, for the impact test, the stacking sequence of [90/±θ/90]3s is considered the most appropriate option to realize a lower stress at the liner, although this tendency is relatively small for vessels with PP liner.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/20/5312/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/20/5312/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Hafiz Fadillah; Sigit Puji Santosa; Leonardo Gunawan; Akbar Afdhal; Agus Purwanto;doi: 10.3390/en13195061
The dynamic behavior of the lithium-ion battery is evaluated by simulating the full battery system and each corresponding component, including the jellyroll and thin-foil electrodes. The thin-foil electrodes were evaluated using a novel design of split Hopkinson tensile bar (SHTB), while the jellyroll was evaluated using the split Hopkinson pressure bar (SHPB). A new stacking method was employed to strengthen the stress wave signal of the thin-foil electrodes in the SHTB simulation. The characteristic of the stress–strain curve should remain the same regardless of the amount of stacking. The jellyroll dynamic properties were characterized by using the SHPB method. The jellyroll was modeled with Fu-Chang foam and modified crushable foam and compared with experimental results at the loading speeds of 20 and 30 m/s. The dynamic behavior compared very well when it was modeled with Fu-Chang foam. These studies show that the dynamic characterization of Li-ion battery components can be evaluated using tensile loading of stacked layers of thin foil aluminum and copper with SHTB methodology as well as the compressive loading of jellyroll using SHPB methodology. Finally, the dynamic performance of the full system battery can be simulated by using the dynamic properties of each component, which were evaluated using the SHTB and SHPB methodologies.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/19/5061/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/19/5061/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Authors: Leonardus Kenny Pratama; Sigit Puji Santosa; Tatacipta Dirgantara; Djarot Widagdo;doi: 10.3390/wevj13010010
Improvement in electric vehicle technology requires the lithium-ion battery system’s safe operations, protecting battery fire damage potential from road debris impact. In this research a design of sandwich panel construction with a lattice structure core is evaluated as the battery protection system. Additive manufacturing technology advancements have paved the way for lattice structure development. The sandwich protective structure designs are evaluated computationally using a non-linear dynamic finite element analysis for various geometry and material parameters. The lattice structure’s optimum shape was obtained based on the highest Specific Energy Absorption (SEA) parameter developed using the ANOVA and Taguchi robust design method. It is found that the octet-cross lattice structure with 40% relative density provided the best performance in terms of absorbing impact energy. Furthermore, the sandwich panel construction with two layers of lattice structure core performed very well in protecting the lithium-ion NCA battery in the ground impact loading conditions, which the impactor velocity is 42 m/s, representing vehicle velocity in highway, and weigh 0.77 kg. The battery shortening met the safety threshold of less than 3 mm deformation.
World Electric Vehic... arrow_drop_down World Electric Vehicle JournalOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2032-6653/13/1/10/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj13010010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert World Electric Vehic... arrow_drop_down World Electric Vehicle JournalOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2032-6653/13/1/10/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj13010010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Cornelius Satria Yudha; Soraya Ulfa Muzayanha; Mintarsih Rahmawati; Hendri Widiyandari; +4 AuthorsCornelius Satria Yudha; Soraya Ulfa Muzayanha; Mintarsih Rahmawati; Hendri Widiyandari; Wahyudi Sutopo; Muhammad Nizam; Sigit Puji Santosa; Agus Purwanto;doi: 10.3390/en13112757
The high throughput and rapid flame-assisted spray pyrolysis method has been adapted to synthesize cathode materials LiNi0.apCo0.15Al0.035O2 (NCA). This method is considered low cost and simple. By varying the precursor solution concentration and sintering temperature, the optimal condition was established at temperature sintering of 800 °C and precursor solution concentration of 1 M. X-ray diffraction patterns showed the as-prepared NCA particles exhibit a pure well-ordered hexagonal layer structure with high crystallinity. Polyhedral shaped micro-sized particles are confirmed by SEM images. Galvanostic charge–discharge tests were conducted using cylindrical full-cell utilizing artificial graphite as the anode. The highest specific initial discharge capacity measured between 2.7 and 4.3 V is 155 mAh g−1 with capacity retention of 92% after cycled at 0.2 C for 50 cycles. Thus, this method is considered as a satisfying approach for NCA mass production.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/11/2757/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/11/2757/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112757&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Dita Novizayanti; Eko Agus Prasetio; Manahan Siallagan; Sigit Puji Santosa;doi: 10.3390/wevj12020073
Currently, the adoption of electric vehicles (EV) draws much attention, as the environmental issue of reducing carbon emission is increasing worldwide. However, different countries face different challenges during this transition, particularly developing countries. This research aims to create a framework for the transition to EV in Indonesia through Agent-Based Modeling (ABM). The framework is used as the conceptual design for ABM to investigate the effect of agents’ decision-making processes at the microlevel into the number of adopted EV at the macrolevel. The cluster analysis is equipped to determine the agents’ characteristics based on the categories of the innovation adopters. There are 11 significant variables and four respondents’ clusters: innovators, early majority, late majority, and the uncategorized one. Moreover, Twitter data analytics are utilized to investigate the information engagement coefficient based on the agents’ location. The agents’ characteristics which emerged from this analysis framework will be used as the fundamental for investigating the effect of agents’ specific characteristics and their interaction through ABM for further research. It is expected that this framework will enable the discovery of which incentive scheme or critical technical features effectively increase the uptake of EV according to the agents’ specific characteristics.
World Electric Vehic... arrow_drop_down World Electric Vehicle JournalOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2032-6653/12/2/73/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj12020073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert World Electric Vehic... arrow_drop_down World Electric Vehicle JournalOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2032-6653/12/2/73/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj12020073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Sigit Puji Santosa; Hafiz Fadillah;doi: 10.3390/en17194967
This study presents a comprehensive experimental investigation of the mechanical response of the jellyroll and complete Li-ion 18650 Nickel–Cobalt–Alumina (NCA) battery under axial compression, highlighting the effects of strain rate and state-of-charge (SOC). The jellyroll was subjected to both static (1 mm/min) and dynamic (10–30 m/s) axial compression using a Split-Hopkinson Pressure Bar (SHPB). A key innovation of this work is the investigation of the role of electrolytes under both static and dynamic conditions, revealing their significant impact on stress and strain behavior due to hydrostatic pressure. Additionally, the complete NCA battery was tested under various SOC levels (0–75%) using flat plate compression. The results demonstrate the jellyroll’s sensitivity to strain rate, with increased stress responses at higher loading speeds. Furthermore, the inclusion of electrolytes markedly amplified the stress and strain response. The Fu-Chang model was successfully employed to numerically replicate the observed static and dynamic behaviors. Critically, the full battery tests revealed a negative correlation between voltage cutoff and SOC, with the risk of fire and explosion increasing at higher SOC levels. This research provides novel insights into the safety and mechanical resilience of Li-ion batteries under compression.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17194967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17194967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:MDPI AG Authors: Alvin Reynaldo; Hari Sidik Pramono; Sigit Puji Santosa; Muhammad Aziz;doi: 10.3390/en13205312
Hydrogen has attracted global attention as a clean secondary energy source and has numerous possible applications, including fuel for vehicles. To store the hydrogen effectively, ammonia is considered promising due to high hydrogen density, stability, and total energy efficiency. Adopting ammonia as a fuel in vehicles requires a proper fuel tank design to fulfill the required volumetric content and safety standards, without neglecting the economic objectives. In general, a type-IV pressure vessel is utilized as a fuel tank because it is the lightest one, compared to other types of pressure vessel. This paper focuses on the effort to develop a lightweight type-IV ammonia pressure vessel designed for mobility vehicles. The material combination (liner and composite) and composite stacking sequence are analyzed for both burst and impact tests by using a finite element method. Two polymer materials of polyethylene terephthalate (PET) and polypropylene (PP) are evaluated as the liner considering their ultimate tensile strength, density, cost, and compatibility with ammonia, while carbon-fiber-reinforced polymer (CFRP) and glass-fiber-reinforced polymer (GFRP) are adopted as composite skins. In addition, five composite stacking sequences are analyzed in this study. Von Mises stress and Hashin’s damage initiation criteria are used to evaluate the performance of liner and composite, respectively. As the results, PP-based pressure vessels generate lower stress in the liner compared to PET-based vessels. In addition, CFRP-based pressure vessels have a higher safety margin and are able to generate lower stress in the liner and lower damage initiation criteria in the composite skin. The material combination of PP-CFRP with a stacking sequence of [90/±30/90]3s gives the lowest maximum stress in the liner during the burst test, while, for the impact test, the stacking sequence of [90/±θ/90]3s is considered the most appropriate option to realize a lower stress at the liner, although this tendency is relatively small for vessels with PP liner.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/20/5312/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/20/5312/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu