- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Alexandra Ionelia Manolache; Gabriel Andrei; Liliana Rusu;doi: 10.3390/jmse11010203
The development of novel solar power technologies is regarded as one of the essential solutions to meeting the world’s rising energy demand. Floating photovoltaic panels (FPV) have several advantages over land-based installations, including faster deployment, lower maintenance costs, and increased efficiency. Romania is considered a country with enormous solar energy potential, which is one of the most exploited sectors of the renewable energy sector. With this in mind, the purpose of this work is to assess the energetic potential provided by the sun, taking into account three lakes in Romania’s east and extending to the west of the Black Sea. In this context, we examine the hourly distribution of solar radiation for the year 2021. The solar radiation data were extracted using the ERA5 database, as well as data collected in situ near them. Following this research, we discovered that all of the chosen locations have a high energetic potential and could be used as locations for the exploitation of solar energy, thereby avoiding the use of land that could be used for agricultural purposes in these areas. We also noticed that there are minor differences between the solar radiation values obtained from the ERA5 database and the measured ones.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2077-1312/11/1/203/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11010203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2077-1312/11/1/203/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11010203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Florin Onea; Alexandra Ionelia Manolache; Daniel Ganea;doi: 10.3390/jmse10101463
Airborne wind energy systems (AWESs) represent a novel idea that aims to gather energy from stronger winds aloft while operating at altitudes above conventional wind turbines (WTs). For this study, we examined the wind resources at a height of 100 m available for traditional wind turbines with aerial wind energy technologies, in addition to the wind potential at higher altitudes up to 500 m. The considered period was 20 years from January 2002 to December 2020, and the data were extracted from the ERA5 reanalysis database. We studied the possibility of placing 500 kW and 5 MW airborne systems in the Black Sea and the Azov Sea and compared them with a conventional turbine. As expected, the western part of the Black Sea presented the best results, both for the 500 kW airborne system with an annual energy production (AEP) of 2.39 GWh and a capacity factor of 55%, and for the 5 MW airborne system, which has an annual electricity production of 15.81 GWh and a capacity factor of 36%. Better results were recorded for the Sea of Azov for both the 500 kW and the 5 MW airborne systems, with an AEP of 2.5 and 15.81 GWh and a capacity factor of 58% and 36%, respectively.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2077-1312/10/10/1463/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10101463&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2077-1312/10/10/1463/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10101463&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Alexandra Ionelia Manolache; Gabriel Andrei;doi: 10.3390/en17194816
This review aims to find, classify, and discuss ongoing projects that fall into the category of multi-use platforms, concerning offshore energy exploitation and marine resource production, including aquaculture. The term multi-use platforms (MUPs) refer to areas that may accommodate multiple operations such as aquaculture, tourism, transportation, oil, or energy production. This research only examines the current situation of marine energy projects that entail the integration of either a single kind of renewable energy or other types of marine renewable energy, in conjunction with aquaculture. The particularity of this research consists in the exclusive choice of platforms that integrate two sources of renewable energy on a single platform. The study focuses on analyzing the projects set up over time on these platforms, all of which include aquaculture. The state of the art in MUPs for offshore applications was examined to generate the review. We devised a methodical search approach aiming to find relevant material from various academic fields. During this phase, we looked to understand as much as we could about MUPs, including their design, the nature of these projects, what kinds of projects they can include, how they integrate renewable energy sources, and whether aquaculture facilities can be put together. To preserve scientific integrity and guarantee the inclusion of relevant research, a search strategy was formulated. The bibliographic study was through critical analysis, and at the end, significant conclusions were drawn concerning the development of multi-use platforms.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17194816&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17194816&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Alexandra Ionelia Manolache; Gabriel Andrei; Liliana Rusu;doi: 10.3390/jmse11010203
The development of novel solar power technologies is regarded as one of the essential solutions to meeting the world’s rising energy demand. Floating photovoltaic panels (FPV) have several advantages over land-based installations, including faster deployment, lower maintenance costs, and increased efficiency. Romania is considered a country with enormous solar energy potential, which is one of the most exploited sectors of the renewable energy sector. With this in mind, the purpose of this work is to assess the energetic potential provided by the sun, taking into account three lakes in Romania’s east and extending to the west of the Black Sea. In this context, we examine the hourly distribution of solar radiation for the year 2021. The solar radiation data were extracted using the ERA5 database, as well as data collected in situ near them. Following this research, we discovered that all of the chosen locations have a high energetic potential and could be used as locations for the exploitation of solar energy, thereby avoiding the use of land that could be used for agricultural purposes in these areas. We also noticed that there are minor differences between the solar radiation values obtained from the ERA5 database and the measured ones.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2077-1312/11/1/203/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11010203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2077-1312/11/1/203/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11010203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Florin Onea; Alexandra Ionelia Manolache; Daniel Ganea;doi: 10.3390/jmse10101463
Airborne wind energy systems (AWESs) represent a novel idea that aims to gather energy from stronger winds aloft while operating at altitudes above conventional wind turbines (WTs). For this study, we examined the wind resources at a height of 100 m available for traditional wind turbines with aerial wind energy technologies, in addition to the wind potential at higher altitudes up to 500 m. The considered period was 20 years from January 2002 to December 2020, and the data were extracted from the ERA5 reanalysis database. We studied the possibility of placing 500 kW and 5 MW airborne systems in the Black Sea and the Azov Sea and compared them with a conventional turbine. As expected, the western part of the Black Sea presented the best results, both for the 500 kW airborne system with an annual energy production (AEP) of 2.39 GWh and a capacity factor of 55%, and for the 5 MW airborne system, which has an annual electricity production of 15.81 GWh and a capacity factor of 36%. Better results were recorded for the Sea of Azov for both the 500 kW and the 5 MW airborne systems, with an AEP of 2.5 and 15.81 GWh and a capacity factor of 58% and 36%, respectively.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2077-1312/10/10/1463/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10101463&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2077-1312/10/10/1463/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10101463&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Alexandra Ionelia Manolache; Gabriel Andrei;doi: 10.3390/en17194816
This review aims to find, classify, and discuss ongoing projects that fall into the category of multi-use platforms, concerning offshore energy exploitation and marine resource production, including aquaculture. The term multi-use platforms (MUPs) refer to areas that may accommodate multiple operations such as aquaculture, tourism, transportation, oil, or energy production. This research only examines the current situation of marine energy projects that entail the integration of either a single kind of renewable energy or other types of marine renewable energy, in conjunction with aquaculture. The particularity of this research consists in the exclusive choice of platforms that integrate two sources of renewable energy on a single platform. The study focuses on analyzing the projects set up over time on these platforms, all of which include aquaculture. The state of the art in MUPs for offshore applications was examined to generate the review. We devised a methodical search approach aiming to find relevant material from various academic fields. During this phase, we looked to understand as much as we could about MUPs, including their design, the nature of these projects, what kinds of projects they can include, how they integrate renewable energy sources, and whether aquaculture facilities can be put together. To preserve scientific integrity and guarantee the inclusion of relevant research, a search strategy was formulated. The bibliographic study was through critical analysis, and at the end, significant conclusions were drawn concerning the development of multi-use platforms.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17194816&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17194816&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu