
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An Evaluation of the Efficiency of the Floating Solar Panels in the Western Black Sea and the Razim-Sinoe Lagunar System

doi: 10.3390/jmse11010203
The development of novel solar power technologies is regarded as one of the essential solutions to meeting the world’s rising energy demand. Floating photovoltaic panels (FPV) have several advantages over land-based installations, including faster deployment, lower maintenance costs, and increased efficiency. Romania is considered a country with enormous solar energy potential, which is one of the most exploited sectors of the renewable energy sector. With this in mind, the purpose of this work is to assess the energetic potential provided by the sun, taking into account three lakes in Romania’s east and extending to the west of the Black Sea. In this context, we examine the hourly distribution of solar radiation for the year 2021. The solar radiation data were extracted using the ERA5 database, as well as data collected in situ near them. Following this research, we discovered that all of the chosen locations have a high energetic potential and could be used as locations for the exploitation of solar energy, thereby avoiding the use of land that could be used for agricultural purposes in these areas. We also noticed that there are minor differences between the solar radiation values obtained from the ERA5 database and the measured ones.
floating solar panels (FPV), solar radiation, Naval architecture. Shipbuilding. Marine engineering, marine renewable energy, VM1-989, GC1-1581, sustainability, Oceanography, Romanian nearshore, solar radiation; marine renewable energy; floating solar panels (FPV); sustainability; Romanian nearshore
floating solar panels (FPV), solar radiation, Naval architecture. Shipbuilding. Marine engineering, marine renewable energy, VM1-989, GC1-1581, sustainability, Oceanography, Romanian nearshore, solar radiation; marine renewable energy; floating solar panels (FPV); sustainability; Romanian nearshore
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).24 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
