Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
5 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pérez-Navarro, María Ángeles;

    This repository contains a series of .csv files developed for the study titled "Plant canopies promote climatic disequilibrium in Mediterranean recruit communities", authored by: Perez-Navarro MA, Lloret F, Molina-Venegas R, Alcántara JM and Verdú M. The author of these files is Perez-Navarro MA. These files are used to characterize species niches, estimate climatic disequilibrium for recruit communities growing under plant canopies and open spaces, and conduct statistical analyses. Variables description of each table is compiled in the METADATA.txt file. Please visit Github readme () to correctly place these files in the folder tree and check for the corresponding scripts where they are required. Please notice that although alternative approaches were calibrated to estimate species niche (accordingly producing multiple niche, distances and disequilibrium dataframes), only niche centroid calibrated discarding 95 percentile of lowest niche density was used for paper results and figures. Also, in case of univariate analyses only bio01, bio06 and bio12 were used in analyses, though species niche and further niche and community estimations were obtained for all 19 variables. This is version 2 (v2) and include extra intermediate .csv required to run all the R scripts included in the abovementioned Github repository. NAs or empty cells present in the .csv files of this repository means no data and do not contribute to the analyses. Visit METADATA.txt file for variables description. These data are under CC0 license. It is possible to share, copy and redistribute the material in any medium or format, and adapt, remix, transform, and build upon the material for any purpose. Studies using R scripts or any data files from these study should cite the abovementioned paper (Perez-Navarro MA, Lloret F, Molina-Venegas R, Alcantara JM, Verdu M. (2024). Plant canopies promote climatic disequilibrium in Mediterranean recruit communities). Please contact m.angeles582@gmail.com in case of having doubts or problems with the existing files and scripts. Current rates of climate change are exceeding the capacity of many plant species to track climate, thus leading communities to be in disequilibrium with climatic conditions. Plant canopies can contribute to this disequilibrium by buffering macro-climatic conditions and sheltering poorly adapted species to the oncoming climate, particularly in their recruitment stages. Here we analyze differences in climatic disequilibrium between understory and open ground woody plant recruits in 28 localities, covering more than 100,000 m2, across an elevation range embedding temperature and aridity gradients in the southern Iberian Peninsula. This study demonstrates higher climatic disequilibrium under canopies compared with open ground, supporting that plant canopies would affect future community climatic lags by allowing the recruitment of less arid-adapted species in warm and dry conditions, but also it endorse that canopies could favor warm-adapted species in extremely cold environments as mountain tops, thus pre-adapting communities living in these habitats to climate change.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC 0
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2024
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC 0
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2024
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Maria A. Perez‐Navarro; Francisco Lloret; Rafael Molina‐Venegas; Julio M. Alcántara; +1 Authors

    AbstractCurrent rates of climate change are exceeding the capacity of many plant species to track climate, thus leading communities to be in disequilibrium with climatic conditions. Plant canopies can contribute to this disequilibrium by buffering macro‐climatic conditions and sheltering poorly adapted species to the oncoming climate, particularly in their recruitment stages. Here we analyse differences in climatic disequilibrium between understorey and open ground woody plant recruits in 28 localities, covering more than 100,000 m2, across an elevation range embedding temperature and aridity gradients in the southern Iberian Peninsula. This study demonstrates higher climatic disequilibrium under canopies compared with open ground, supporting that plant canopies would affect future community climatic lags by allowing the recruitment of less arid‐adapted species in warm and dry conditions, but also it endorse that canopies could favour warm‐adapted species in extremely cold environments as mountain tops, thus pre‐adapting communities living in these habitats to climate change.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecology Lettersarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Ecology Letters
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    Ecology Letters
    Article . 2024
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecology Lettersarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Ecology Letters
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      Ecology Letters
      Article . 2024
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Francisco Lloret; Jens-Christian Svenning; Joaquin Hernández‐Bastida; Maria Angeles Perez‐Navarro; +3 Authors

    High rates of climate change are currently exceeding many plant species' capacity to keep up with climate, leading to mismatches between climatic conditions and climatic preferences of the species present in a community. This disequilibrium between climate and community composition could diminish, however, when critical climate thresholds are exceeded, due to population declines or losses among the more mismatched species. Here, we assessed the effect of an extreme drought event on rich semiarid shrubland communities in the south‐eastern Iberian Peninsula. Using a community climate framework, we compared the community climatic disequilibrium before and after the drought episode on three study sites with different levels of precipitation. Disequilibrium was estimated as the difference between observed reference climate and community‐inferred climate, calculated as the mean climatic optimum for the species present, weighted by their abundances. We found that extreme drought embedded within a decadal trend of increasing aridity led to a significant reduction in community climatic disequilibrium, and that this reduction was positively related to water deficit (low P/PET values). In contrast, microhabitat variables such as vegetation cover or slope, did not emerge as significant predictors of changes in community climatic disequilibrium. Our study highlights that extreme drought events pushing communities in the same direction as climate trends may decrease community climatic mismatch, leading to communities more adapted to aridity through loss of drought‐sensitive species. These findings underscore that extreme events will play a crucial role in speeding up climate‐induced community transformations and biodiversity losses.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mémoires en Sciences...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Oikos
    Article . 2021 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mémoires en Sciences...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Oikos
      Article . 2021 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Pérez-Navarro, María Ángeles;

    Current rates of climate change are exceeding the capacity of many plant species to track climate, thus leading communities to be in disequilibrium with climatic conditions. Plant canopies can contribute to this disequilibrium by buffering macro-climatic conditions and sheltering poorly adapted species to the oncoming climate, particularly in their recruitment stages. Here we analyze differences in climatic disequilibrium between understory and open ground woody plant recruits in 28 localities, covering more than 100,000 m2, across an elevation range embedding temperature and aridity gradients in the southern Iberian Peninsula. This study demonstrates higher climatic disequilibrium under canopies compared with open ground, supporting that plant canopies would affect future community climatic lags by allowing the recruitment of less arid-adapted species in warm and dry conditions, but also it endorse that canopies could favor warm-adapted species in extremely cold environments as mountain tops, thus pre-adapting communities living in these habitats to climate change.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pérez Navarro, María Ángeles; Lloret Maya, Francisco; Ogaya Inurrigarro, Romà; Estiarte, Marc; +1 Authors

    Location in the climatic niche over several years of plant comunities from a field manipulation experiment of climate change carried on in Garraf (Spain). 1. Description of methods used for collection-generation of data: Field data: vegetation surveys based on transects within experimental plots Species distribution data: species occurrences along their geographical distributions were obtained from the database of the Global Biodiversity Information Facility GBIF 2019, ) Climate data: climatic variables were obtained for the period 1979-2013 at 1-km2 resolution from CHELSA v.1.2 database Karger et al. (2018) DOI: 10.1038/sdata.2017.122; Karger et al., (2017) DOI: 10.16904/envidat.228.v2.1 See details in DOI: 10.1111/1365-2745.14233 2. Methods for processing the data: A principal component analysis (PCA) was applied to reduce the dimensionality of the 13 climatic variables to the first two PCA axes. The species occurrences from the geographic space were translated into the two-dimensional climatic space defined by the two PCA axes. A two-dimensional kernel density function was applied to the species occurrences in the climatic space. The centroid of each species niche was obtained as the center of gravity of the niche. The observed climate at the study site for the average of the experimental period 1999-2014 and for each year were translated into the two-dimensional climatic space. The Euclidean distance in the climatic space between community location (based on species centroid averaged weighed by species's abundance) and the location of the observed climate in the respective years was calculated.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
5 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pérez-Navarro, María Ángeles;

    This repository contains a series of .csv files developed for the study titled "Plant canopies promote climatic disequilibrium in Mediterranean recruit communities", authored by: Perez-Navarro MA, Lloret F, Molina-Venegas R, Alcántara JM and Verdú M. The author of these files is Perez-Navarro MA. These files are used to characterize species niches, estimate climatic disequilibrium for recruit communities growing under plant canopies and open spaces, and conduct statistical analyses. Variables description of each table is compiled in the METADATA.txt file. Please visit Github readme () to correctly place these files in the folder tree and check for the corresponding scripts where they are required. Please notice that although alternative approaches were calibrated to estimate species niche (accordingly producing multiple niche, distances and disequilibrium dataframes), only niche centroid calibrated discarding 95 percentile of lowest niche density was used for paper results and figures. Also, in case of univariate analyses only bio01, bio06 and bio12 were used in analyses, though species niche and further niche and community estimations were obtained for all 19 variables. This is version 2 (v2) and include extra intermediate .csv required to run all the R scripts included in the abovementioned Github repository. NAs or empty cells present in the .csv files of this repository means no data and do not contribute to the analyses. Visit METADATA.txt file for variables description. These data are under CC0 license. It is possible to share, copy and redistribute the material in any medium or format, and adapt, remix, transform, and build upon the material for any purpose. Studies using R scripts or any data files from these study should cite the abovementioned paper (Perez-Navarro MA, Lloret F, Molina-Venegas R, Alcantara JM, Verdu M. (2024). Plant canopies promote climatic disequilibrium in Mediterranean recruit communities). Please contact m.angeles582@gmail.com in case of having doubts or problems with the existing files and scripts. Current rates of climate change are exceeding the capacity of many plant species to track climate, thus leading communities to be in disequilibrium with climatic conditions. Plant canopies can contribute to this disequilibrium by buffering macro-climatic conditions and sheltering poorly adapted species to the oncoming climate, particularly in their recruitment stages. Here we analyze differences in climatic disequilibrium between understory and open ground woody plant recruits in 28 localities, covering more than 100,000 m2, across an elevation range embedding temperature and aridity gradients in the southern Iberian Peninsula. This study demonstrates higher climatic disequilibrium under canopies compared with open ground, supporting that plant canopies would affect future community climatic lags by allowing the recruitment of less arid-adapted species in warm and dry conditions, but also it endorse that canopies could favor warm-adapted species in extremely cold environments as mountain tops, thus pre-adapting communities living in these habitats to climate change.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC 0
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2024
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC 0
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2024
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Maria A. Perez‐Navarro; Francisco Lloret; Rafael Molina‐Venegas; Julio M. Alcántara; +1 Authors

    AbstractCurrent rates of climate change are exceeding the capacity of many plant species to track climate, thus leading communities to be in disequilibrium with climatic conditions. Plant canopies can contribute to this disequilibrium by buffering macro‐climatic conditions and sheltering poorly adapted species to the oncoming climate, particularly in their recruitment stages. Here we analyse differences in climatic disequilibrium between understorey and open ground woody plant recruits in 28 localities, covering more than 100,000 m2, across an elevation range embedding temperature and aridity gradients in the southern Iberian Peninsula. This study demonstrates higher climatic disequilibrium under canopies compared with open ground, supporting that plant canopies would affect future community climatic lags by allowing the recruitment of less arid‐adapted species in warm and dry conditions, but also it endorse that canopies could favour warm‐adapted species in extremely cold environments as mountain tops, thus pre‐adapting communities living in these habitats to climate change.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecology Lettersarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Ecology Letters
    Article . 2024 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    Ecology Letters
    Article . 2024
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Ecology Lettersarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Ecology Letters
      Article . 2024 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      Ecology Letters
      Article . 2024
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Francisco Lloret; Jens-Christian Svenning; Joaquin Hernández‐Bastida; Maria Angeles Perez‐Navarro; +3 Authors

    High rates of climate change are currently exceeding many plant species' capacity to keep up with climate, leading to mismatches between climatic conditions and climatic preferences of the species present in a community. This disequilibrium between climate and community composition could diminish, however, when critical climate thresholds are exceeded, due to population declines or losses among the more mismatched species. Here, we assessed the effect of an extreme drought event on rich semiarid shrubland communities in the south‐eastern Iberian Peninsula. Using a community climate framework, we compared the community climatic disequilibrium before and after the drought episode on three study sites with different levels of precipitation. Disequilibrium was estimated as the difference between observed reference climate and community‐inferred climate, calculated as the mean climatic optimum for the species present, weighted by their abundances. We found that extreme drought embedded within a decadal trend of increasing aridity led to a significant reduction in community climatic disequilibrium, and that this reduction was positively related to water deficit (low P/PET values). In contrast, microhabitat variables such as vegetation cover or slope, did not emerge as significant predictors of changes in community climatic disequilibrium. Our study highlights that extreme drought events pushing communities in the same direction as climate trends may decrease community climatic mismatch, leading to communities more adapted to aridity through loss of drought‐sensitive species. These findings underscore that extreme events will play a crucial role in speeding up climate‐induced community transformations and biodiversity losses.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mémoires en Sciences...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Oikos
    Article . 2021 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mémoires en Sciences...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Oikos
      Article . 2021 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Pérez-Navarro, María Ángeles;

    Current rates of climate change are exceeding the capacity of many plant species to track climate, thus leading communities to be in disequilibrium with climatic conditions. Plant canopies can contribute to this disequilibrium by buffering macro-climatic conditions and sheltering poorly adapted species to the oncoming climate, particularly in their recruitment stages. Here we analyze differences in climatic disequilibrium between understory and open ground woody plant recruits in 28 localities, covering more than 100,000 m2, across an elevation range embedding temperature and aridity gradients in the southern Iberian Peninsula. This study demonstrates higher climatic disequilibrium under canopies compared with open ground, supporting that plant canopies would affect future community climatic lags by allowing the recruitment of less arid-adapted species in warm and dry conditions, but also it endorse that canopies could favor warm-adapted species in extremely cold environments as mountain tops, thus pre-adapting communities living in these habitats to climate change.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pérez Navarro, María Ángeles; Lloret Maya, Francisco; Ogaya Inurrigarro, Romà; Estiarte, Marc; +1 Authors

    Location in the climatic niche over several years of plant comunities from a field manipulation experiment of climate change carried on in Garraf (Spain). 1. Description of methods used for collection-generation of data: Field data: vegetation surveys based on transects within experimental plots Species distribution data: species occurrences along their geographical distributions were obtained from the database of the Global Biodiversity Information Facility GBIF 2019, ) Climate data: climatic variables were obtained for the period 1979-2013 at 1-km2 resolution from CHELSA v.1.2 database Karger et al. (2018) DOI: 10.1038/sdata.2017.122; Karger et al., (2017) DOI: 10.16904/envidat.228.v2.1 See details in DOI: 10.1111/1365-2745.14233 2. Methods for processing the data: A principal component analysis (PCA) was applied to reduce the dimensionality of the 13 climatic variables to the first two PCA axes. The species occurrences from the geographic space were translated into the two-dimensional climatic space defined by the two PCA axes. A two-dimensional kernel density function was applied to the species occurrences in the climatic space. The centroid of each species niche was obtained as the center of gravity of the niche. The observed climate at the study site for the average of the experimental period 1999-2014 and for each year were translated into the two-dimensional climatic space. The Euclidean distance in the climatic space between community location (based on species centroid averaged weighed by species's abundance) and the location of the observed climate in the respective years was calculated.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph