Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down

Filters

  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
22 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research

  • Authors: Malapaka Chandrasekharam; B. Chiranjeevi; K. S. V. Gupta; Ashraful Islam; +3 Authors

    Two new metal-free organic sensitizers with simplest structural variations have been synthesized for application in nanocrystalline TiO2 sensitized solar cells. The donor-pi-bridge-acceptor (D-pi-A) structure dyes, Y2 and Y3 each designed with three parts, an electron donor unit (substituted phenyl), a linker unit (thiophene), and an anchor unit (cyanoacrylic acid) showed maximal monochromatic incident photon to current conversion efficiencies (IPCE) in a device reaching upto 67% and 82% respectively. The organic sensitizers with 3,4,5-trimethoxy phenyl (Y3) as donor moieties obtained better solar light to electrical energy conversion efficiencies of 3.30% where as the organic sensitizer with 2,4-difluoro phenyl as donor (Y2) showed comparatively lower efficiency of 1.02%. The efficiency obtained with the reference sensitizer N719 under similar fabrication and evaluation conditions was 5.84%.

    addClaim
    17
    citations17
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ashish Garg; orcid Surya Prakash Singh;
    Surya Prakash Singh
    ORCID
    Harvested from ORCID Public Data File

    Surya Prakash Singh in OpenAIRE
    orcid Swetha Thokala;
    Swetha Thokala
    ORCID
    Harvested from ORCID Public Data File

    Swetha Thokala in OpenAIRE
    Raju Kumar Gupta;
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Solar Energyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Solar Energy
    Article
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Solar Energyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Solar Energy
      Article
      Data sources: UnpayWall
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Ganesh Koyyada;
    Ganesh Koyyada
    ORCID
    Harvested from ORCID Public Data File

    Ganesh Koyyada in OpenAIRE
    Ganesh Koyyada; orcid Liyuan Han;
    Liyuan Han
    ORCID
    Harvested from ORCID Public Data File

    Liyuan Han in OpenAIRE
    Idriss Bedja; +8 Authors

    AbstractA new additional benzothiazole (BT) acceptor has been introduced into metal‐free organic dyes (MCG1–MCG4) to construct donor–acceptor–π–acceptor (D‐A‐π‐A) architecture with the systematic replacement of diheteroanthracene donors and heteroaromatic π‐bridge components. BT not only facilitates effective electron transfer from the donor to the anchoring group, but also lowers the band gap. The planarity of the sensitizers induces J aggregation on TiO2, causes the redshift on TiO2, and enhances the light‐harvesting efficiency up to λ=750–800 nm. Transient absorption spectroscopy and electrochemical impedance spectroscopy have been used to understand the trends in short‐circuit current (Jsc) and open‐circuit voltage (Voc). Dye MCG4 showed a superior efficiency of 6.46 %. DFT has been complemented with experimentally determined photoelectrochemical properties. These molecules are new and support π‐bridge extension with BT for better performance of D‐A‐π‐A organic sensitizers.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Technologyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Technology
    Article . 2016 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Technologyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Technology
      Article . 2016 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Vinay Kumar; Jianlin Chen; Praveen Kumar Singh; Bommaramoni Yadagiri; +4 Authors

    Hole-transporting material (HTM) plays an important role in PSCs. We report a novel and low-cost, bifluorenylidene-based HTM, denoted as sp-35, which achieved a high PCE of 21.59% and demonstrated good long-term stability compared to spiro-OMeTAD.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Sustainable Energy &...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Sustainable Energy & Fuels
    Article . 2025 . Peer-reviewed
    License: Royal Society of Chemistry Licence to Publish
    Data sources: Crossref
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Sustainable Energy &...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Sustainable Energy & Fuels
      Article . 2025 . Peer-reviewed
      License: Royal Society of Chemistry Licence to Publish
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Liyuan Han;
    Liyuan Han
    ORCID
    Harvested from ORCID Public Data File

    Liyuan Han in OpenAIRE
    Ashraful Islam; orcid Norifusa Satoh;
    Norifusa Satoh
    ORCID
    Harvested from ORCID Public Data File

    Norifusa Satoh in OpenAIRE
    orcid Surya Prakash Singh;
    Surya Prakash Singh
    ORCID
    Harvested from ORCID Public Data File

    Surya Prakash Singh in OpenAIRE
    +1 Authors

    Abstract In recent years colloidal quantum dots solar cells have been the subject of extensive research. A promising alternative to existing silicon solar cells, quantum dot solar cells are among the candidates for next generation photovoltaic devices. Colloidal quantum dots are attractive in photovoltaics research due to their solution processability which is useful for their integration into various solar cells. Here, we review the recent progresses in various quantum dot solar cells which are prepared from colloidal quantum dots. We discuss the preparation methods, working concepts, advantages and disadvantages of different device architectures. Major topics discussed in this review include integration of colloidal quantum dots in: Schottky solar cells, depleted heterojunction solar cells, extremely thin absorber solar cells, hybrid organic–inorganic solar cells, bulk heterojunction solar cells and quantum dot sensitized solar cells. The review is organized according to the working principle and the architecture of photovoltaic devices.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2011 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    251
    citations251
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2011 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Surya Prakash Singh;
    Surya Prakash Singh
    ORCID
    Harvested from ORCID Public Data File

    Surya Prakash Singh in OpenAIRE
    Ashraful Islam; orcid Liyuan Han;
    Liyuan Han
    ORCID
    Harvested from ORCID Public Data File

    Liyuan Han in OpenAIRE

    Five heteroleptic ruthenium complexes having differentβ-diketonato ligands, [Ru(tctpy)(dppd)(NCS)] (1), [Ru(tctpy)(pd)(NCS)] (2), [Ru(tctpy)(tdd)(NCS)] (3), [Ru(tctpy)(mepd)(NCS)] (4), and [Ru(tctpy)(tmhd)(NCS)] (5), where tctpy = 4,4′,4′′-tricarboxy-2,2′:6′,2′′-terpyridine, pd = pentane-2,4-dione, mepd = 3-methylpentane-2,4-dione, tmhd = 2,2,6,6-tetramethylheptane-3,5-dione, tdd = tridecane-6,8-dione, and dppd = 1,3-diphenylpropane-1,3-dione, were synthesized and characterized. These heteroleptic complexes exhibit a broad metal-to-ligand charge transfer absorption band over the whole visible range extending up to 950 nm. The low-energy absorption bands and theE (Ru3+/2+) oxidation potentials in these complexes could be tuned to about 15 nm and 110 mV, respectively, by choosing appropriateβ-diketonate ligands. Molecular orbital calculation of complex1shows that the HOMO is localized on the NCS ligand and the LUMO is localized on the tctpy ligand, which is anchored to the TiO2nanoparticles. Theβ-diketonato-ruthenium(II)-polypyridyl sensitizers, when anchored to nanocrystalline TiO2films for light to electrical energy conversion in regenerative photoelectrochemical cells, achieve efficient sensitization to TiO2electrodes with increasing activity in the order5<4<3≈2<1. Under standard AM 1.5 sunlight, the complex1yielded a short-circuit photocurrent density of 16.7 mA/cm2, an open-circuit voltage of 0.58 V, and a fill factor of 0.64, corresponding to an overall conversion efficiency of 6.2%. A systematic tuning of HOMO energy level shows that an efficient sensitizer should possess a ground-state redox potential value of >+.53 V versus SCE.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    International Journal of Photoenergy
    Article . 2011 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    International Journal of Photoenergy
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    8
    citations8
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      International Journal of Photoenergy
      Article . 2011 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      International Journal of Photoenergy
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Derangula Venkateswarlu; orcid Venkata Surya Kumar Choutipalli;
    Venkata Surya Kumar Choutipalli
    ORCID
    Harvested from ORCID Public Data File

    Venkata Surya Kumar Choutipalli in OpenAIRE
    orcid bw Venkatesan Subramanian;
    Venkatesan Subramanian
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Venkatesan Subramanian in OpenAIRE
    orcid T. Swetha;
    T. Swetha
    ORCID
    Harvested from ORCID Public Data File

    T. Swetha in OpenAIRE
    +3 Authors

    Abstract The device performance of the dye-sensitized solar cells (DSSCs) mainly depends on the sensitizers. Ruthenium sensitizers have played a vital role in the DSSCs to improve power conversion efficiency. However, the absorbance spectra of most Ru-sensitizers limited up to 600 nm, which maybe prohibiting further improvement of short-circuit current density (Jsc). To address this problem, TER-HDT was designed and synthesized by incorporating hexyl dithiafulvalene (HDT)-substituted bipyridine as an ancillary ligand and [2,2′:6′,2′'-terpyridine]-4,4′,4′'-tricarboxylic acid as anchoring ligand together. The synthesized TER-HDT was systematically studied and characterized by spectroscopic (proton NMR, Mass analysis), optical (UV-absorbance and photoluminescence), electrochemical and theoretical techniques. The novel sensitizer TER-HDT absorption tailed up to 900 nm, which originated from the enhanced intermolecular charge transfer in conjunction with efficient intra and intermolecular interactions. The HOMO and LUMO energy levels TER-HDT are suitable for electron injection and regeneration which may help to achieve high efficiency.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid bw Sachin Thawarkar;
    Sachin Thawarkar
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Sachin Thawarkar in OpenAIRE
    orcid Sachin R. Rondiya;
    Sachin R. Rondiya
    ORCID
    Harvested from ORCID Public Data File

    Sachin R. Rondiya in OpenAIRE
    orcid Prem Jyoti Singh Rana;
    Prem Jyoti Singh Rana
    ORCID
    Harvested from ORCID Public Data File

    Prem Jyoti Singh Rana in OpenAIRE
    Ramanuj Narayan; +2 Authors

    Herein, we report a novel layered lead bromide, (CH3CH[Formula: see text]N[Formula: see text]Br[Formula: see text](CH[Formula: see text]NH[Formula: see text]PbBr3, where bulky organic cations, (CH3CH[Formula: see text]N[Formula: see text]Br[Formula: see text](CH[Formula: see text]NH[Formula: see text], amino-ethyl triethyl ammonium [aetriea] were not only incorporated between the inorganic layers but also sandwiched within the inorganic [PbBr6][Formula: see text] octahedral layered structure. The UV-Visible, photoluminescence spectroscopy (PL), X-ray diffraction (XRD) and a field-emission scanning electron microscope (FE-SEM) result show that the new perovskitoid has a microrod shape with an estimated bandgap of [Formula: see text]3.05 eV. The structural and optoelectronic properties of the [aetriea]PbBr3perovskitoid were further corroborated by first-principles density functional theory (DFT) calculations. Thermogravimetric analysis (TGA) data show good stability of the [aetriea]PbBr3perovskitoid. Time-resolved photoluminescence (TRPL) decays from new [aetriea]PbBr3perovskitoid showing 6 ns average lifetime. These results suggest that doubly charged cation hybrid perovskite materials are potential candidates for optoelectronic applications.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Functional Materials Letters
    Article
    License: CC BY
    Data sources: UnpayWall
    Functional Materials Letters
    Article . 2021 . Peer-reviewed
    Data sources: Crossref
    https://dx.doi.org/10.60692/37...
    Other literature type . 2021
    Data sources: Datacite
    https://dx.doi.org/10.60692/7h...
    Other literature type . 2021
    Data sources: Datacite
    addClaim
    Access Routes
    Green
    hybrid
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Functional Materials Letters
      Article
      License: CC BY
      Data sources: UnpayWall
      Functional Materials Letters
      Article . 2021 . Peer-reviewed
      Data sources: Crossref
      https://dx.doi.org/10.60692/37...
      Other literature type . 2021
      Data sources: Datacite
      https://dx.doi.org/10.60692/7h...
      Other literature type . 2021
      Data sources: Datacite
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Prem Jyoti Singh Rana;
    Prem Jyoti Singh Rana
    ORCID
    Harvested from ORCID Public Data File

    Prem Jyoti Singh Rana in OpenAIRE
    orcid Surya Prakash Singh;
    Surya Prakash Singh
    ORCID
    Harvested from ORCID Public Data File

    Surya Prakash Singh in OpenAIRE
    Surya Prakash Singh; Ashraful Islam; +2 Authors

    Abstract Two new thiocyanato-free Ru sensitizers GS1 and GS2 having substitutions at the central pyridyl group of the terpyridine ligand successfully synthesized. GS1 and GS2 were used as photosensitizers for DSSCs devices. These sensitizers were characterized by 1 H NMR, FT-IR, UV–visible, and differential pulse voltammetry studies. The optical and electrochemical properties of these sensitizers were compared with N749 dye. The fabricated device with these complexes portrays an efficient panchromatic sensitization which covers the entire region from visible to NIR. Time-correlated single photon counting (TCSPC) experiment was also performed to study the charge carrier dynamics of both the sensitizers. The average excited state-life time of the GS1 and GS2 sensitizers on TiO 2 is 4.04 ns and 3.07 ns respectively, which was much better compared to the reference sensitizer (0.25 ns). Among these two sensitizers, GS2 exhibited a maximum overall power conversion efficiency of 3.25% under standard air mass 1.5 irradiation (100 mW cm −2 ) with the J sc = 10.073 mA/cm 2 , the V oc = 0.451 V, and the FF = 0.714.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • Authors: orcid Rajnish Kurchania;
    Rajnish Kurchania
    ORCID
    Harvested from ORCID Public Data File

    Rajnish Kurchania in OpenAIRE
    Gulshan Sharma; John A. Mikroyannidis; orcid Surya Prakash Singh;
    Surya Prakash Singh
    ORCID
    Harvested from ORCID Public Data File

    Surya Prakash Singh in OpenAIRE
    +2 Authors

    Dye sensitized solar cells (DSSCs) were fabricated using two metal-free organic dyes, TA-St-CA and D, with complementary absorption bands in the visible and near infrared regions. The power conversion efficiency (PCE) of the cosensitized DSSC (6.26%) was improved when compared to DSSCs based on individual dyes TA-St-CA (4.98%) or D (4.22%). The PCE was further enhanced up to 7.19% when deoxycholic acid (DCA) was added to the mixed dye solution as a coadsorbant. The enhancement of PCE observed in the cosensitized DSSC by addition of DCA was attributed to both suppression of dye aggregation and prevention of the backward electron transfer from the conduction band of TiO2.

    addClaim
    16
    citations16
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right
Powered by OpenAIRE graph