- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2021Embargo end date: 07 Oct 2021 United Kingdom, Slovenia, SwitzerlandPublisher:Copernicus GmbH Funded by:SNSF | Source apportionment usin..., SNSF | Influence of Intra-Partic..., EC | ERA-PLANETSNSF| Source apportionment using long-term Aerosol Mass Spectrometry and Aethalometer Measurements (SAMSAM) ,SNSF| Influence of Intra-Particle Reactions on Secondary Organic Aerosol Health Effects and Optical Properties (IPR-SHOP) ,EC| ERA-PLANETA. K. Tobler; A. K. Tobler; A. Skiba; F. Canonaco; G. Močnik; G. Močnik; P. Rai; G. Chen; J. Bartyzel; M. Zimnoch; K. Styszko; J. Nęcki; M. Furger; K. Różański; U. Baltensperger; J. G. Slowik; A. S. H. Prevot;Abstract. Kraków is routinely affected by very high air pollution levels, especially during the winter months. Although a lot of effort has been made to characterize ambient aerosol, there is a lack of online and long-term measurements of non-refractory aerosol. Our measurements at the AGH University of Science and Technology provide the online long-term chemical composition of ambient submicron particulate matter (PM1) between January 2018 and April 2019. Here we report the chemical characterization of non-refractory submicron aerosol and source apportionment of the organic fraction by positive matrix factorization (PMF). In contrast to other long-term source apportionment studies, we let a small PMF window roll over the dataset instead of performing PMF over the full dataset or on separate seasons. In this way, the seasonal variation in the source profiles can be captured. The uncertainties in the PMF solutions are addressed by the bootstrap resampling strategy and the random a-value approach for constrained factors. We observe clear seasonal patterns in the concentration and composition of PM1, with high concentrations during the winter months and lower concentrations during the summer months. Organics are the dominant species throughout the campaign. Five organic aerosol (OA) factors are resolved, of which three are of a primary nature (hydrocarbon-like OA (HOA), biomass burning OA (BBOA) and coal combustion OA (CCOA)) and two are of a secondary nature (more oxidized oxygenated OA (MO-OOA) and less oxidized oxygenated OA (LO-OOA)). While HOA contributes on average 8.6 % ± 2.3 % throughout the campaign, the solid-fuel-combustion-related BBOA and CCOA show a clear seasonal trend with average contributions of 10.4 % ± 2.7 % and 14.1 %, ±2.1 %, respectively. Not only BBOA but also CCOA is associated with residential heating because of the pronounced yearly cycle where the highest contributions are observed during wintertime. Throughout the campaign, the OOA can be separated into MO-OOA and LO-OOA with average contributions of 38.4 % ± 8.4 % and 28.5 % ± 11.2 %, respectively.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/99917Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and Physics (ACP)Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital RepositoryRepository of University of Nova GoricaArticle . 2021Data sources: Repository of University of Nova Goricaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-21-14893-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/99917Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and Physics (ACP)Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital RepositoryRepository of University of Nova GoricaArticle . 2021Data sources: Repository of University of Nova Goricaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-21-14893-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 France, China (People's Republic of)Publisher:American Chemical Society (ACS) Funded by:SNSF | Influence of Intra-Partic..., SNSF | WOOd combustion and SHIpp...SNSF| Influence of Intra-Particle Reactions on Secondary Organic Aerosol Health Effects and Optical Properties (IPR-SHOP) ,SNSF| WOOd combustion and SHIpping - primary aerosol emissions and secondary aerosol formation potential (WOOSHI)Jay G. Slowik; Amelie Bertrand; Brice Temime-Roussel; Dogushan Kilic; Felix Klein; Junji Cao; Imad El Haddad; Ru-Jin Huang; Ru-Jin Huang; Nicolas Marchand; André S. H. Prévôt; Giulia Stefenelli; Haiyan Ni; Veronika Pospisilova; Urs Baltensperger; Simone M. Pieber;pmid: 29436222
Residential coal combustion is a significant contributor to particulate urban air pollution in Chinese mega cities and some regions in Europe. While the particulate emission factors and the chemical characteristics of the organic and inorganic aerosol from coal combustion have been extensively studied, the chemical composition and nonmethane organic gas (NMOG) emission factors from residential coal combustion are mostly unknown. We conducted 23 individual burns in a traditional Chinese stove used for heating and cooking using five different coals with Chinese origins, characterizing the NMOG emissions using a proton transfer reaction time-of-flight mass spectrometer. The measured emission factors range from 1.5 to 14.1 g/kgcoal for bituminous coals and are below 0.1 g/kgcoal for anthracite coals. The emission factors from the bituminous coals are mostly influenced by the time until the coal is fully ignited. The emissions from the bituminous coals are dominated by aromatic and oxygenated aromatic compounds with a significant contribution of hydrocarbons. The results of this study can help to improve urban air pollution modeling in China and Eastern Europe and can be used to constrain a coal burning factor in ambient gas phase positive matrix factorization studies.
Hyper Article en Lig... arrow_drop_down Environmental Science & TechnologyArticle . 2018 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefEnvironmental Science & TechnologyArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWallINRIA a CCSD electronic archive serverArticle . 2018Data sources: INRIA a CCSD electronic archive serverInstitute of Earth Environment: IEECAS OpenIR (Chinese Academy of Sciences)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.7b03960&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Environmental Science & TechnologyArticle . 2018 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefEnvironmental Science & TechnologyArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWallINRIA a CCSD electronic archive serverArticle . 2018Data sources: INRIA a CCSD electronic archive serverInstitute of Earth Environment: IEECAS OpenIR (Chinese Academy of Sciences)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.7b03960&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Embargo end date: 01 Jan 2015 Netherlands, Italy, Italy, United Kingdom, SwitzerlandPublisher:Copernicus GmbH Funded by:EC | ACCENT-PLUS, EC | ATMOGAINEC| ACCENT-PLUS ,EC| ATMOGAINS. Fuzzi; U. Baltensperger; K. Carslaw; S. Decesari; H. Denier van der Gon; M. C. Facchini; D. Fowler; I. Koren; B. Langford; U. Lohmann; E. Nemitz; S. Pandis; I. Riipinen; Y. Rudich; M. Schaap; J. Slowik; D. V. Spracklen; E. Vignati; M. Wild; M. Williams; S. Gilardoni;Abstract. The literature on atmospheric particulate matter (PM), or atmospheric aerosol, has increased enormously over the last 2 decades and amounts now to some 1500–2000 papers per year in the refereed literature. This is in part due to the enormous advances in measurement technologies, which have allowed for an increasingly accurate understanding of the chemical composition and of the physical properties of atmospheric particles and of their processes in the atmosphere. The growing scientific interest in atmospheric aerosol particles is due to their high importance for environmental policy. In fact, particulate matter constitutes one of the most challenging problems both for air quality and for climate change policies. In this context, this paper reviews the most recent results within the atmospheric aerosol sciences and the policy needs, which have driven much of the increase in monitoring and mechanistic research over the last 2 decades. The synthesis reveals many new processes and developments in the science underpinning climate–aerosol interactions and effects of PM on human health and the environment. However, while airborne particulate matter is responsible for globally important influences on premature human mortality, we still do not know the relative importance of the different chemical components of PM for these effects. Likewise, the magnitude of the overall effects of PM on climate remains highly uncertain. Despite the uncertainty there are many things that could be done to mitigate local and global problems of atmospheric PM. Recent analyses have shown that reducing black carbon (BC) emissions, using known control measures, would reduce global warming and delay the time when anthropogenic effects on global temperature would exceed 2 °C. Likewise, cost-effective control measures on ammonia, an important agricultural precursor gas for secondary inorganic aerosols (SIA), would reduce regional eutrophication and PM concentrations in large areas of Europe, China and the USA. Thus, there is much that could be done to reduce the effects of atmospheric PM on the climate and the health of the environment and the human population. A prioritized list of actions to mitigate the full range of effects of PM is currently undeliverable due to shortcomings in the knowledge of aerosol science; among the shortcomings, the roles of PM in global climate and the relative roles of different PM precursor sources and their response to climate and land use change over the remaining decades of this century are prominent. In any case, the evidence from this paper strongly advocates for an integrated approach to air quality and climate policies.
CORE arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and Physics (ACP)Article . 2015 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/acpd-1...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)Atmospheric Chemistry and Physics DiscussionsArticle . 2015Data sources: SESAM Publication Database - FP7 ENVKing's College, London: Research PortalArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5194/acp-...Article . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.5194/acpd...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-15-8217-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 700 citations 700 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and Physics (ACP)Article . 2015 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/acpd-1...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)Atmospheric Chemistry and Physics DiscussionsArticle . 2015Data sources: SESAM Publication Database - FP7 ENVKing's College, London: Research PortalArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5194/acp-...Article . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.5194/acpd...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-15-8217-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SwitzerlandPublisher:Elsevier BV Roberto, Casotto; Alicja, Skiba; Martin, Rauber; Jan, Strähl; Anna, Tobler; Deepika, Bhattu; Houssni, Lamkaddam; Manousos I, Manousakas; Gary, Salazar; Tianqu, Cui; Francesco, Canonaco; Lucyna, Samek; Anna, Ryś; Imad, El Haddad; Anne, Kasper-Giebl; Urs, Baltensperger; Jaroslaw, Necki; Sönke, Szidat; Katarzyna, Styszko; Jay G, Slowik; André S H, Prévôt; Kaspar R, Daellenbach;pmid: 36089024
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.158655&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.158655&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Funded by:SNSF | WOOd combustion and SHIpp...SNSF| WOOd combustion and SHIpping - primary aerosol emissions and secondary aerosol formation potential (WOOSHI)Mueller Laarnie; Jakobi Gert; Czech Hendryk; Stengel Benjamin; Orasche Juergen; Arteaga-Salas Jose M.; Karg Erwin; Elsasser Michael; Sippula Olli; Streibel Thorsten; Slowik Jay G.; Prevot Andre S. H.; Jokiniemi Jorma; Rabe Rom; Harndorf Horst; Michalke Bernhard; Schnelle-Kreis Juergen; Zimmermann Ralf;Due to current and upcoming regulations to address the adverse impacts of particulate matter (PM) from shipping emissions, the maritime sector is required to find energy-efficient ways to comply mainly by using low fuel sulfur content (FSC) in regulated seas. We studied the PM emission from a research ship diesel engine with fuel switching capability, optimized for HFO used at cruising, operated at representative engine loads resulting to varying excess O2 emission which was an indirect measurement of air–fuel mixture (k), using heavy fuel oil (HFO, 1.6 S (%m)) and diesel fuel (DF, <0.001 S (%m)). We determined the
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.05.115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu80 citations 80 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.05.115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Springer Science and Business Media LLC Funded by:EC | PSI-FELLOW, SNSF | WOOd combustion and SHIpp..., SNSF | Production and Processing...EC| PSI-FELLOW ,SNSF| WOOd combustion and SHIpping - primary aerosol emissions and secondary aerosol formation potential (WOOSHI) ,SNSF| Production and Processing of Atmospheric Aerosols from Biogenic and Biomass Burning SourcesSönke Szidat; Kin Fai Ho; Imad El Haddad; Andrea Piazzalunga; Stephen Matthew Platt; Gülcin Abbaszade; Simone M. Pieber; Peter Zotter; Giancarlo Ciarelli; Urs Baltensperger; Emily A. Bruns; Monica Crippa; Zhisheng An; Kaspar R. Daellenbach; Margit Schwikowski; Yan-Lin Zhang; Robert Wolf; Ru-Jin Huang; André S. H. Prévôt; Ralf Zimmermann; Yongming Han; Carlo Bozzetti; Jay G. Slowik; Francesco Canonaco; Jürgen Schnelle-Kreis; Junji Cao;pmid: 25231863
Rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. In response to the extremely severe and persistent haze pollution experienced by about 800 million people during the first quarter of 2013 (refs 4, 5), the Chinese State Council announced its aim to reduce concentrations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 micrometres) by up to 25 per cent relative to 2012 levels by 2017 (ref. 6). Such efforts however require elucidation of the factors governing the abundance and composition of PM2.5, which remain poorly constrained in China. Here we combine a comprehensive set of novel and state-of-the-art offline analytical approaches and statistical techniques to investigate the chemical nature and sources of particulate matter at urban locations in Beijing, Shanghai, Guangzhou and Xi'an during January 2013. We find that the severe haze pollution event was driven to a large extent by secondary aerosol formation, which contributed 30-77 per cent and 44-71 per cent (average for all four cities) of PM2.5 and of organic aerosol, respectively. On average, the contribution of secondary organic aerosol (SOA) and secondary inorganic aerosol (SIA) are found to be of similar importance (SOA/SIA ratios range from 0.6 to 1.4). Our results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from, for example, fossil fuel combustion and biomass burning is likely to be important for controlling China's PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature13774&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4K citations 3,689 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature13774&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Chemical Society (ACS) Funded by:EC | EUROCHAMP-2020EC| EUROCHAMP-2020Giulia Stefenelli; Jun Zhou; Brice Temime-Roussel; Thomas Nussbaumer; Nicolas Marchand; Urs Baltensperger; Amelie Bertrand; Amelie Bertrand; Felix Klein; Jay G. Slowik; Josef Dommen; Imad El Haddad; Peter Zotter; Deepika Bhattu; André S. H. Prévôt;pmid: 30648378
We have systematically examined the gas and particle phase emissions from seven wood combustion devices. Among total carbon mass emitted (excluding CO2), CO emissions were dominant, together with nonmethane volatile organic compounds (NMVOCs) (10-40%). Automated devices emitted 1-3 orders of magnitude lower CH4 (0.002-0.60 g kg-1 of wood) and NMVOCs (0.01-1 g kg-1 of wood) compared to batch-operated devices (CH4: 0.25-2.80 g kg-1 of wood; NMVOCs: 2.5-19 g kg-1 of wood). 60-90% of the total NMVOCs were emitted in the starting phase of batch-operated devices, except for the first load cycles. Partial-load conditions or deviations from the normal recommended operating conditions, such as use of wet wood/wheat pellets, oxygen rich or deficit conditions, significantly enhanced the emissions. NMVOCs were largely dominated by small carboxylic acids and alcohols, and furans. Despite the large variability in NMVOCs emission strengths, the relative contribution of different classes showed large similarities among different devices and combustion phases. We show that specific improper operating conditions may even for advanced technology not result in the emission reduction of secondary organic aerosol (SOA) forming compounds and thus not reduce the impact of wood combustion on climate and health.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefEnvironmental Science & TechnologyArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWallEnvironmental Science & TechnologyArticleLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: SygmaEnvironmental Science & TechnologyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.8b05020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefEnvironmental Science & TechnologyArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWallEnvironmental Science & TechnologyArticleLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: SygmaEnvironmental Science & TechnologyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.8b05020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Chemical Society (ACS) Funded by:EC | BLACARATEC| BLACARATUlrike Dusek; Jay G. Slowik; Junji Cao; Giulia Stefenelli; André S. H. Prévôt; Lu Yang; Felix Klein; Ru-Jin Huang; Ru-Jin Huang; Martin Gysel-Beer; Haiyan Ni; Haiyan Ni; Imad El Haddad; Simone M. Pieber; Joel C. Corbin; Veronika Pospisilova; Urs Baltensperger;Smog chamber experiments were conducted to characterize the light absorption of brown carbon (BrC) from primary and photochemically aged coal combustion emissions. Light absorption was measured by the UV-visible spectrophotometric analysis of water and methanol extracts of filter samples. The single-scattering albedo at 450 nm was 0.73 ± 0.10 for primary emissions and 0.75 ± 0.13 for aged emissions. The light absorption coefficient at 365 nm of methanol extracts was higher than that of water extracts by a factor of 10 for primary emissions and a factor of 7 for aged emissions. This suggests that the majority of BrC is water-insoluble even after aging. The mass absorption efficiency of this BrC (MAE365) for primary OA (POA) was dependent on combustion conditions, with an average of 0.84 ± 0.54 m2 g-1, which was significantly higher than that for aged OA (0.24 ± 0.18 m2 g-1). Secondary OA (SOA) dominated aged OA and the decreased MAE365 after aging indicates that SOA is less light absorbing than POA and/or that BrC is bleached (oxidized) with aging. The estimated MAE365 of SOA (0.14 ± 0.08 m2 g-1) was much lower than that of POA. A comparison of MAE365 of residential coal combustion with other anthropogenic sources suggests that residential coal combustion emissions are among the strongest absorbing BrC organics.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021License: taverneData sources: University of Groningen Research PortalEnvironmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.0c08084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021License: taverneData sources: University of Groningen Research PortalEnvironmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.0c08084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 01 Jan 2021 Switzerland, SwitzerlandPublisher:Elsevier BV Funded by:EC | PSI-FELLOW-II-3iEC| PSI-FELLOW-II-3iStamatios Giannoukos; Jay G. Slowik; Serge M.A. Biollaz; Christian Ludwig; Christian Ludwig; Mohamed Tarik; Urs Baltensperger; André S. H. Prévôt;On-line measurements of metal emissions in energy conversion systems at very low concentrations are difficult to perform using existing techniques. Metals are of high importance due to their detrimental impact on human health, the environment and various industrial processes and/or equipment. Herewith and for the first time, we report the real-time detection and characterization of metals and trace elements in a Swiss biogas production plant using a novel technology based on an extractive electrospray ionization (EESI) source coupled to a high-resolution time-of-flight mass spectrometer (TOF-MS). The deployment examines the ability of the EESI-TOF to resolve highly transient signals, while providing a relatively straightforward and well-characterized platform for in-field diagnostic measurements. The EESI-TOF-MS was operated in the negative ion production and detection mode, and qualitative and quantitative results for a range of trace metals (e.g. Fe, Cu, Zn, Cd, Pb, etc.) were obtained. On-site results showed fast responses (1 Hz) and detection limits below 3 ng/m(3). In addition, the EESI-TOF-MS was used for the off-line analysis of condensable trace metals of biogas samples collected using a continuous liquid-quench sampling system in 2-propanol. The results of the offline and online methods were compared and show good agreement. Renewable Energy, 169 ISSN:0960-1481 ISSN:1879-0682
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.01.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.01.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2021Embargo end date: 07 Oct 2021 United Kingdom, Slovenia, SwitzerlandPublisher:Copernicus GmbH Funded by:SNSF | Source apportionment usin..., SNSF | Influence of Intra-Partic..., EC | ERA-PLANETSNSF| Source apportionment using long-term Aerosol Mass Spectrometry and Aethalometer Measurements (SAMSAM) ,SNSF| Influence of Intra-Particle Reactions on Secondary Organic Aerosol Health Effects and Optical Properties (IPR-SHOP) ,EC| ERA-PLANETA. K. Tobler; A. K. Tobler; A. Skiba; F. Canonaco; G. Močnik; G. Močnik; P. Rai; G. Chen; J. Bartyzel; M. Zimnoch; K. Styszko; J. Nęcki; M. Furger; K. Różański; U. Baltensperger; J. G. Slowik; A. S. H. Prevot;Abstract. Kraków is routinely affected by very high air pollution levels, especially during the winter months. Although a lot of effort has been made to characterize ambient aerosol, there is a lack of online and long-term measurements of non-refractory aerosol. Our measurements at the AGH University of Science and Technology provide the online long-term chemical composition of ambient submicron particulate matter (PM1) between January 2018 and April 2019. Here we report the chemical characterization of non-refractory submicron aerosol and source apportionment of the organic fraction by positive matrix factorization (PMF). In contrast to other long-term source apportionment studies, we let a small PMF window roll over the dataset instead of performing PMF over the full dataset or on separate seasons. In this way, the seasonal variation in the source profiles can be captured. The uncertainties in the PMF solutions are addressed by the bootstrap resampling strategy and the random a-value approach for constrained factors. We observe clear seasonal patterns in the concentration and composition of PM1, with high concentrations during the winter months and lower concentrations during the summer months. Organics are the dominant species throughout the campaign. Five organic aerosol (OA) factors are resolved, of which three are of a primary nature (hydrocarbon-like OA (HOA), biomass burning OA (BBOA) and coal combustion OA (CCOA)) and two are of a secondary nature (more oxidized oxygenated OA (MO-OOA) and less oxidized oxygenated OA (LO-OOA)). While HOA contributes on average 8.6 % ± 2.3 % throughout the campaign, the solid-fuel-combustion-related BBOA and CCOA show a clear seasonal trend with average contributions of 10.4 % ± 2.7 % and 14.1 %, ±2.1 %, respectively. Not only BBOA but also CCOA is associated with residential heating because of the pronounced yearly cycle where the highest contributions are observed during wintertime. Throughout the campaign, the OOA can be separated into MO-OOA and LO-OOA with average contributions of 38.4 % ± 8.4 % and 28.5 % ± 11.2 %, respectively.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/99917Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and Physics (ACP)Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital RepositoryRepository of University of Nova GoricaArticle . 2021Data sources: Repository of University of Nova Goricaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-21-14893-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/99917Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and Physics (ACP)Article . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital RepositoryRepository of University of Nova GoricaArticle . 2021Data sources: Repository of University of Nova Goricaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-21-14893-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 France, China (People's Republic of)Publisher:American Chemical Society (ACS) Funded by:SNSF | Influence of Intra-Partic..., SNSF | WOOd combustion and SHIpp...SNSF| Influence of Intra-Particle Reactions on Secondary Organic Aerosol Health Effects and Optical Properties (IPR-SHOP) ,SNSF| WOOd combustion and SHIpping - primary aerosol emissions and secondary aerosol formation potential (WOOSHI)Jay G. Slowik; Amelie Bertrand; Brice Temime-Roussel; Dogushan Kilic; Felix Klein; Junji Cao; Imad El Haddad; Ru-Jin Huang; Ru-Jin Huang; Nicolas Marchand; André S. H. Prévôt; Giulia Stefenelli; Haiyan Ni; Veronika Pospisilova; Urs Baltensperger; Simone M. Pieber;pmid: 29436222
Residential coal combustion is a significant contributor to particulate urban air pollution in Chinese mega cities and some regions in Europe. While the particulate emission factors and the chemical characteristics of the organic and inorganic aerosol from coal combustion have been extensively studied, the chemical composition and nonmethane organic gas (NMOG) emission factors from residential coal combustion are mostly unknown. We conducted 23 individual burns in a traditional Chinese stove used for heating and cooking using five different coals with Chinese origins, characterizing the NMOG emissions using a proton transfer reaction time-of-flight mass spectrometer. The measured emission factors range from 1.5 to 14.1 g/kgcoal for bituminous coals and are below 0.1 g/kgcoal for anthracite coals. The emission factors from the bituminous coals are mostly influenced by the time until the coal is fully ignited. The emissions from the bituminous coals are dominated by aromatic and oxygenated aromatic compounds with a significant contribution of hydrocarbons. The results of this study can help to improve urban air pollution modeling in China and Eastern Europe and can be used to constrain a coal burning factor in ambient gas phase positive matrix factorization studies.
Hyper Article en Lig... arrow_drop_down Environmental Science & TechnologyArticle . 2018 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefEnvironmental Science & TechnologyArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWallINRIA a CCSD electronic archive serverArticle . 2018Data sources: INRIA a CCSD electronic archive serverInstitute of Earth Environment: IEECAS OpenIR (Chinese Academy of Sciences)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.7b03960&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Environmental Science & TechnologyArticle . 2018 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefEnvironmental Science & TechnologyArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWallINRIA a CCSD electronic archive serverArticle . 2018Data sources: INRIA a CCSD electronic archive serverInstitute of Earth Environment: IEECAS OpenIR (Chinese Academy of Sciences)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.7b03960&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Embargo end date: 01 Jan 2015 Netherlands, Italy, Italy, United Kingdom, SwitzerlandPublisher:Copernicus GmbH Funded by:EC | ACCENT-PLUS, EC | ATMOGAINEC| ACCENT-PLUS ,EC| ATMOGAINS. Fuzzi; U. Baltensperger; K. Carslaw; S. Decesari; H. Denier van der Gon; M. C. Facchini; D. Fowler; I. Koren; B. Langford; U. Lohmann; E. Nemitz; S. Pandis; I. Riipinen; Y. Rudich; M. Schaap; J. Slowik; D. V. Spracklen; E. Vignati; M. Wild; M. Williams; S. Gilardoni;Abstract. The literature on atmospheric particulate matter (PM), or atmospheric aerosol, has increased enormously over the last 2 decades and amounts now to some 1500–2000 papers per year in the refereed literature. This is in part due to the enormous advances in measurement technologies, which have allowed for an increasingly accurate understanding of the chemical composition and of the physical properties of atmospheric particles and of their processes in the atmosphere. The growing scientific interest in atmospheric aerosol particles is due to their high importance for environmental policy. In fact, particulate matter constitutes one of the most challenging problems both for air quality and for climate change policies. In this context, this paper reviews the most recent results within the atmospheric aerosol sciences and the policy needs, which have driven much of the increase in monitoring and mechanistic research over the last 2 decades. The synthesis reveals many new processes and developments in the science underpinning climate–aerosol interactions and effects of PM on human health and the environment. However, while airborne particulate matter is responsible for globally important influences on premature human mortality, we still do not know the relative importance of the different chemical components of PM for these effects. Likewise, the magnitude of the overall effects of PM on climate remains highly uncertain. Despite the uncertainty there are many things that could be done to mitigate local and global problems of atmospheric PM. Recent analyses have shown that reducing black carbon (BC) emissions, using known control measures, would reduce global warming and delay the time when anthropogenic effects on global temperature would exceed 2 °C. Likewise, cost-effective control measures on ammonia, an important agricultural precursor gas for secondary inorganic aerosols (SIA), would reduce regional eutrophication and PM concentrations in large areas of Europe, China and the USA. Thus, there is much that could be done to reduce the effects of atmospheric PM on the climate and the health of the environment and the human population. A prioritized list of actions to mitigate the full range of effects of PM is currently undeliverable due to shortcomings in the knowledge of aerosol science; among the shortcomings, the roles of PM in global climate and the relative roles of different PM precursor sources and their response to climate and land use change over the remaining decades of this century are prominent. In any case, the evidence from this paper strongly advocates for an integrated approach to air quality and climate policies.
CORE arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and Physics (ACP)Article . 2015 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/acpd-1...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)Atmospheric Chemistry and Physics DiscussionsArticle . 2015Data sources: SESAM Publication Database - FP7 ENVKing's College, London: Research PortalArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5194/acp-...Article . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.5194/acpd...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-15-8217-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 700 citations 700 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and Physics (ACP)Article . 2015 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/acpd-1...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)Atmospheric Chemistry and Physics DiscussionsArticle . 2015Data sources: SESAM Publication Database - FP7 ENVKing's College, London: Research PortalArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.5194/acp-...Article . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.5194/acpd...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-15-8217-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SwitzerlandPublisher:Elsevier BV Roberto, Casotto; Alicja, Skiba; Martin, Rauber; Jan, Strähl; Anna, Tobler; Deepika, Bhattu; Houssni, Lamkaddam; Manousos I, Manousakas; Gary, Salazar; Tianqu, Cui; Francesco, Canonaco; Lucyna, Samek; Anna, Ryś; Imad, El Haddad; Anne, Kasper-Giebl; Urs, Baltensperger; Jaroslaw, Necki; Sönke, Szidat; Katarzyna, Styszko; Jay G, Slowik; André S H, Prévôt; Kaspar R, Daellenbach;pmid: 36089024
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.158655&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.158655&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Funded by:SNSF | WOOd combustion and SHIpp...SNSF| WOOd combustion and SHIpping - primary aerosol emissions and secondary aerosol formation potential (WOOSHI)Mueller Laarnie; Jakobi Gert; Czech Hendryk; Stengel Benjamin; Orasche Juergen; Arteaga-Salas Jose M.; Karg Erwin; Elsasser Michael; Sippula Olli; Streibel Thorsten; Slowik Jay G.; Prevot Andre S. H.; Jokiniemi Jorma; Rabe Rom; Harndorf Horst; Michalke Bernhard; Schnelle-Kreis Juergen; Zimmermann Ralf;Due to current and upcoming regulations to address the adverse impacts of particulate matter (PM) from shipping emissions, the maritime sector is required to find energy-efficient ways to comply mainly by using low fuel sulfur content (FSC) in regulated seas. We studied the PM emission from a research ship diesel engine with fuel switching capability, optimized for HFO used at cruising, operated at representative engine loads resulting to varying excess O2 emission which was an indirect measurement of air–fuel mixture (k), using heavy fuel oil (HFO, 1.6 S (%m)) and diesel fuel (DF, <0.001 S (%m)). We determined the
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.05.115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu80 citations 80 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.05.115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Springer Science and Business Media LLC Funded by:EC | PSI-FELLOW, SNSF | WOOd combustion and SHIpp..., SNSF | Production and Processing...EC| PSI-FELLOW ,SNSF| WOOd combustion and SHIpping - primary aerosol emissions and secondary aerosol formation potential (WOOSHI) ,SNSF| Production and Processing of Atmospheric Aerosols from Biogenic and Biomass Burning SourcesSönke Szidat; Kin Fai Ho; Imad El Haddad; Andrea Piazzalunga; Stephen Matthew Platt; Gülcin Abbaszade; Simone M. Pieber; Peter Zotter; Giancarlo Ciarelli; Urs Baltensperger; Emily A. Bruns; Monica Crippa; Zhisheng An; Kaspar R. Daellenbach; Margit Schwikowski; Yan-Lin Zhang; Robert Wolf; Ru-Jin Huang; André S. H. Prévôt; Ralf Zimmermann; Yongming Han; Carlo Bozzetti; Jay G. Slowik; Francesco Canonaco; Jürgen Schnelle-Kreis; Junji Cao;pmid: 25231863
Rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. In response to the extremely severe and persistent haze pollution experienced by about 800 million people during the first quarter of 2013 (refs 4, 5), the Chinese State Council announced its aim to reduce concentrations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 micrometres) by up to 25 per cent relative to 2012 levels by 2017 (ref. 6). Such efforts however require elucidation of the factors governing the abundance and composition of PM2.5, which remain poorly constrained in China. Here we combine a comprehensive set of novel and state-of-the-art offline analytical approaches and statistical techniques to investigate the chemical nature and sources of particulate matter at urban locations in Beijing, Shanghai, Guangzhou and Xi'an during January 2013. We find that the severe haze pollution event was driven to a large extent by secondary aerosol formation, which contributed 30-77 per cent and 44-71 per cent (average for all four cities) of PM2.5 and of organic aerosol, respectively. On average, the contribution of secondary organic aerosol (SOA) and secondary inorganic aerosol (SIA) are found to be of similar importance (SOA/SIA ratios range from 0.6 to 1.4). Our results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from, for example, fossil fuel combustion and biomass burning is likely to be important for controlling China's PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature13774&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4K citations 3,689 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature13774&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:American Chemical Society (ACS) Funded by:EC | EUROCHAMP-2020EC| EUROCHAMP-2020Giulia Stefenelli; Jun Zhou; Brice Temime-Roussel; Thomas Nussbaumer; Nicolas Marchand; Urs Baltensperger; Amelie Bertrand; Amelie Bertrand; Felix Klein; Jay G. Slowik; Josef Dommen; Imad El Haddad; Peter Zotter; Deepika Bhattu; André S. H. Prévôt;pmid: 30648378
We have systematically examined the gas and particle phase emissions from seven wood combustion devices. Among total carbon mass emitted (excluding CO2), CO emissions were dominant, together with nonmethane volatile organic compounds (NMVOCs) (10-40%). Automated devices emitted 1-3 orders of magnitude lower CH4 (0.002-0.60 g kg-1 of wood) and NMVOCs (0.01-1 g kg-1 of wood) compared to batch-operated devices (CH4: 0.25-2.80 g kg-1 of wood; NMVOCs: 2.5-19 g kg-1 of wood). 60-90% of the total NMVOCs were emitted in the starting phase of batch-operated devices, except for the first load cycles. Partial-load conditions or deviations from the normal recommended operating conditions, such as use of wet wood/wheat pellets, oxygen rich or deficit conditions, significantly enhanced the emissions. NMVOCs were largely dominated by small carboxylic acids and alcohols, and furans. Despite the large variability in NMVOCs emission strengths, the relative contribution of different classes showed large similarities among different devices and combustion phases. We show that specific improper operating conditions may even for advanced technology not result in the emission reduction of secondary organic aerosol (SOA) forming compounds and thus not reduce the impact of wood combustion on climate and health.
Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefEnvironmental Science & TechnologyArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWallEnvironmental Science & TechnologyArticleLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: SygmaEnvironmental Science & TechnologyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.8b05020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science & TechnologyArticle . 2019 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefEnvironmental Science & TechnologyArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWallEnvironmental Science & TechnologyArticleLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: SygmaEnvironmental Science & TechnologyArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.8b05020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:American Chemical Society (ACS) Funded by:EC | BLACARATEC| BLACARATUlrike Dusek; Jay G. Slowik; Junji Cao; Giulia Stefenelli; André S. H. Prévôt; Lu Yang; Felix Klein; Ru-Jin Huang; Ru-Jin Huang; Martin Gysel-Beer; Haiyan Ni; Haiyan Ni; Imad El Haddad; Simone M. Pieber; Joel C. Corbin; Veronika Pospisilova; Urs Baltensperger;Smog chamber experiments were conducted to characterize the light absorption of brown carbon (BrC) from primary and photochemically aged coal combustion emissions. Light absorption was measured by the UV-visible spectrophotometric analysis of water and methanol extracts of filter samples. The single-scattering albedo at 450 nm was 0.73 ± 0.10 for primary emissions and 0.75 ± 0.13 for aged emissions. The light absorption coefficient at 365 nm of methanol extracts was higher than that of water extracts by a factor of 10 for primary emissions and a factor of 7 for aged emissions. This suggests that the majority of BrC is water-insoluble even after aging. The mass absorption efficiency of this BrC (MAE365) for primary OA (POA) was dependent on combustion conditions, with an average of 0.84 ± 0.54 m2 g-1, which was significantly higher than that for aged OA (0.24 ± 0.18 m2 g-1). Secondary OA (SOA) dominated aged OA and the decreased MAE365 after aging indicates that SOA is less light absorbing than POA and/or that BrC is bleached (oxidized) with aging. The estimated MAE365 of SOA (0.14 ± 0.08 m2 g-1) was much lower than that of POA. A comparison of MAE365 of residential coal combustion with other anthropogenic sources suggests that residential coal combustion emissions are among the strongest absorbing BrC organics.
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021License: taverneData sources: University of Groningen Research PortalEnvironmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.0c08084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Environmental Science & TechnologyArticle . 2021License: taverneData sources: University of Groningen Research PortalEnvironmental Science & TechnologyArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.est.0c08084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 01 Jan 2021 Switzerland, SwitzerlandPublisher:Elsevier BV Funded by:EC | PSI-FELLOW-II-3iEC| PSI-FELLOW-II-3iStamatios Giannoukos; Jay G. Slowik; Serge M.A. Biollaz; Christian Ludwig; Christian Ludwig; Mohamed Tarik; Urs Baltensperger; André S. H. Prévôt;On-line measurements of metal emissions in energy conversion systems at very low concentrations are difficult to perform using existing techniques. Metals are of high importance due to their detrimental impact on human health, the environment and various industrial processes and/or equipment. Herewith and for the first time, we report the real-time detection and characterization of metals and trace elements in a Swiss biogas production plant using a novel technology based on an extractive electrospray ionization (EESI) source coupled to a high-resolution time-of-flight mass spectrometer (TOF-MS). The deployment examines the ability of the EESI-TOF to resolve highly transient signals, while providing a relatively straightforward and well-characterized platform for in-field diagnostic measurements. The EESI-TOF-MS was operated in the negative ion production and detection mode, and qualitative and quantitative results for a range of trace metals (e.g. Fe, Cu, Zn, Cd, Pb, etc.) were obtained. On-site results showed fast responses (1 Hz) and detection limits below 3 ng/m(3). In addition, the EESI-TOF-MS was used for the off-line analysis of condensable trace metals of biogas samples collected using a continuous liquid-quench sampling system in 2-propanol. The results of the offline and online methods were compared and show good agreement. Renewable Energy, 169 ISSN:0960-1481 ISSN:1879-0682
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.01.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.01.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu