- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2007 Germany, United Kingdom, Australia, Australia, Australia, United States, Australia, Chile, United States, Australia, Australia, United KingdomPublisher:Springer Science and Business Media LLC Power, M.J.; Marlon, J.; Ortiz, N.; Bartlein, P.J.; Harrison, S.P.; Mayle, F.E.; Ballouche, A.; Bradshaw, R.H.W.; Carcaillet, C.; Cordova, C.; Mooney, S.; Moreno, P.I.; Prentice, I.C.; Thonicke, K.; Tinner, W.; Whitlock, C.; Zhang, Y.; Zhao, Y.; Ali, A.A.; Anderson, R.S.; Beer, R.; Behling, H.; Briles, C.; Brown, K.J.; Brunelle, A.; Bush, M.; Camill, P.; Chu, G.Q.; Clark, J.; Colombaroli, D.; Connor, S.; Daniau, A.-L.; Daniels, M.; Dodson, J.; Doughty, E.; Edwards, M.E.; Finsinger, W.; Foster, D.; Frechette, J.; Gaillard, M.-J.; Gavin, D.G.; Gobet, E.; Haberle, S.; Hallett, D.J.; Higuera, P.; Hope, G.; Horn, S.; Inoue, J.; Kaltenrieder, P.; Kennedy, L.; Kong, Z.C.; Larsen, C.; Long, C.J.; Lynch, J.; Lynch, E.A.; McGlone, M.; Meeks, S.; Mensing, S.; Meyer, G.; Minckley, T.; Mohr, J.; Nelson, D.M.; New, J.; Newnham, R.; Noti, R.; Oswald, W.; Pierce, J.; Richard, P.J.H.; Rowe, C.; Sanchez Goñi, M.F.; Shuman, B.N.; Takahara, H.; Toney, J.; Turney, C.; Urrego-Sanchez, D.H.; Umbanhowar, C.; Vandergoes, M.; Vanniere, B.; Vescovi, E.; Walsh, M.; Wang, X.; Williams, N.; Wilmshurst, J.; Zhang, J.H.;Fire activity has varied globally and continuously since the last glacial maximum (LGM) in response to long-term changes in global climate and shorter-term regional changes in climate, vegetation, and human land use. We have synthesized sedimentary charcoal records of biomass burning since the LGM and present global maps showing changes in fire activity for time slices during the past 21,000 years (as differences in charcoal accumulation values compared to pre-industrial). There is strong broad-scale coherence in fire activity after the LGM, but spatial heterogeneity in the signals increases thereafter. In North America, Europe and southern South America, charcoal records indicate less-than-present fire activity during the deglacial period, from 21,000 to ∼11,000 cal yr BP. In contrast, the tropical latitudes of South America and Africa show greater-than-present fire activity from ∼19,000 to ∼17,000 cal yr BP and most sites from Indochina and Australia show greater-than-present fire activity from 16,000 to ∼13,000 cal yr BP. Many sites indicate greater-than-present or near-present activity during the Holocene with the exception of eastern North America and eastern Asia from 8,000 to ∼3,000 cal yr BP, Indonesia and Australia from 11,000 to 4,000 cal yr BP, and southern South America from 6,000 to 3,000 cal yr BP where fire activity was less than present. Regional coherence in the patterns of change in fire activity was evident throughout the post-glacial period. These complex patterns can largely be explained in terms of large-scale climate controls modulated by local changes in vegetation and fuel load.
e-Prints Soton arrow_drop_down UNSWorksArticle . 2008License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/38190Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/25688Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)ScholarWorks Boise State UniversityArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-007-0334-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 583 citations 583 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down UNSWorksArticle . 2008License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/38190Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/25688Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)ScholarWorks Boise State UniversityArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-007-0334-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:American Association for the Advancement of Science (AAAS) Mariani, Michela; Wills, Alastair; Herbert, Annika; Adeleye, Matthew; Florin, S Anna; Cadd, Haidee; Connor, Simon; Kershaw, Peter; Theuerkauf, Martin; Stevenson, Janelle; Fletcher, Michael-Shawn; Mooney, Scott; Bowman, David; Haberle, Simon;pmid: 39480950
Wildfires in forests globally have become more frequent and intense because of changes in climate and human management. Shrub layer fuels allow fire to spread vertically to forest canopy, creating high-intensity fires. Our research provides a deep-time perspective on shrub fuel loads in fire-prone southeastern Australia. Comparing 2833 records for vegetation cover, past climate, biomass burning, and human population size across different phases of human occupation, we demonstrated that Indigenous population expansion and cultural fire use resulted in a 50% reduction in shrub cover, from approximately 30% from the early to mid-Holocene (12 to 6 thousand years ago) to 15% during the late to mid-Holocene (6 to 1 thousand years ago). Since the start of British colonization to the present, shrub cover has increased to the highest ever recorded (mean of 35% land cover), increasing the risk of high-intensity fires.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adn8668&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adn8668&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:Wiley Authors: Matthew Adesanya Adeleye; Simon Edward Connor; Simon Graeme Haberle; Sarah Ivory; +1 AuthorsMatthew Adesanya Adeleye; Simon Edward Connor; Simon Graeme Haberle; Sarah Ivory; Peter Adegbenga Adeonipekun;doi: 10.1111/geb.13518
handle: 1885/316996
AbstractAimOwing to its diverse bioclimatic zones, long human history and intense anthropogenic impacts, Africa provides a model system for studying how global terrestrial ecosystems might respond to accelerated socio‐environmental stress. Africa is particularly vulnerable to climate change and human impact, and insufficient baseline data hamper current environmental management efforts. Using palaeoecological data, we seek to identify the timing, pace and drivers of change in African biomes on a long‐term scale to inform current ecosystem management frameworks on the continent.LocationAfrica.Time period0–12 ka.Major taxa studiedAfrican biomes.MethodsSixty‐four pollen records across Africa and nearby sites were retrieved from multiple databases/sources and grouped into biomes. Turnover (quantified using the squared chord distance dissimilarity metric) and rarefaction analyses were conducted on pollen records in each biome group to reconstruct regional temporal vegetation turnover and richness. Reconstructed vegetation turnover and richness were compared with independent records of climate, fire and human activity to identify possible drivers of change.ResultsWe found that the most stable biomes were those with the greatest floristic richness. Southern Africa's mediterranean‐type (SAM) ecosystems were the most stable and northern Africa's mediterranean‐type (NAM) ecosystems were the most unstable (mainly owing to fire). Tropical savannas (TS) and SAM ecosystems expressed the most sensitivity to climatic shifts from ≥6 ka, whereas tropical forests (TF) were relatively stable before human activities intensified from c. 2 ka. Floristic richness also declined across the tropics from c. 2 ka.Main conclusionsOur analysis pinpoints NAM ecosystems as undergoing the fastest acceleration in turnover on the continent in response to fire, whereas TF and TS have been undergoing unprecedented changes in biodiversity in the last 2,000 years. We expect further changes in biodiversity where climate becomes warmer and drier and where human impacts are novel and rapid in comparison to long‐term baselines.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleLicense: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Global Ecology and BiogeographyArticle . 2022 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13518&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleLicense: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Global Ecology and BiogeographyArticle . 2022 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13518&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Proceedings of the National Academy of Sciences Kelsie E. Long; Larissa Schneider; Simon E. Connor; Niamh Shulmeister; Janet Finn; Georgia L. Roberts; Atun Zawadzki; T. Gabriel Enge; John P. Smol; Chris Ballard; Simon G. Haberle;Significance Wetland environments are increasingly threatened by climate change, population expansion, resource extraction, forest clearance, and pollution. The Ramsar Convention aims to monitor internationally important wetlands to ensure their ongoing maintenance and survival through wise use and management. However, many wetlands have undergone substantial human-induced changes prior to being listed with Ramsar. In the case of Lake Kutubu, a Ramsar wetland situated in the tropical rainforests of Papua New Guinea, paleoecological indicators preserved in lake sediments have been used to identify baseline conditions and to track anthropogenic impacts over time. This methodology can be applied to wetlands around the world to determine baseline environmental conditions and to track historic ecological changes in areas where constant monitoring has not been possible.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2022216118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2022216118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Elsevier BV Anna Lintern; Paul J. Leahy; Atun Zawadzki; Patricia Gadd; Henk Heijnis; Geraldine Jacobsen; Simon Connor; Ana Deletic; David T. McCarthy;pmid: 26779954
Anthropogenic activities are contributing to the changing hydrology of rivers, often resulting in their degradation. Understanding the drivers and nature of these changes is critical for the design and implementation of effective mitigation strategies for these systems. However, this can be hindered by gaps in historical measured flow data. This study therefore aims to use sediment cores to identify historical hydrological changes within a river catchment. Sediment cores from two floodplain lakes (billabongs) in the urbanised Yarra River catchment (Melbourne, South-East Australia) were collected and high resolution images, trends in magnetic susceptibility and trends in elemental composition through the sedimentary records were obtained. These were used to infer historical changes in river hydrology to determine both average trends in hydrology (i.e., coarse temporal resolution) as well as discrete flood layers in the sediment cores (i.e., fine temporal resolution). Through the 20th century, both billabongs became increasingly disconnected from the river, as demonstrated by the decreasing trends in magnetic susceptibility, particle size and inorganic matter in the cores. Additionally the number of discrete flood layers decreased up the cores. These reconstructed trends correlate with measured flow records of the river through the 20th century, which validates the methodology that has been used in this study. Not only does this study provide evidence on how natural catchments can be affected by land-use intensification and urbanisation, but it also introduces a general analytical framework that could be applied to other river systems to assist in the design of hydrological management strategies.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefQueensland University of Technology: QUT ePrintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2015.11.153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefQueensland University of Technology: QUT ePrintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2015.11.153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2007 Germany, United Kingdom, Australia, Australia, Australia, United States, Australia, Chile, United States, Australia, Australia, United KingdomPublisher:Springer Science and Business Media LLC Power, M.J.; Marlon, J.; Ortiz, N.; Bartlein, P.J.; Harrison, S.P.; Mayle, F.E.; Ballouche, A.; Bradshaw, R.H.W.; Carcaillet, C.; Cordova, C.; Mooney, S.; Moreno, P.I.; Prentice, I.C.; Thonicke, K.; Tinner, W.; Whitlock, C.; Zhang, Y.; Zhao, Y.; Ali, A.A.; Anderson, R.S.; Beer, R.; Behling, H.; Briles, C.; Brown, K.J.; Brunelle, A.; Bush, M.; Camill, P.; Chu, G.Q.; Clark, J.; Colombaroli, D.; Connor, S.; Daniau, A.-L.; Daniels, M.; Dodson, J.; Doughty, E.; Edwards, M.E.; Finsinger, W.; Foster, D.; Frechette, J.; Gaillard, M.-J.; Gavin, D.G.; Gobet, E.; Haberle, S.; Hallett, D.J.; Higuera, P.; Hope, G.; Horn, S.; Inoue, J.; Kaltenrieder, P.; Kennedy, L.; Kong, Z.C.; Larsen, C.; Long, C.J.; Lynch, J.; Lynch, E.A.; McGlone, M.; Meeks, S.; Mensing, S.; Meyer, G.; Minckley, T.; Mohr, J.; Nelson, D.M.; New, J.; Newnham, R.; Noti, R.; Oswald, W.; Pierce, J.; Richard, P.J.H.; Rowe, C.; Sanchez Goñi, M.F.; Shuman, B.N.; Takahara, H.; Toney, J.; Turney, C.; Urrego-Sanchez, D.H.; Umbanhowar, C.; Vandergoes, M.; Vanniere, B.; Vescovi, E.; Walsh, M.; Wang, X.; Williams, N.; Wilmshurst, J.; Zhang, J.H.;Fire activity has varied globally and continuously since the last glacial maximum (LGM) in response to long-term changes in global climate and shorter-term regional changes in climate, vegetation, and human land use. We have synthesized sedimentary charcoal records of biomass burning since the LGM and present global maps showing changes in fire activity for time slices during the past 21,000 years (as differences in charcoal accumulation values compared to pre-industrial). There is strong broad-scale coherence in fire activity after the LGM, but spatial heterogeneity in the signals increases thereafter. In North America, Europe and southern South America, charcoal records indicate less-than-present fire activity during the deglacial period, from 21,000 to ∼11,000 cal yr BP. In contrast, the tropical latitudes of South America and Africa show greater-than-present fire activity from ∼19,000 to ∼17,000 cal yr BP and most sites from Indochina and Australia show greater-than-present fire activity from 16,000 to ∼13,000 cal yr BP. Many sites indicate greater-than-present or near-present activity during the Holocene with the exception of eastern North America and eastern Asia from 8,000 to ∼3,000 cal yr BP, Indonesia and Australia from 11,000 to 4,000 cal yr BP, and southern South America from 6,000 to 3,000 cal yr BP where fire activity was less than present. Regional coherence in the patterns of change in fire activity was evident throughout the post-glacial period. These complex patterns can largely be explained in terms of large-scale climate controls modulated by local changes in vegetation and fuel load.
e-Prints Soton arrow_drop_down UNSWorksArticle . 2008License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/38190Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/25688Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)ScholarWorks Boise State UniversityArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-007-0334-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 583 citations 583 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down UNSWorksArticle . 2008License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/38190Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/25688Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2007Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2008Data sources: Bielefeld Academic Search Engine (BASE)ScholarWorks Boise State UniversityArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-007-0334-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:American Association for the Advancement of Science (AAAS) Mariani, Michela; Wills, Alastair; Herbert, Annika; Adeleye, Matthew; Florin, S Anna; Cadd, Haidee; Connor, Simon; Kershaw, Peter; Theuerkauf, Martin; Stevenson, Janelle; Fletcher, Michael-Shawn; Mooney, Scott; Bowman, David; Haberle, Simon;pmid: 39480950
Wildfires in forests globally have become more frequent and intense because of changes in climate and human management. Shrub layer fuels allow fire to spread vertically to forest canopy, creating high-intensity fires. Our research provides a deep-time perspective on shrub fuel loads in fire-prone southeastern Australia. Comparing 2833 records for vegetation cover, past climate, biomass burning, and human population size across different phases of human occupation, we demonstrated that Indigenous population expansion and cultural fire use resulted in a 50% reduction in shrub cover, from approximately 30% from the early to mid-Holocene (12 to 6 thousand years ago) to 15% during the late to mid-Holocene (6 to 1 thousand years ago). Since the start of British colonization to the present, shrub cover has increased to the highest ever recorded (mean of 35% land cover), increasing the risk of high-intensity fires.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adn8668&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adn8668&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:Wiley Authors: Matthew Adesanya Adeleye; Simon Edward Connor; Simon Graeme Haberle; Sarah Ivory; +1 AuthorsMatthew Adesanya Adeleye; Simon Edward Connor; Simon Graeme Haberle; Sarah Ivory; Peter Adegbenga Adeonipekun;doi: 10.1111/geb.13518
handle: 1885/316996
AbstractAimOwing to its diverse bioclimatic zones, long human history and intense anthropogenic impacts, Africa provides a model system for studying how global terrestrial ecosystems might respond to accelerated socio‐environmental stress. Africa is particularly vulnerable to climate change and human impact, and insufficient baseline data hamper current environmental management efforts. Using palaeoecological data, we seek to identify the timing, pace and drivers of change in African biomes on a long‐term scale to inform current ecosystem management frameworks on the continent.LocationAfrica.Time period0–12 ka.Major taxa studiedAfrican biomes.MethodsSixty‐four pollen records across Africa and nearby sites were retrieved from multiple databases/sources and grouped into biomes. Turnover (quantified using the squared chord distance dissimilarity metric) and rarefaction analyses were conducted on pollen records in each biome group to reconstruct regional temporal vegetation turnover and richness. Reconstructed vegetation turnover and richness were compared with independent records of climate, fire and human activity to identify possible drivers of change.ResultsWe found that the most stable biomes were those with the greatest floristic richness. Southern Africa's mediterranean‐type (SAM) ecosystems were the most stable and northern Africa's mediterranean‐type (NAM) ecosystems were the most unstable (mainly owing to fire). Tropical savannas (TS) and SAM ecosystems expressed the most sensitivity to climatic shifts from ≥6 ka, whereas tropical forests (TF) were relatively stable before human activities intensified from c. 2 ka. Floristic richness also declined across the tropics from c. 2 ka.Main conclusionsOur analysis pinpoints NAM ecosystems as undergoing the fastest acceleration in turnover on the continent in response to fire, whereas TF and TS have been undergoing unprecedented changes in biodiversity in the last 2,000 years. We expect further changes in biodiversity where climate becomes warmer and drier and where human impacts are novel and rapid in comparison to long‐term baselines.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleLicense: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Global Ecology and BiogeographyArticle . 2022 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13518&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleLicense: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Global Ecology and BiogeographyArticle . 2022 . Peer-reviewedLicense: CC BY NCData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13518&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Proceedings of the National Academy of Sciences Kelsie E. Long; Larissa Schneider; Simon E. Connor; Niamh Shulmeister; Janet Finn; Georgia L. Roberts; Atun Zawadzki; T. Gabriel Enge; John P. Smol; Chris Ballard; Simon G. Haberle;Significance Wetland environments are increasingly threatened by climate change, population expansion, resource extraction, forest clearance, and pollution. The Ramsar Convention aims to monitor internationally important wetlands to ensure their ongoing maintenance and survival through wise use and management. However, many wetlands have undergone substantial human-induced changes prior to being listed with Ramsar. In the case of Lake Kutubu, a Ramsar wetland situated in the tropical rainforests of Papua New Guinea, paleoecological indicators preserved in lake sediments have been used to identify baseline conditions and to track anthropogenic impacts over time. This methodology can be applied to wetlands around the world to determine baseline environmental conditions and to track historic ecological changes in areas where constant monitoring has not been possible.
Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2022216118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the N... arrow_drop_down Proceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2022216118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Elsevier BV Anna Lintern; Paul J. Leahy; Atun Zawadzki; Patricia Gadd; Henk Heijnis; Geraldine Jacobsen; Simon Connor; Ana Deletic; David T. McCarthy;pmid: 26779954
Anthropogenic activities are contributing to the changing hydrology of rivers, often resulting in their degradation. Understanding the drivers and nature of these changes is critical for the design and implementation of effective mitigation strategies for these systems. However, this can be hindered by gaps in historical measured flow data. This study therefore aims to use sediment cores to identify historical hydrological changes within a river catchment. Sediment cores from two floodplain lakes (billabongs) in the urbanised Yarra River catchment (Melbourne, South-East Australia) were collected and high resolution images, trends in magnetic susceptibility and trends in elemental composition through the sedimentary records were obtained. These were used to infer historical changes in river hydrology to determine both average trends in hydrology (i.e., coarse temporal resolution) as well as discrete flood layers in the sediment cores (i.e., fine temporal resolution). Through the 20th century, both billabongs became increasingly disconnected from the river, as demonstrated by the decreasing trends in magnetic susceptibility, particle size and inorganic matter in the cores. Additionally the number of discrete flood layers decreased up the cores. These reconstructed trends correlate with measured flow records of the river through the 20th century, which validates the methodology that has been used in this study. Not only does this study provide evidence on how natural catchments can be affected by land-use intensification and urbanisation, but it also introduces a general analytical framework that could be applied to other river systems to assist in the design of hydrological management strategies.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefQueensland University of Technology: QUT ePrintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2015.11.153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefQueensland University of Technology: QUT ePrintsArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2015.11.153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu