Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Australian National ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Global Ecology and Biogeography
Article . 2022 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Long‐term drivers and timing of accelerated vegetation changes in African biomes and their management implications

Authors: Matthew Adesanya Adeleye; Simon Edward Connor; Simon Graeme Haberle; Sarah Ivory; Peter Adegbenga Adeonipekun;

Long‐term drivers and timing of accelerated vegetation changes in African biomes and their management implications

Abstract

AbstractAimOwing to its diverse bioclimatic zones, long human history and intense anthropogenic impacts, Africa provides a model system for studying how global terrestrial ecosystems might respond to accelerated socio‐environmental stress. Africa is particularly vulnerable to climate change and human impact, and insufficient baseline data hamper current environmental management efforts. Using palaeoecological data, we seek to identify the timing, pace and drivers of change in African biomes on a long‐term scale to inform current ecosystem management frameworks on the continent.LocationAfrica.Time period0–12 ka.Major taxa studiedAfrican biomes.MethodsSixty‐four pollen records across Africa and nearby sites were retrieved from multiple databases/sources and grouped into biomes. Turnover (quantified using the squared chord distance dissimilarity metric) and rarefaction analyses were conducted on pollen records in each biome group to reconstruct regional temporal vegetation turnover and richness. Reconstructed vegetation turnover and richness were compared with independent records of climate, fire and human activity to identify possible drivers of change.ResultsWe found that the most stable biomes were those with the greatest floristic richness. Southern Africa's mediterranean‐type (SAM) ecosystems were the most stable and northern Africa's mediterranean‐type (NAM) ecosystems were the most unstable (mainly owing to fire). Tropical savannas (TS) and SAM ecosystems expressed the most sensitivity to climatic shifts from ≥6 ka, whereas tropical forests (TF) were relatively stable before human activities intensified from c. 2 ka. Floristic richness also declined across the tropics from c. 2 ka.Main conclusionsOur analysis pinpoints NAM ecosystems as undergoing the fastest acceleration in turnover on the continent in response to fire, whereas TF and TS have been undergoing unprecedented changes in biodiversity in the last 2,000 years. We expect further changes in biodiversity where climate becomes warmer and drier and where human impacts are novel and rapid in comparison to long‐term baselines.

Country
Australia
Keywords

human impact, African biodiversity, vegetation turnover, African vegetation, 333, climate change, beta diversity, diversity– stability hypothesis, palynological richness

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Top 10%
Green
hybrid