- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Sonam Aggarwal; Sheifali Gupta; Deepali Gupta; Yonis Gulzar; Sapna Juneja; Ali A. Alwan; Ali Nauman;doi: 10.3390/su15021695
Predicting subcellular protein localization has become a popular topic due to its utility in understanding disease mechanisms and developing innovative drugs. With the rapid advancement of automated microscopic imaging technology, approaches using bio-images for protein subcellular localization have gained a lot of interest. The Human Protein Atlas (HPA) project is a macro-initiative that aims to map the human proteome utilizing antibody-based proteomics and related c. Millions of images have been tagged with single or multiple labels in the HPA database. However, fewer techniques for predicting the location of proteins have been devised, with the majority of them relying on automatic single-label classification. As a result, there is a need for an automatic and sustainable system capable of multi-label classification of the HPA database. Deep learning presents a potential option for automatic labeling of protein’s subcellular localization, given the vast image number generated by high-content microscopy and the fact that manual labeling is both time-consuming and error-prone. Hence, this research aims to use an ensemble technique for the improvement in the performance of existing state-of-art convolutional neural networks and pretrained models were applied; finally, a stacked ensemble-based deep learning model was presented, which delivers a more reliable and robust classifier. The F1-score, precision, and recall have been used for the evaluation of the proposed model’s efficiency. In addition, a comparison of existing deep learning approaches has been conducted with respect to the proposed method. The results show the proposed ensemble strategy performed exponentially well on the multi-label classification of Human Protein Atlas images, with recall, precision, and F1-score of 0.70, 0.72, and 0.71, respectively.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/2/1695/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15021695&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/2/1695/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15021695&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Neha Sharma; Sheifali Gupta; Heba G. Mohamed; Divya Anand; Juan Luis Vidal Mazón; Deepali Gupta; Nitin Goyal;doi: 10.3390/su141811484
One of the toughest biometrics and document forensics problems is confirming a signature’s authenticity and legal identity. A forgery may vary from a genuine signature by specific distortions. Therefore, it is necessary to continuously monitor crucial distinctions between real and forged signatures for secure work and economic growth, but this is particularly difficult in writer-independent tasks. We thus propose an innovative and sustainable writer-independent approach based on a Siamese neural network for offline signature verification. The Siamese network is a twin-like structure with shared weights and parameters. Similar and dissimilar images are exposed to this network, and the Euclidean distances between them are calculated. The distance is reduced for identical signatures, and the distance is increased for different signatures. Three datasets, namely GPDS, BHsig260 Hindi, and BHsig260 Bengali datasets, were tested in this work. The proposed model was analyzed by comparing the results of different parameters such as optimizers, batch size, and the number of epochs on all three datasets. The proposed Siamese neural network outperforms the GPDS synthetic dataset in the English language, with an accuracy of 92%. It also performs well for the Hindi and Bengali datasets while considering skilled forgeries.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141811484&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141811484&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Himani Chugh; Sheifali Gupta; Meenu Garg; Deepali Gupta; Heba G. Mohamed; Irene Delgado Noya; Aman Singh; Nitin Goyal;doi: 10.3390/su141610357
This paper focuses on retrieving plant leaf images based on different features that can be useful in the plant industry. Various images and their features can be used to identify the type of leaf and its disease. For this purpose, a well-organized computer-assisted plant image retrieval approach is required that can use a hybrid combination of the color and shape attributes of leaf images for plant disease identification and botanical gardening in the agriculture sector. In this research work, an innovative framework is proposed for the retrieval of leaf images that uses a hybrid combination of color and shape features to improve retrieval accuracy. For the color features, the Color Difference Histograms (CDH) descriptor is used while shape features are determined using the Saliency Structure Histogram (SSH) descriptor. To extract the various properties of leaves, Hue and Saturation Value (HSV) color space features and First Order Statistical Features (FOSF) features are computed in CDH and SSH descriptors, respectively. After that, the HSV and FOSF features of leaf images are concatenated. The concatenated features of database images are compared with the query image in terms of the Euclidean distance and a threshold value of Euclidean distance is taken for retrieval of images. The best results are obtained at the threshold value of 80% of the maximum Euclidean distance. The system’s effectiveness is also evaluated with different performance metrics like precision, recall, and F-measure, and their values come out to be respectively 1.00, 0.96, and 0.97, which is better than individual feature descriptors.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141610357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141610357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:The Electrochemical Society Authors: Neelam Dahiya; Sheifali Gupta; Sartajvir Singh;With the enlightenment of knowledge and the inception of databases in large number, how to fetch the important information from the raw data is the major problem which is needed to be solved. Machine learning is a technique which is helpful in solving this issue with more accuracy and in a faster way. Machine learning working process is to train the data and the algorithm develops some rules, based on that learning, evaluation is done with the test data to generate results without human intervention. This paper portrays the various application areas of machine learning, along with its advantages and drawbacks. This paper also describes the various supervised and unsupervised algorithms with their categories, which are used to solve various problems. This paper will help the researcher in finding various application areas of machine learning and also help the researcher in selection of particular techniques according to the situation. Moreover, the researcher can also learn the detailed knowledge about machine learning. This work can be extended further with comparison of machine learning and deep learning techniques. This area has vast scope and is helpful for the researcher in detection of various crop problems, and disease detection like cancer detection, skin problems, etc.
ECS Transactions arrow_drop_down ECS TransactionsArticle . 2022 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/10701.6137ecst&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ECS Transactions arrow_drop_down ECS TransactionsArticle . 2022 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/10701.6137ecst&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Adel Sulaiman; Vatsala Anand; Sheifali Gupta; Hani Alshahrani; Mana Saleh Al Reshan; Adel Rajab; Asadullah Shaikh; Ahmad Taher Azar;doi: 10.3390/su151713228
Apple foliar diseases are a group of diseases that affect the leaves of apple trees. These diseases can significantly impact apple tree health and fruit yield. Ordinary apple foliar diseases include frog_eye_leaf_spots, powdery mildew, rust, apple scabs, etc. Early detection of these diseases is important for effective apple crop management to increase the yield of apples. Therefore, this research proposes a fine-tuned EfficientNetB3 model for the quick and precise assessment of these apple foliar diseases. A dataset containing 23,187 RGB images of eleven different apple foliar diseases is used for experimentation. The proposed model is compared with four transfer learning models, i.e., InceptionResNetV2, ResNet50, AlexNet, and VGG16. All models are fine-tuned by adding different layers like the global average pooling layer, flatten layer, dropout layer, and dense layer. The performance of these five models is compared in terms of the precision, recall, accuracy, and F1-score. The EfficientNetB3 outperformed the other models in terms of all performance parameters. The best model is further optimized with the help of three optimizers, i.e., Adam, SGD, and Adagrad. The proposed model achieved the precision, recall, and F1-score values of 86%, 88%, and 86%, respectively, at 32 batch sizes and 10 epochs. This research formulated a model for an apple foliar disease diagnosis within sustainable agriculture.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151713228&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151713228&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Sonam Aggarwal; Sheifali Gupta; Deepali Gupta; Yonis Gulzar; Sapna Juneja; Ali A. Alwan; Ali Nauman;doi: 10.3390/su15021695
Predicting subcellular protein localization has become a popular topic due to its utility in understanding disease mechanisms and developing innovative drugs. With the rapid advancement of automated microscopic imaging technology, approaches using bio-images for protein subcellular localization have gained a lot of interest. The Human Protein Atlas (HPA) project is a macro-initiative that aims to map the human proteome utilizing antibody-based proteomics and related c. Millions of images have been tagged with single or multiple labels in the HPA database. However, fewer techniques for predicting the location of proteins have been devised, with the majority of them relying on automatic single-label classification. As a result, there is a need for an automatic and sustainable system capable of multi-label classification of the HPA database. Deep learning presents a potential option for automatic labeling of protein’s subcellular localization, given the vast image number generated by high-content microscopy and the fact that manual labeling is both time-consuming and error-prone. Hence, this research aims to use an ensemble technique for the improvement in the performance of existing state-of-art convolutional neural networks and pretrained models were applied; finally, a stacked ensemble-based deep learning model was presented, which delivers a more reliable and robust classifier. The F1-score, precision, and recall have been used for the evaluation of the proposed model’s efficiency. In addition, a comparison of existing deep learning approaches has been conducted with respect to the proposed method. The results show the proposed ensemble strategy performed exponentially well on the multi-label classification of Human Protein Atlas images, with recall, precision, and F1-score of 0.70, 0.72, and 0.71, respectively.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/2/1695/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15021695&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/2/1695/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15021695&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Neha Sharma; Sheifali Gupta; Heba G. Mohamed; Divya Anand; Juan Luis Vidal Mazón; Deepali Gupta; Nitin Goyal;doi: 10.3390/su141811484
One of the toughest biometrics and document forensics problems is confirming a signature’s authenticity and legal identity. A forgery may vary from a genuine signature by specific distortions. Therefore, it is necessary to continuously monitor crucial distinctions between real and forged signatures for secure work and economic growth, but this is particularly difficult in writer-independent tasks. We thus propose an innovative and sustainable writer-independent approach based on a Siamese neural network for offline signature verification. The Siamese network is a twin-like structure with shared weights and parameters. Similar and dissimilar images are exposed to this network, and the Euclidean distances between them are calculated. The distance is reduced for identical signatures, and the distance is increased for different signatures. Three datasets, namely GPDS, BHsig260 Hindi, and BHsig260 Bengali datasets, were tested in this work. The proposed model was analyzed by comparing the results of different parameters such as optimizers, batch size, and the number of epochs on all three datasets. The proposed Siamese neural network outperforms the GPDS synthetic dataset in the English language, with an accuracy of 92%. It also performs well for the Hindi and Bengali datasets while considering skilled forgeries.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141811484&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141811484&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Himani Chugh; Sheifali Gupta; Meenu Garg; Deepali Gupta; Heba G. Mohamed; Irene Delgado Noya; Aman Singh; Nitin Goyal;doi: 10.3390/su141610357
This paper focuses on retrieving plant leaf images based on different features that can be useful in the plant industry. Various images and their features can be used to identify the type of leaf and its disease. For this purpose, a well-organized computer-assisted plant image retrieval approach is required that can use a hybrid combination of the color and shape attributes of leaf images for plant disease identification and botanical gardening in the agriculture sector. In this research work, an innovative framework is proposed for the retrieval of leaf images that uses a hybrid combination of color and shape features to improve retrieval accuracy. For the color features, the Color Difference Histograms (CDH) descriptor is used while shape features are determined using the Saliency Structure Histogram (SSH) descriptor. To extract the various properties of leaves, Hue and Saturation Value (HSV) color space features and First Order Statistical Features (FOSF) features are computed in CDH and SSH descriptors, respectively. After that, the HSV and FOSF features of leaf images are concatenated. The concatenated features of database images are compared with the query image in terms of the Euclidean distance and a threshold value of Euclidean distance is taken for retrieval of images. The best results are obtained at the threshold value of 80% of the maximum Euclidean distance. The system’s effectiveness is also evaluated with different performance metrics like precision, recall, and F-measure, and their values come out to be respectively 1.00, 0.96, and 0.97, which is better than individual feature descriptors.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141610357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141610357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:The Electrochemical Society Authors: Neelam Dahiya; Sheifali Gupta; Sartajvir Singh;With the enlightenment of knowledge and the inception of databases in large number, how to fetch the important information from the raw data is the major problem which is needed to be solved. Machine learning is a technique which is helpful in solving this issue with more accuracy and in a faster way. Machine learning working process is to train the data and the algorithm develops some rules, based on that learning, evaluation is done with the test data to generate results without human intervention. This paper portrays the various application areas of machine learning, along with its advantages and drawbacks. This paper also describes the various supervised and unsupervised algorithms with their categories, which are used to solve various problems. This paper will help the researcher in finding various application areas of machine learning and also help the researcher in selection of particular techniques according to the situation. Moreover, the researcher can also learn the detailed knowledge about machine learning. This work can be extended further with comparison of machine learning and deep learning techniques. This area has vast scope and is helpful for the researcher in detection of various crop problems, and disease detection like cancer detection, skin problems, etc.
ECS Transactions arrow_drop_down ECS TransactionsArticle . 2022 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/10701.6137ecst&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ECS Transactions arrow_drop_down ECS TransactionsArticle . 2022 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/10701.6137ecst&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Adel Sulaiman; Vatsala Anand; Sheifali Gupta; Hani Alshahrani; Mana Saleh Al Reshan; Adel Rajab; Asadullah Shaikh; Ahmad Taher Azar;doi: 10.3390/su151713228
Apple foliar diseases are a group of diseases that affect the leaves of apple trees. These diseases can significantly impact apple tree health and fruit yield. Ordinary apple foliar diseases include frog_eye_leaf_spots, powdery mildew, rust, apple scabs, etc. Early detection of these diseases is important for effective apple crop management to increase the yield of apples. Therefore, this research proposes a fine-tuned EfficientNetB3 model for the quick and precise assessment of these apple foliar diseases. A dataset containing 23,187 RGB images of eleven different apple foliar diseases is used for experimentation. The proposed model is compared with four transfer learning models, i.e., InceptionResNetV2, ResNet50, AlexNet, and VGG16. All models are fine-tuned by adding different layers like the global average pooling layer, flatten layer, dropout layer, and dense layer. The performance of these five models is compared in terms of the precision, recall, accuracy, and F1-score. The EfficientNetB3 outperformed the other models in terms of all performance parameters. The best model is further optimized with the help of three optimizers, i.e., Adam, SGD, and Adagrad. The proposed model achieved the precision, recall, and F1-score values of 86%, 88%, and 86%, respectively, at 32 batch sizes and 10 epochs. This research formulated a model for an apple foliar disease diagnosis within sustainable agriculture.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151713228&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151713228&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu