Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Image Retrieval Framework Design Analysis Using Saliency Structure and Color Difference Histogram

Authors: Himani Chugh; Sheifali Gupta; Meenu Garg; Deepali Gupta; Heba G. Mohamed; Irene Delgado Noya; Aman Singh; +1 Authors

An Image Retrieval Framework Design Analysis Using Saliency Structure and Color Difference Histogram

Abstract

This paper focuses on retrieving plant leaf images based on different features that can be useful in the plant industry. Various images and their features can be used to identify the type of leaf and its disease. For this purpose, a well-organized computer-assisted plant image retrieval approach is required that can use a hybrid combination of the color and shape attributes of leaf images for plant disease identification and botanical gardening in the agriculture sector. In this research work, an innovative framework is proposed for the retrieval of leaf images that uses a hybrid combination of color and shape features to improve retrieval accuracy. For the color features, the Color Difference Histograms (CDH) descriptor is used while shape features are determined using the Saliency Structure Histogram (SSH) descriptor. To extract the various properties of leaves, Hue and Saturation Value (HSV) color space features and First Order Statistical Features (FOSF) features are computed in CDH and SSH descriptors, respectively. After that, the HSV and FOSF features of leaf images are concatenated. The concatenated features of database images are compared with the query image in terms of the Euclidean distance and a threshold value of Euclidean distance is taken for retrieval of images. The best results are obtained at the threshold value of 80% of the maximum Euclidean distance. The system’s effectiveness is also evaluated with different performance metrics like precision, recall, and F-measure, and their values come out to be respectively 1.00, 0.96, and 0.97, which is better than individual feature descriptors.

Keywords

Environmental effects of industries and plants, HSV, TJ807-830, TD194-195, Renewable energy sources, Environmental sciences, color difference histogram; saliency structure histogram; HSV; FOSF, FOSF, saliency structure histogram, GE1-350, color difference histogram

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
gold