- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Royal Society of Chemistry (RSC) Pei Cheng; Yongfang Li; Xiaowei Zhan; Xiaowei Zhan; Xingang Zhao; Jianhui Hou; Long Ye;doi: 10.1039/c3ee43041c
Binary additives synergistically boost the power conversion efficiency of all-polymer solar cells up to 3.45%. The nonvolatile additive PDI-2DTT suppresses aggregation of the acceptor PPDIDTT and enhances donor/acceptor mixing, while the additive DIO facilitates aggregation and crystallization of the donor PBDTTT-C-T as well as improves phase separation. Combination of DIO and PDI-2DTT leads to suitable phase separation and improved and balanced charge transport, which is beneficial to efficiency enhancement.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3ee43041c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu223 citations 223 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3ee43041c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Pei Cheng; Yao Liu; Wenping Hu; Jiahui Tan; Desheng Li; Yongfang Li; Xiaowei Zhan; Xingang Zhao; Yuze Lin;Abstract New series of thieno[3,4-c]pyrrole-4,6-dione(TPD)-based small molecules with donor–acceptor–donor structure were synthesized by palladium(0)-catalyzed Stille coupling reaction. The thermal, electrochemical, optical, charge transport, and photovoltaic properties of these small molecules were examined. These molecules exhibit strong absorption at 460–490 nm and low HOMO levels (−5.26 to −5.34 eV). Field-effect hole mobilities of these molecules are 0.8–1.3×10 −3 cm 2 V −1 s −1 . Solution processed bulk heterojunction organic solar cells based on the blends of these molecule donors and PC 71 BM acceptor exhibit power conversion efficiencies as high as 3.31% under AM1.5, 100 mW cm −2 .
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.12.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.12.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Wiley Fuchuan Liu; Tianyu Hou; Xiangfei Xu; Liya Sun; Jiawang Zhou; Xingang Zhao; Shiming Zhang;pmid: 29154452
AbstractRecently, research on nonfullerene acceptors in organic solar cells has gradually become a hot topic due to such superior characteristics of light absorption and energy‐level‐convenient manipulation, multiformity of the photoactive material structures, as well as the extensive area in production compared to the fullerene derivatives. However, the nonfullerene acceptors evolved slowly before 2012 and, as a matter of fact, the power conversion efficiency values could only bear 2.0%. Strikingly, nonfullerene acceptors have developed at a fast pace since 2013, with the best device performance of 13.1% now. In this review, recent research progress on nonfullerene acceptors, including small molecules and polymers, are sorted and summarized on the basis of the different characteristics.
Macromolecular Rapid... arrow_drop_down Macromolecular Rapid CommunicationsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/marc.201700555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Macromolecular Rapid... arrow_drop_down Macromolecular Rapid CommunicationsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/marc.201700555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 China (People's Republic of)Publisher:Elsevier BV Xiaowei Zhan; Xingang Zhao; Zhi-Guo Zhang; Yongfang Li; Hui-Qiong Wang; Xia-Xia Liao; Xia-Xia Liao; Jin-Cheng Zheng; Jizheng Wang;NSFC [61072014, 51103164]; National Program on Key Basic Research Project (973 Program); Ministry of Science and Technology of China; Chinese Academy of Sciences; Minjiang Scholar Distinguished Professorship Program through Xiamen University of China; Specialized Research Fund for the Doctoral Program of Higher Education [2009012112002, 20100121120026]
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefXiamen University Institutional RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2013.06.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefXiamen University Institutional RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2013.06.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Kion Norrman; Martin Helgesen; Thue Trofod Larsen-Olsen; Birgitta Andreasen; Xiaowei Zhan; Xingang Zhao; Roar R. Søndergaard; Mikkel Jørgensen; Frederik C. Krebs; Yao Liu; Yao Liu;Inverted all polymer solar cells based on a blend of a perylene diimide based polymer acceptor and a dithienosilole based polymer donor were fabricated from small area devices to roll-to-roll (R2R) coated and printed large area modules. The device performance was successfully optimized by using solvent additive to tune the phase separation. By adding 2% chloronaphthalene as solvent additive for small area (0.25 cm2) devices, a power conversion efficiency (PCE) up to 0.63% was achieved for inverted geometry, higher than that (0.39%) of conventional geometry. This polymer blend showed excellent solution processibility and R2R coated and printed large area (4.2 cm2) solar cells exhibited a PCE of 0.20%.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2013.01.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2013.01.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Royal Society of Chemistry (RSC) Pei Cheng; Yongfang Li; Xiaowei Zhan; Xiaowei Zhan; Xingang Zhao; Jianhui Hou; Long Ye;doi: 10.1039/c3ee43041c
Binary additives synergistically boost the power conversion efficiency of all-polymer solar cells up to 3.45%. The nonvolatile additive PDI-2DTT suppresses aggregation of the acceptor PPDIDTT and enhances donor/acceptor mixing, while the additive DIO facilitates aggregation and crystallization of the donor PBDTTT-C-T as well as improves phase separation. Combination of DIO and PDI-2DTT leads to suitable phase separation and improved and balanced charge transport, which is beneficial to efficiency enhancement.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3ee43041c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu223 citations 223 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c3ee43041c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Pei Cheng; Yao Liu; Wenping Hu; Jiahui Tan; Desheng Li; Yongfang Li; Xiaowei Zhan; Xingang Zhao; Yuze Lin;Abstract New series of thieno[3,4-c]pyrrole-4,6-dione(TPD)-based small molecules with donor–acceptor–donor structure were synthesized by palladium(0)-catalyzed Stille coupling reaction. The thermal, electrochemical, optical, charge transport, and photovoltaic properties of these small molecules were examined. These molecules exhibit strong absorption at 460–490 nm and low HOMO levels (−5.26 to −5.34 eV). Field-effect hole mobilities of these molecules are 0.8–1.3×10 −3 cm 2 V −1 s −1 . Solution processed bulk heterojunction organic solar cells based on the blends of these molecule donors and PC 71 BM acceptor exhibit power conversion efficiencies as high as 3.31% under AM1.5, 100 mW cm −2 .
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.12.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2011.12.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Wiley Fuchuan Liu; Tianyu Hou; Xiangfei Xu; Liya Sun; Jiawang Zhou; Xingang Zhao; Shiming Zhang;pmid: 29154452
AbstractRecently, research on nonfullerene acceptors in organic solar cells has gradually become a hot topic due to such superior characteristics of light absorption and energy‐level‐convenient manipulation, multiformity of the photoactive material structures, as well as the extensive area in production compared to the fullerene derivatives. However, the nonfullerene acceptors evolved slowly before 2012 and, as a matter of fact, the power conversion efficiency values could only bear 2.0%. Strikingly, nonfullerene acceptors have developed at a fast pace since 2013, with the best device performance of 13.1% now. In this review, recent research progress on nonfullerene acceptors, including small molecules and polymers, are sorted and summarized on the basis of the different characteristics.
Macromolecular Rapid... arrow_drop_down Macromolecular Rapid CommunicationsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/marc.201700555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Macromolecular Rapid... arrow_drop_down Macromolecular Rapid CommunicationsArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/marc.201700555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 China (People's Republic of)Publisher:Elsevier BV Xiaowei Zhan; Xingang Zhao; Zhi-Guo Zhang; Yongfang Li; Hui-Qiong Wang; Xia-Xia Liao; Xia-Xia Liao; Jin-Cheng Zheng; Jizheng Wang;NSFC [61072014, 51103164]; National Program on Key Basic Research Project (973 Program); Ministry of Science and Technology of China; Chinese Academy of Sciences; Minjiang Scholar Distinguished Professorship Program through Xiamen University of China; Specialized Research Fund for the Doctoral Program of Higher Education [2009012112002, 20100121120026]
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefXiamen University Institutional RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2013.06.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefXiamen University Institutional RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2013.06.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Kion Norrman; Martin Helgesen; Thue Trofod Larsen-Olsen; Birgitta Andreasen; Xiaowei Zhan; Xingang Zhao; Roar R. Søndergaard; Mikkel Jørgensen; Frederik C. Krebs; Yao Liu; Yao Liu;Inverted all polymer solar cells based on a blend of a perylene diimide based polymer acceptor and a dithienosilole based polymer donor were fabricated from small area devices to roll-to-roll (R2R) coated and printed large area modules. The device performance was successfully optimized by using solvent additive to tune the phase separation. By adding 2% chloronaphthalene as solvent additive for small area (0.25 cm2) devices, a power conversion efficiency (PCE) up to 0.63% was achieved for inverted geometry, higher than that (0.39%) of conventional geometry. This polymer blend showed excellent solution processibility and R2R coated and printed large area (4.2 cm2) solar cells exhibited a PCE of 0.20%.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2013.01.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu81 citations 81 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2013.01.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu