- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 01 Jun 2024 Germany, SwitzerlandPublisher:Elsevier BV Risch, Stanley; Weinand, Jann Michael; Schulze, Kai; Vartak, Sammit; Kleinebrahm, Max; Pflugradt, Noah; Kullmann, Felix; Kotzur, Leander; McKenna, Russell; Stolten, Detlef;Increasing energy autonomy is one of the main reasons for municipalities to invest in renewable energy technologies. In this study, the potential of weather-robust autonomous energy systems is evaluated for 11 003 German municipalities in over one million parallelized techno-economic optimizations utilizing high-performance computing clusters. For this purpose, a holistic municipal-level energy system model (ETHOS.FineRegions) was developed that minimizes annualized system costs in 2045. The completely energy autonomous supply can be established in around 90% of German municipalities corresponding to 50% of the country‘s population. Especially highly populated municipalities often do not have the capacity to meet their own energy demands due to low wind and open-field PV potentials. Large rooftop PV capacities account for 40% of installed capacity in the autonomous municipalities. Seasonal storage needs are met by large underground thermal storage tanks and batteries provide intraday storage. Furthermore, huge capacity increases are often required for the final 20% of energy demand to be met in order to achieve a degree of autonomy of 100%. The large storage and rooftop PV capacities lead to high specific system costs in the autonomous municipalities with between 144 €/MWh and 174 €/MWh on average, depending on legislation and opposition towards onshore wind installations. By paying a premium of up to 50% compared to the grid-dependent system, 3945 municipalities with 17.2 million inhabitants could become completely autonomous by 2045. For regions that could achieve an autonomous energy supply at moderate costs, however, lost revenues through energy exports could be a decisive argument against autonomy efforts.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationsserver der RWTH Aachen UniversityArticle . 2024Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4743212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationsserver der RWTH Aachen UniversityArticle . 2024Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4743212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 GermanyPublisher:Elsevier BV Hoffmann, Maximilian; Schyska, Bruno U.; Bartels, Julian; Pelser, Tristan; Behrens, Johannes; Wetzel, Manuel; Gils, Hans Christian; Tang, Chuen-Fung; Tillmanns, Marius; Stock, Jan; Xhonneux, André; Kotzur, Leander; Praktiknjo, Aaron; Vogt, Thomas; Jochem, Patrick; Linßen, Jochen; Weinand, Jann M.; Stolten, Detlef;Advances in applied energy 16, 100190 - (2024). doi:10.1016/j.adapen.2024.100190 Published by Elsevier ScienceDirect, [Amsterdam]
Advances in Applied ... arrow_drop_down Advances in Applied EnergyArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationsserver der RWTH Aachen UniversityArticle . 2024Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.adapen.2024.100190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Advances in Applied ... arrow_drop_down Advances in Applied EnergyArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationsserver der RWTH Aachen UniversityArticle . 2024Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.adapen.2024.100190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 GermanyPublisher:MDPI AG Kannengießer, Timo; Hoffmann, Maximilian; Kotzur, Leander; Stenzel, Peter; Schuetz, Fabian; Peters, Klaus; Nykamp, Stefan; Stolten, Detlef; Robinius, Martin;The complexity of Mixed-Integer Linear Programs (MILPs) increases with the number of nodes in energy system models. An increasing complexity constitutes a high computational load that can limit the scale of the energy system model. Hence, methods are sought to reduce this complexity. In this paper, we present a new 2-Level Approach to MILP energy system models that determines the system design through a combination of continuous and discrete decisions. On the first level, data reduction methods are used to determine the discrete design decisions in a simplified solution space. Those decisions are then fixed, and on the second level the full dataset is used to ex-tract the exact scaling of the chosen technologies. The performance of the new 2-Level Approach is evaluated for a case study of an urban energy system with six buildings and an island system based on a high share of renewable energy technologies. The results of the studies show a high accuracy with respect to the total annual costs, chosen system structure, installed capacities and peak load with the 2-Level Approach compared to the results of a single level optimization. The computational load is thereby reduced by more than one order of magnitude.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/14/2825/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142825&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/14/2825/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142825&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 GermanyPublisher:Elsevier BV Zier, Michael; Pflugradt, Noah; Stenzel, Peter; Kotzur, Leander; Stolten, Detlef;Mitigating anthropogenic climate change and achieving the Paris climate goals is one of the greatest challenges of the twenty-first century. To meet the Paris climate goals, sector-specific transformation pathways need to be defined. The different transformation pathways are used to hypothetically quantify whether a defined climate target is achievable or not. For this reason, a bottom-up model was developed to assess the extent of selected industrial decarbonization options compared to conventionally used technologies from an emissions perspective. Thereby, the bottom-up model is used to analyze the German container and flat glass industries as an example. The results show that no transformation pathway can be compatible with the 1.5 °C based strict carbon dioxide budget target. Even the best case scenario exceeds the 1.5 °C based target by approximately + 200 %. The 2 °C based loose carbon dioxide budget target is only achievable via fuel switching, the complete phase-out from natural gas to renewable energy carriers. Furthermore, the results of hydrogen for flat glass production demonstrate that missing investments in renewable energy carriers may lead to the non-compliance with actually achievable 2 °C based carbon dioxide budget targets. In conclusion, the phase-out from natural gas to renewable energies should be executed at the end of the life of any existing furnace, and process emissions should be avoided in the long term to contribute to 1.5 °C based strict carbon dioxide budget target. Energy conversion and management: X 17, 100336 - (2023). doi:10.1016/j.ecmx.2022.100336 Published by Elsevier, Amsterdam
Energy Conversion an... arrow_drop_down Energy Conversion and Management: XArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecmx.2022.100336&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and Management: XArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecmx.2022.100336&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2018Embargo end date: 01 Jan 2017Publisher:Elsevier BV Peter Markewitz; Detlef Stolten; Detlef Stolten; Leander Kotzur; Martin Robinius;Modelling renewable energy systems is a computationally-demanding task due to the high fluctuation of supply and demand time series. To reduce the scale of these, this paper discusses different methods for their aggregation into typical periods. Each aggregation method is applied to a different type of energy system model, making the methods fairly incomparable. To overcome this, the different aggregation methods are first extended so that they can be applied to all types of multidimensional time series and then compared by applying them to different energy system configurations and analyzing their impact on the cost optimal design. It was found that regardless of the method, time series aggregation allows for significantly reduced computational resources. Nevertheless, averaged values lead to underestimation of the real system cost in comparison to the use of representative periods from the original time series. The aggregation method itself, e.g. k means clustering, plays a minor role. More significant is the system considered: Energy systems utilizing centralized resources require fewer typical periods for a feasible system design in comparison to systems with a higher share of renewable feed-in. Furthermore, for energy systems based on seasonal storage, currently existing models integration of typical periods is not suitable.
Renewable Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 237 citations 237 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Renewable Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2020 GermanyPublisher:MDPI AG Authors: Hoffmann, Maximilian; Kotzur, Leander; Stolten, Detlef; Robinius, Martin;Due to the high degree of intermittency of renewable energy sources (RES) and the growing interdependences amongst formerly separated energy pathways, the modeling of adequate energy systems is crucial to evaluate existing energy systems and to forecast viable future ones. However, this corresponds to the rising complexity of energy system models (ESMs) and often results in computationally intractable programs. To overcome this problem, time series aggregation (TSA) is frequently used to reduce ESM complexity. As these methods aim at the reduction of input data and preserving the main information about the time series, but are not based on mathematically equivalent transformations, the performance of each method depends on the justifiability of its assumptions. This review systematically categorizes the TSA methods applied in 130 different publications to highlight the underlying assumptions and to evaluate the impact of these on the respective case studies. Moreover, the review analyzes current trends in TSA and formulates subjects for future research. This analysis reveals that the future of TSA is clearly feature-based including clustering and other machine learning techniques which are capable of dealing with the growing amount of input data for ESMs. Further, a growing number of publications focus on bounding the TSA induced error of the ESM optimization result. Thus, this study can be used as both an introduction to the topic and for revealing remaining research gaps.
Energies arrow_drop_down Publikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13030641&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu143 citations 143 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down Publikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13030641&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2018Embargo end date: 01 Jan 2017Publisher:Elsevier BV Peter Markewitz; Martin Robinius; Leander Kotzur; Detlef Stolten; Detlef Stolten;The optimization-based design of renewable energy systems is a computationally demanding task because of the high temporal fluctuation of supply and demand time series. In order to reduce these time series, the aggregation of typical operation periods has become common. The problem with this method is that these aggregated typical periods are modeled independently and cannot exchange energy. Therefore, seasonal storage cannot be adequately taken into account, although this will be necessary for energy systems with a high share of renewable generation. To address this issue, this paper proposes a novel mathematical description for storage inventories based on the superposition of inter-period and intra-period states. Inter-period states connect the typical periods and are able to account their sequence. The approach has been adopted for different energy system configurations. The results show that a significant reduction in the computational load can be achieved also for long term storage-based energy system models in comparison to optimization models based on the full annual time series. Submitted to Applied Energy
Applied Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.01.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 188 citations 188 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.01.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 GermanyPublisher:Elsevier BV Pueblas, Rodrigo; Kuckertz, Patrick; Weinand, Jann Michael; Kotzur, Leander; Stolten, Detlef;Solar energy 265, 112094 (2023). doi:10.1016/j.solener.2023.112094 Published by Elsevier Science, Amsterdam [u.a.]
Solar Energy arrow_drop_down Publikationsserver der RWTH Aachen UniversityArticle . 2023Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2023.112094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Solar Energy arrow_drop_down Publikationsserver der RWTH Aachen UniversityArticle . 2023Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2023.112094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 01 Jan 2023 Switzerland, GermanyPublisher:Elsevier BV Weinand, Jann Michael; Hoffmann, Maximilian; Göpfert, Jan; Terlouw, Tom; Schönau, Julian; Kuckertz, Patrick; McKenna, Russell; Kotzur, Leander; Linßen, Jochen; Stolten, Detlef;Recent global events emphasize the importance of a reliable energy supply. One way to increase energy supply security is through decentralized off-grid renewable energy systems, for which a growing number of case studies are researched. This review gives a global overview of the levelized cost of electricity (LCOE) for these autonomous energy systems, which range from 0.03 $2021/kWh to over 1.00 $2021/kWh worldwide. The average LCOEs for 100% renewable energy systems have decreased by 9% annually between 2016 and 2021 from 0.54 $2021/kWh to 0.29 $2021/kWh, most likely due to cost reductions in renewable energy and storage technologies. This review identifies and discusses seven key reasons why LCOEs are frequently overestimated or underestimated in research, and how this can be prevented in the future. This overview can be employed to verify findings on off-grid systems, to assess where these systems might be deployed and how costs evolve. Renewable and Sustainable Energy Reviews, 183 ISSN:1364-0321
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationsserver der RWTH Aachen UniversityArticle . 2023Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationsserver der RWTH Aachen UniversityArticle . 2023Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United StatesPublisher:Elsevier BV Nicholas DeForest; Leander Kotzur; Leander Kotzur; Dai Wang; Gonçalo Cardoso; Miguel Heleno; Thomas Brouhard; Thomas Brouhard;Abstract This paper introduces a linear battery aging and degradation model to a multi-energy microgrid sizing model using mixed integer linear programming. The battery aging model and its integration into a larger microgrid sizing formulation are described. A case study is provided to explore the impact of considering battery aging on key results: optimal photovoltaic and storage capacities, optimal distributed energy resources operations strategies, and annual cost and generation metrics. The case study results suggest that considering battery degradation in optimal microgrid sizing problems significantly impacts the perceived value of storage. Depending on capacity loss and lifetime targets, considering battery degradation is shown to decrease optimal storage capacities between 6 and 92% versus scenarios that do not consider battery health. When imposing constant distributed energy resource capacities, inclusion of degradation can decrease optimal annual battery cycling by as much as a factor five and reduce total annual electricity cost savings from otherwise identical photovoltaic and storage systems by 5–12%. These results emphasize that as batteries grow in maturity and ubiquity for distributed energy applications, considering battery health and capacity loss is an essential component of any analytical tool or model to guide system planning and decision-making.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/3sv982g7Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.09.185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/3sv982g7Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.09.185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 01 Jun 2024 Germany, SwitzerlandPublisher:Elsevier BV Risch, Stanley; Weinand, Jann Michael; Schulze, Kai; Vartak, Sammit; Kleinebrahm, Max; Pflugradt, Noah; Kullmann, Felix; Kotzur, Leander; McKenna, Russell; Stolten, Detlef;Increasing energy autonomy is one of the main reasons for municipalities to invest in renewable energy technologies. In this study, the potential of weather-robust autonomous energy systems is evaluated for 11 003 German municipalities in over one million parallelized techno-economic optimizations utilizing high-performance computing clusters. For this purpose, a holistic municipal-level energy system model (ETHOS.FineRegions) was developed that minimizes annualized system costs in 2045. The completely energy autonomous supply can be established in around 90% of German municipalities corresponding to 50% of the country‘s population. Especially highly populated municipalities often do not have the capacity to meet their own energy demands due to low wind and open-field PV potentials. Large rooftop PV capacities account for 40% of installed capacity in the autonomous municipalities. Seasonal storage needs are met by large underground thermal storage tanks and batteries provide intraday storage. Furthermore, huge capacity increases are often required for the final 20% of energy demand to be met in order to achieve a degree of autonomy of 100%. The large storage and rooftop PV capacities lead to high specific system costs in the autonomous municipalities with between 144 €/MWh and 174 €/MWh on average, depending on legislation and opposition towards onshore wind installations. By paying a premium of up to 50% compared to the grid-dependent system, 3945 municipalities with 17.2 million inhabitants could become completely autonomous by 2045. For regions that could achieve an autonomous energy supply at moderate costs, however, lost revenues through energy exports could be a decisive argument against autonomy efforts.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationsserver der RWTH Aachen UniversityArticle . 2024Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4743212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Energy Conversion and ManagementArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationsserver der RWTH Aachen UniversityArticle . 2024Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4743212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 GermanyPublisher:Elsevier BV Hoffmann, Maximilian; Schyska, Bruno U.; Bartels, Julian; Pelser, Tristan; Behrens, Johannes; Wetzel, Manuel; Gils, Hans Christian; Tang, Chuen-Fung; Tillmanns, Marius; Stock, Jan; Xhonneux, André; Kotzur, Leander; Praktiknjo, Aaron; Vogt, Thomas; Jochem, Patrick; Linßen, Jochen; Weinand, Jann M.; Stolten, Detlef;Advances in applied energy 16, 100190 - (2024). doi:10.1016/j.adapen.2024.100190 Published by Elsevier ScienceDirect, [Amsterdam]
Advances in Applied ... arrow_drop_down Advances in Applied EnergyArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationsserver der RWTH Aachen UniversityArticle . 2024Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.adapen.2024.100190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Advances in Applied ... arrow_drop_down Advances in Applied EnergyArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationsserver der RWTH Aachen UniversityArticle . 2024Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.adapen.2024.100190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019 GermanyPublisher:MDPI AG Kannengießer, Timo; Hoffmann, Maximilian; Kotzur, Leander; Stenzel, Peter; Schuetz, Fabian; Peters, Klaus; Nykamp, Stefan; Stolten, Detlef; Robinius, Martin;The complexity of Mixed-Integer Linear Programs (MILPs) increases with the number of nodes in energy system models. An increasing complexity constitutes a high computational load that can limit the scale of the energy system model. Hence, methods are sought to reduce this complexity. In this paper, we present a new 2-Level Approach to MILP energy system models that determines the system design through a combination of continuous and discrete decisions. On the first level, data reduction methods are used to determine the discrete design decisions in a simplified solution space. Those decisions are then fixed, and on the second level the full dataset is used to ex-tract the exact scaling of the chosen technologies. The performance of the new 2-Level Approach is evaluated for a case study of an urban energy system with six buildings and an island system based on a high share of renewable energy technologies. The results of the studies show a high accuracy with respect to the total annual costs, chosen system structure, installed capacities and peak load with the 2-Level Approach compared to the results of a single level optimization. The computational load is thereby reduced by more than one order of magnitude.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/14/2825/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142825&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/14/2825/pdfData sources: Multidisciplinary Digital Publishing InstitutePublikationsserver der RWTH Aachen UniversityArticle . 2019Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142825&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 GermanyPublisher:Elsevier BV Zier, Michael; Pflugradt, Noah; Stenzel, Peter; Kotzur, Leander; Stolten, Detlef;Mitigating anthropogenic climate change and achieving the Paris climate goals is one of the greatest challenges of the twenty-first century. To meet the Paris climate goals, sector-specific transformation pathways need to be defined. The different transformation pathways are used to hypothetically quantify whether a defined climate target is achievable or not. For this reason, a bottom-up model was developed to assess the extent of selected industrial decarbonization options compared to conventionally used technologies from an emissions perspective. Thereby, the bottom-up model is used to analyze the German container and flat glass industries as an example. The results show that no transformation pathway can be compatible with the 1.5 °C based strict carbon dioxide budget target. Even the best case scenario exceeds the 1.5 °C based target by approximately + 200 %. The 2 °C based loose carbon dioxide budget target is only achievable via fuel switching, the complete phase-out from natural gas to renewable energy carriers. Furthermore, the results of hydrogen for flat glass production demonstrate that missing investments in renewable energy carriers may lead to the non-compliance with actually achievable 2 °C based carbon dioxide budget targets. In conclusion, the phase-out from natural gas to renewable energies should be executed at the end of the life of any existing furnace, and process emissions should be avoided in the long term to contribute to 1.5 °C based strict carbon dioxide budget target. Energy conversion and management: X 17, 100336 - (2023). doi:10.1016/j.ecmx.2022.100336 Published by Elsevier, Amsterdam
Energy Conversion an... arrow_drop_down Energy Conversion and Management: XArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecmx.2022.100336&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and Management: XArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecmx.2022.100336&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2018Embargo end date: 01 Jan 2017Publisher:Elsevier BV Peter Markewitz; Detlef Stolten; Detlef Stolten; Leander Kotzur; Martin Robinius;Modelling renewable energy systems is a computationally-demanding task due to the high fluctuation of supply and demand time series. To reduce the scale of these, this paper discusses different methods for their aggregation into typical periods. Each aggregation method is applied to a different type of energy system model, making the methods fairly incomparable. To overcome this, the different aggregation methods are first extended so that they can be applied to all types of multidimensional time series and then compared by applying them to different energy system configurations and analyzing their impact on the cost optimal design. It was found that regardless of the method, time series aggregation allows for significantly reduced computational resources. Nevertheless, averaged values lead to underestimation of the real system cost in comparison to the use of representative periods from the original time series. The aggregation method itself, e.g. k means clustering, plays a minor role. More significant is the system considered: Energy systems utilizing centralized resources require fewer typical periods for a feasible system design in comparison to systems with a higher share of renewable feed-in. Furthermore, for energy systems based on seasonal storage, currently existing models integration of typical periods is not suitable.
Renewable Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 237 citations 237 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Renewable Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.10.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2020 GermanyPublisher:MDPI AG Authors: Hoffmann, Maximilian; Kotzur, Leander; Stolten, Detlef; Robinius, Martin;Due to the high degree of intermittency of renewable energy sources (RES) and the growing interdependences amongst formerly separated energy pathways, the modeling of adequate energy systems is crucial to evaluate existing energy systems and to forecast viable future ones. However, this corresponds to the rising complexity of energy system models (ESMs) and often results in computationally intractable programs. To overcome this problem, time series aggregation (TSA) is frequently used to reduce ESM complexity. As these methods aim at the reduction of input data and preserving the main information about the time series, but are not based on mathematically equivalent transformations, the performance of each method depends on the justifiability of its assumptions. This review systematically categorizes the TSA methods applied in 130 different publications to highlight the underlying assumptions and to evaluate the impact of these on the respective case studies. Moreover, the review analyzes current trends in TSA and formulates subjects for future research. This analysis reveals that the future of TSA is clearly feature-based including clustering and other machine learning techniques which are capable of dealing with the growing amount of input data for ESMs. Further, a growing number of publications focus on bounding the TSA induced error of the ESM optimization result. Thus, this study can be used as both an introduction to the topic and for revealing remaining research gaps.
Energies arrow_drop_down Publikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13030641&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu143 citations 143 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down Publikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13030641&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2018Embargo end date: 01 Jan 2017Publisher:Elsevier BV Peter Markewitz; Martin Robinius; Leander Kotzur; Detlef Stolten; Detlef Stolten;The optimization-based design of renewable energy systems is a computationally demanding task because of the high temporal fluctuation of supply and demand time series. In order to reduce these time series, the aggregation of typical operation periods has become common. The problem with this method is that these aggregated typical periods are modeled independently and cannot exchange energy. Therefore, seasonal storage cannot be adequately taken into account, although this will be necessary for energy systems with a high share of renewable generation. To address this issue, this paper proposes a novel mathematical description for storage inventories based on the superposition of inter-period and intra-period states. Inter-period states connect the typical periods and are able to account their sequence. The approach has been adopted for different energy system configurations. The results show that a significant reduction in the computational load can be achieved also for long term storage-based energy system models in comparison to optimization models based on the full annual time series. Submitted to Applied Energy
Applied Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.01.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 188 citations 188 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.01.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 GermanyPublisher:Elsevier BV Pueblas, Rodrigo; Kuckertz, Patrick; Weinand, Jann Michael; Kotzur, Leander; Stolten, Detlef;Solar energy 265, 112094 (2023). doi:10.1016/j.solener.2023.112094 Published by Elsevier Science, Amsterdam [u.a.]
Solar Energy arrow_drop_down Publikationsserver der RWTH Aachen UniversityArticle . 2023Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2023.112094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Solar Energy arrow_drop_down Publikationsserver der RWTH Aachen UniversityArticle . 2023Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2023.112094&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2023Embargo end date: 01 Jan 2023 Switzerland, GermanyPublisher:Elsevier BV Weinand, Jann Michael; Hoffmann, Maximilian; Göpfert, Jan; Terlouw, Tom; Schönau, Julian; Kuckertz, Patrick; McKenna, Russell; Kotzur, Leander; Linßen, Jochen; Stolten, Detlef;Recent global events emphasize the importance of a reliable energy supply. One way to increase energy supply security is through decentralized off-grid renewable energy systems, for which a growing number of case studies are researched. This review gives a global overview of the levelized cost of electricity (LCOE) for these autonomous energy systems, which range from 0.03 $2021/kWh to over 1.00 $2021/kWh worldwide. The average LCOEs for 100% renewable energy systems have decreased by 9% annually between 2016 and 2021 from 0.54 $2021/kWh to 0.29 $2021/kWh, most likely due to cost reductions in renewable energy and storage technologies. This review identifies and discusses seven key reasons why LCOEs are frequently overestimated or underestimated in research, and how this can be prevented in the future. This overview can be employed to verify findings on off-grid systems, to assess where these systems might be deployed and how costs evolve. Renewable and Sustainable Energy Reviews, 183 ISSN:1364-0321
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationsserver der RWTH Aachen UniversityArticle . 2023Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationsserver der RWTH Aachen UniversityArticle . 2023Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United StatesPublisher:Elsevier BV Nicholas DeForest; Leander Kotzur; Leander Kotzur; Dai Wang; Gonçalo Cardoso; Miguel Heleno; Thomas Brouhard; Thomas Brouhard;Abstract This paper introduces a linear battery aging and degradation model to a multi-energy microgrid sizing model using mixed integer linear programming. The battery aging model and its integration into a larger microgrid sizing formulation are described. A case study is provided to explore the impact of considering battery aging on key results: optimal photovoltaic and storage capacities, optimal distributed energy resources operations strategies, and annual cost and generation metrics. The case study results suggest that considering battery degradation in optimal microgrid sizing problems significantly impacts the perceived value of storage. Depending on capacity loss and lifetime targets, considering battery degradation is shown to decrease optimal storage capacities between 6 and 92% versus scenarios that do not consider battery health. When imposing constant distributed energy resource capacities, inclusion of degradation can decrease optimal annual battery cycling by as much as a factor five and reduce total annual electricity cost savings from otherwise identical photovoltaic and storage systems by 5–12%. These results emphasize that as batteries grow in maturity and ubiquity for distributed energy applications, considering battery health and capacity loss is an essential component of any analytical tool or model to guide system planning and decision-making.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/3sv982g7Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.09.185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/3sv982g7Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.09.185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu