- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors:Antonio Lupini;
Maria Polsia Princi;Antonio Lupini
Antonio Lupini in OpenAIREFabrizio Araniti;
Anthony J. Miller; +2 AuthorsFabrizio Araniti
Fabrizio Araniti in OpenAIREAntonio Lupini;
Maria Polsia Princi;Antonio Lupini
Antonio Lupini in OpenAIREFabrizio Araniti;
Anthony J. Miller;Fabrizio Araniti
Fabrizio Araniti in OpenAIREFrancesco Sunseri;
Francesco Sunseri
Francesco Sunseri in OpenAIREMaria Rosa Abenavoli;
Maria Rosa Abenavoli
Maria Rosa Abenavoli in OpenAIREUrea is the most common nitrogen (N) fertilizer in agriculture, due to its cheaper price and high N content. Although the reciprocal influence between NO3- and NH4+ nutrition are well known, urea (U) interactions with these N-inorganic forms are poorly studied. Here, the responses of two tomato genotypes to ammonium nitrate (AN), U alone or in combination were investigated. Significant differences in root and shoot biomass between genotypes were observed. Under AN+U supply, Linosa showed higher biomass compared to UC82, exhibiting also higher values for many root architectural traits. Linosa showed higher Nitrogen Uptake (NUpE) and Utilization Efficiency (NUtE) compared to UC82, under AN+U nutrition. Interestingly, Linosa exhibited also a significantly higher DUR3 transcript abundance. These results underline the beneficial effect of AN+U nutrition, highlighting new molecular and physiological strategies for selecting crops that can be used for more sustainable agriculture. The data suggest that translocation and utilization (NUtE) might be a more important component of NUE than uptake (NUpE) in tomato. Genetic variation could be a source for useful NUE traits in tomato; further experiments are needed to dissect the NUtE components that confer a higher ability to utilize N in Linosa.
Journal of Plant Phy... arrow_drop_down Journal of Plant PhysiologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jplph.2017.05.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Plant Phy... arrow_drop_down Journal of Plant PhysiologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jplph.2017.05.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Oxford University Press (OUP) Authors: Agostino Sorgonà;Maria Rosa Abenavoli;
Giovanni Cacco; Pietro Giorgio Gringeri;Maria Rosa Abenavoli
Maria Rosa Abenavoli in OpenAIREStudies of the plasticity of functional root traits involved in resource acquisition have focused mainly on root length without considering such 'morphological components' as biomass allocation, specific root length, root fineness, and tissue density that affect root length. The plasticity of the above components in response to nitrate supply was studied in each root order of two co-generic citrus rootstocks, namely the fast-growing Citrus jambhiri 'Rough Lemon' (RL) and the slow-growing Citrus reshni 'Cleopatra Mandarin' (CM).Morphological traits of individual root orders of CM and RL, grown at different nitrate levels (NO(3)-N at 0.1, 0.5, 1 and 10 mm) were examined by using an image-specific analysis system.At high nitrate levels, the root length ratio, root mass ratio and, to a lesser degree, specific root length, root fineness and tissue density of tap and 1st-order laterals in both CM and RL were reduced. In 2nd-order laterals, however, the same treatment led to increased values of each morphological trait in CM but decreased values of the same traits in RL. At low nitrate supply, CM exhibited longer tap roots whereas RL developed longer 2nd-order laterals. These effects were due to root mass ratio and, to a lesser extent, specific root length.Biomass allocation was the main component of nitrate-induced changes in root length ratio. The 2nd-order laterals were more sensitive to nitrate availability than the tap root and 1st-order laterals. At low nitrate availability, RL displayed longer 2nd-order lateral roots and lower root plasticity than CM. This suggests a different root growth strategy among citrus rootstocks for adapting to nitrate availability: RL invests in 2nd-order laterals, the preferred zone for acquiring the nutrient, whereas CM responds with longer tap roots.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/aob/mcm207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/aob/mcm207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:American Chemical Society (ACS) Authors: Angela Roccotelli; Fabrizio Araniti;Antonio Tursi;
Antonio Tursi
Antonio Tursi in OpenAIREGiuseppe Di Rauso Simeone;
+5 AuthorsGiuseppe Di Rauso Simeone
Giuseppe Di Rauso Simeone in OpenAIREAngela Roccotelli; Fabrizio Araniti;Antonio Tursi;
Antonio Tursi
Antonio Tursi in OpenAIREGiuseppe Di Rauso Simeone;
Maria A. Rao; Ilaria Lania;Giuseppe Di Rauso Simeone
Giuseppe Di Rauso Simeone in OpenAIREGiuseppe Chidichimo;
Giuseppe Chidichimo
Giuseppe Chidichimo in OpenAIREMaria R. Abenavoli;
Maria R. Abenavoli
Maria R. Abenavoli in OpenAIREAntonio Gelsomino;
Antonio Gelsomino
Antonio Gelsomino in OpenAIREDigestates, a byproduct of the anaerobic bioconversion of organic wastes for the production of biogas, are highly variable in chemical and biological properties, thus limiting their potential use in agriculture as soil amendment. Using a lab-scale glass reactor, we aimed to assess the feasibility to chemically stabilize the solid fraction of an anaerobic digestate by applying a Fenton reaction under constant pH (3.0), temperature (70 °C), reaction time (8 h), and various combinations of H2O2 and Fe2+. In Fenton-treated samples, the phytotoxic potential (determined on a test plant), total phenols, and the bad smell odor index markedly declined, whereas total C and N remained unaltered. Thermogravimetric (TG) analysis and Fourier transform infrared (FT-IR) spectroscopy revealed contrasting changes in extracted humic and fulvic fractions being increased or depleted, respectively, in aromatic substances. Process feasibility and optimum conditions for an effective biomass stabilization were achieved with a H2O2/Fe2+ ratio between 0.02 and 0.03.
Journal of Agricultu... arrow_drop_down Journal of Agricultural and Food ChemistryArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefArchivio Istituzionale dell'Università della CalabriaArticle . 2020Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jafc.0c03570&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Agricultu... arrow_drop_down Journal of Agricultural and Food ChemistryArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefArchivio Istituzionale dell'Università della CalabriaArticle . 2020Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.jafc.0c03570&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Springer Science and Business Media LLC Funded by:MIUR | MEDANATMIUR| MEDANATAuthors:Landi M.;
Araniti F.;Landi M.
Landi M. in OpenAIREFlamini G.;
Flamini G.
Flamini G. in OpenAIREPiccolo E. L.;
+3 AuthorsPiccolo E. L.
Piccolo E. L. in OpenAIRELandi M.;
Araniti F.;Landi M.
Landi M. in OpenAIREFlamini G.;
Flamini G.
Flamini G. in OpenAIREPiccolo E. L.;
Piccolo E. L.
Piccolo E. L. in OpenAIRETrivellini A.;
Trivellini A.
Trivellini A. in OpenAIREAbenavoli M. R.;
Abenavoli M. R.
Abenavoli M. R. in OpenAIREGuidi L.;
Guidi L.
Guidi L. in OpenAIRESalinity alters VOC profile in emitter sweet basil plants. Airborne signals by emitter plants promote earlier flowering of receivers and increase their reproductive success under salinity. Airborne signals can prime neighboring plants against pathogen and/or herbivore attacks, whilst little is known about the possibility that volatile organic compounds (VOCs) emitted by stressed plants alert neighboring plants against abiotic stressors. Salt stress (50 mM NaCl) was imposed on Ocimum basilicum L. plants (emitters, namely NaCl), and a putative alerting-priming interaction was tested on neighboring basil plants (receivers, namely NaCl-S). Compared with the receivers, the NaCl plants exhibited reduced biomass, lower photosynthesis, and changes in the VOC profile, which are common early responses of plants to salinity. In contrast, NaCl-S plants had physiological parameters similar to those of nonsalted plants (C), but exhibited a different VOC fingerprint, which overlapped, for most compounds, with that of emitters. NaCl-S plants exposed later to NaCl treatment (namely NaCl-S + NaCl) exhibited changes in the VOC profile, earlier plant senescence, earlier flowering, and higher seed yield than C + NaCl plants. This experiment offers the evidence that (1) NaCl-triggered VOCs promote metabolic changes in NaCl-S plants, which, finally, increase reproductive success and (2) the differences in VOC profiles observed between emitters and receivers subjected to salinity raise the question whether the receivers are able to "propagate" the warning signal triggered by VOCs in neighboring companions.
Archivio della Ricer... arrow_drop_down Flore (Florence Research Repository)Article . 2020Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00425-020-03344-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio della Ricer... arrow_drop_down Flore (Florence Research Repository)Article . 2020Data sources: Flore (Florence Research Repository)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00425-020-03344-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Wiley Authors:F. Rizza;
F. Rizza
F. Rizza in OpenAIREFrancesco Sunseri;
Francesco Sunseri
Francesco Sunseri in OpenAIRELaura Bassolino;
Laura Bassolino
Laura Bassolino in OpenAIREMaria Rosa Abenavoli;
+6 AuthorsMaria Rosa Abenavoli
Maria Rosa Abenavoli in OpenAIREF. Rizza;
F. Rizza
F. Rizza in OpenAIREFrancesco Sunseri;
Francesco Sunseri
Francesco Sunseri in OpenAIRELaura Bassolino;
Laura Bassolino
Laura Bassolino in OpenAIREMaria Rosa Abenavoli;
Maria Rosa Abenavoli
Maria Rosa Abenavoli in OpenAIRELaura Toppino;
Massimo Schiavi;Laura Toppino
Laura Toppino in OpenAIREAntonio Mauceri;
Giuseppe Leonardo Rotino;Antonio Mauceri
Antonio Mauceri in OpenAIREFranz Badeck;
Franz Badeck
Franz Badeck in OpenAIREAntonio Lupini;
Antonio Lupini
Antonio Lupini in OpenAIREdoi: 10.1111/jipb.12823
pmid: 31087763
AbstractEggplant (Solanum melongena L.) yield is highly sensitive to N fertilization, the excessive use of which is responsible for environmental and human health damage. Lowering N input together with the selection of improved Nitrogen‐Use‐Efficiency (NUE) genotypes, more able to uptake, utilize, and remobilize N available in soils, can be challenging to maintain high crop yields in a sustainable agriculture. The aim of this study was to explore the natural variation among eggplant accessions from different origins, in response to Low (LN) and High (HN) Nitrate (NO3‐) supply, to identify NUE‐contrasting genotypes and their NUE‐related traits, in hydroponic and greenhouse pot experiments. Two eggplants, AM222 and AM22, were identified as N‐use efficient and inefficient, respectively, in hydroponic, and these results were confirmed in a pot experiment, when crop yield was also evaluated. Overall, our results indicated the key role of N‐utilization component (NUtE) to confer high NUE. The remobilization of N from leaves to fruits may be a strategy to enhance NUtE, suggesting glutamate synthase as a key enzyme. Further, omics technologies will be used for focusing on C‐N metabolism interacting networks. The availability of RILs from two other selected NUE‐contrasting genotypes will allow us to detect major genes/quantitative trait loci related to NUE.
Journal of Integrati... arrow_drop_down Journal of Integrative Plant BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jipb.12823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Integrati... arrow_drop_down Journal of Integrative Plant BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jipb.12823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu