- home
- Advanced Search
- Energy Research
- IEEE Access
- Energy Research
- IEEE Access
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Institute of Electrical and Electronics Engineers (IEEE) Dong Zheng; Huimin Wang; Jingjing An; Jing Chen; Haihong Pan; Lin Chen;Accurate state-of-charge (SoC) estimation is crucial to guarantee the safety and reliability of lithium-ion batteries. This paper aimed to develop an advanced battery estimation method for electric vehicles based on the grey model without the need of a high-fidelity battery model demanding high computation power. The metabolic grey model (MGM) introduced metabolism mechanism to adjust the model parameters according to the evolving operating status and conditions and estimate the state of charge. To further validate the feasibility of the proposed method, the analog acquisition, communication system, and SoC estimation algorithms were programmed to embed within a LabVIEW platform. The performance of the proposed SoC estimation with MGM algorithm was finally investigated with a battery-in-loop platform under different dynamic loading profiles. The experimental results indicated that the MGM can estimate SoC that involved small samples and poor information in real time, with the maximum errors of no over 4% under various loading conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2018.2807805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2018.2807805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Institute of Electrical and Electronics Engineers (IEEE) Dong Zheng; Huimin Wang; Jingjing An; Jing Chen; Haihong Pan; Lin Chen;Accurate state-of-charge (SoC) estimation is crucial to guarantee the safety and reliability of lithium-ion batteries. This paper aimed to develop an advanced battery estimation method for electric vehicles based on the grey model without the need of a high-fidelity battery model demanding high computation power. The metabolic grey model (MGM) introduced metabolism mechanism to adjust the model parameters according to the evolving operating status and conditions and estimate the state of charge. To further validate the feasibility of the proposed method, the analog acquisition, communication system, and SoC estimation algorithms were programmed to embed within a LabVIEW platform. The performance of the proposed SoC estimation with MGM algorithm was finally investigated with a battery-in-loop platform under different dynamic loading profiles. The experimental results indicated that the MGM can estimate SoC that involved small samples and poor information in real time, with the maximum errors of no over 4% under various loading conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2018.2807805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2018.2807805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu