- home
- Advanced Search
- Energy Research
- Open Access
- Energy Research
- Open Access
description Publicationkeyboard_double_arrow_right Article , Other literature type 2019 ItalyPublisher:EDP Sciences Funded by:EC | PUMP-HEATEC| PUMP-HEATAuthors: Cuneo A.; Barberis S.; Traverso A.; Silvestri P.;handle: 11567/975695
There are several small energy sources that can be exploited to provide useful energy: small temperature differences, mechanical vibrations, flow variations, latent exhausts are just some examples. The recovery of such common and small energy sources, usually wasted, for example with the conversion into useful amounts of electrical energy, is called energy harvesting. Energy harvesting allows low-power embedded devices to be powered from naturally-occurring or unwanted environmental energy (e.g. pressure or temperature difference). The main aim in the last years of researches in such field, was the increasing of the efficiency of such components, with a higher power output and a smaller size. At present, a wide range of systems incorporating energy harvesters are now available commercially, all of them specific to certain types of energy source. Energy harvesting from dissipation processes such as fluid lamination is a challenge for many different applications. In addition, control valves to dissipate overpressures are common usage of many plants and systems. This paper surveys the market opportunities of such harvesting systems, considering the trade-offs affecting their efficiency, their applicability, and ease of deployment. Particular attention will be devoted to small energy harvesters than can exploit small expansions, such as from lamination valves or to systems that can feed mini sensors from small pressure drops, promising compactness, efficiency and cost effectiveness.
Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/201911303010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/201911303010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 ItalyPublisher:EDP Sciences Funded by:EC | PUMP-HEATEC| PUMP-HEATAuthors: Cuneo A.; Barberis S.; Traverso A.; Silvestri P.;handle: 11567/975695
There are several small energy sources that can be exploited to provide useful energy: small temperature differences, mechanical vibrations, flow variations, latent exhausts are just some examples. The recovery of such common and small energy sources, usually wasted, for example with the conversion into useful amounts of electrical energy, is called energy harvesting. Energy harvesting allows low-power embedded devices to be powered from naturally-occurring or unwanted environmental energy (e.g. pressure or temperature difference). The main aim in the last years of researches in such field, was the increasing of the efficiency of such components, with a higher power output and a smaller size. At present, a wide range of systems incorporating energy harvesters are now available commercially, all of them specific to certain types of energy source. Energy harvesting from dissipation processes such as fluid lamination is a challenge for many different applications. In addition, control valves to dissipate overpressures are common usage of many plants and systems. This paper surveys the market opportunities of such harvesting systems, considering the trade-offs affecting their efficiency, their applicability, and ease of deployment. Particular attention will be devoted to small energy harvesters than can exploit small expansions, such as from lamination valves or to systems that can feed mini sensors from small pressure drops, promising compactness, efficiency and cost effectiveness.
Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/201911303010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/201911303010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors: Zaccaria V.; Tucker D.; Traverso A.;handle: 11567/1002543
Abstract The hybridization of Solid Oxide Fuel Cell (SOFC) and gas turbine technologies provides an increase in system efficiency and economic performance. The latter aspect is significantly affected by fuel cell degradation, due to several mechanisms. However, hybrid systems allow different control strategies to minimize degradation effects on system performance and their impact on economic feasibility. A real-time distributed model of a SOFC was used to simulate fuel cell degradation in the cases of a standalone stack and a hybrid configuration, in the latter of which the numerical model is normally coupled with the hybrid system hardware components of the National Energy Technology Laboratory (NETL) hyper facility. The results showed how in a hybrid system it is possible, with an appropriate strategy, to maintain constant voltage even if the cell is degrading, reducing degradation rate during time. At constant power demand, fuel cell life could be significantly extended using the operating strategies allowed by coupling with a turbine (an order of magnitude longer than a standalone fuel cell), maintaining high system efficiency despite fuel cell degradation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.10.098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.10.098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors: Zaccaria V.; Tucker D.; Traverso A.;handle: 11567/1002543
Abstract The hybridization of Solid Oxide Fuel Cell (SOFC) and gas turbine technologies provides an increase in system efficiency and economic performance. The latter aspect is significantly affected by fuel cell degradation, due to several mechanisms. However, hybrid systems allow different control strategies to minimize degradation effects on system performance and their impact on economic feasibility. A real-time distributed model of a SOFC was used to simulate fuel cell degradation in the cases of a standalone stack and a hybrid configuration, in the latter of which the numerical model is normally coupled with the hybrid system hardware components of the National Energy Technology Laboratory (NETL) hyper facility. The results showed how in a hybrid system it is possible, with an appropriate strategy, to maintain constant voltage even if the cell is degrading, reducing degradation rate during time. At constant power demand, fuel cell life could be significantly extended using the operating strategies allowed by coupling with a turbine (an order of magnitude longer than a standalone fuel cell), maintaining high system efficiency despite fuel cell degradation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.10.098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.10.098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2022 ItalyPublisher:American Society of Mechanical Engineers Funded by:EC | NextMGTEC| NextMGTAuthors: Ravi Nath Tiwari; Konstantinos Eleftheriou; Mario Luigi Ferrari; Theofilos Efstathiadis; +2 AuthorsRavi Nath Tiwari; Konstantinos Eleftheriou; Mario Luigi Ferrari; Theofilos Efstathiadis; Alberto Traverso; Anestis Kalfas;handle: 11567/1099274 , 11567/1101293
Abstract The cost-effectiveness of turbomachinery is a key aspect within the small-size compressor market. For this reason, Tesla turbomachinery, invented by Nikola Tesla in 1913, could be a good solution, particularly for low volumetric flow applications, where volumetric compressors are usually used. It consists of a bladeless rotor which stands out for its ease of construction and its ability to maintain almost the same performance as size decreases. One of its advantages is that it can run either as a turbine or as a compressor with minor modifications at the stator. The objective of this paper is to investigate a 3kW Tesla compressor, which design was derived from an analogous Tesla expander prototype (59% isentropic efficiency from the numerical study), by conducting a computational fluid dynamic analysis for different disk gaps and diffuser configurations. The potential of the Tesla compressor is shown to be quite promising, with a peak isentropic efficiency estimated at 53%. Although bladeless compressor is a simple turbomachinery device, different parts i.e., diffuser, tip clearance, and volute need to be optimized. Utilizing computational fluid dynamics algorithms, different disk gaps and different diffusers are simulated in order to increase the overall performance of the compressor and understand the flow dynamic behavior behind this technology. The dimensionless Ekman number is used to express the optimum disk space of the compressor rotor. Thus, the overall performance of the Tesla compressor is improved by 5–10% points compared to the initial model. Simultaneously, diffuser optimization strategies are applied and proved that there is a direct impact on the optimum design conditions, improving the pressure ratio at high mass flow rates.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di GenovaConference object . 2022Archivio istituzionale della ricerca - Università di GenovaArticle . 2023https://doi.org/10.1115/gt2022...Conference object . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: CrossrefJournal of Engineering for Gas Turbines and PowerArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefhttp://dx.doi.org/10.1115/gt20...Conference objectLicense: ASME Site License AgreemenData sources: SygmaJournal of Engineering for Gas Turbines and PowerArticleLicense: ASME Site License AgreemenData sources: SygmaJournal of Engineering for Gas Turbines and PowerArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2022-80167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di GenovaConference object . 2022Archivio istituzionale della ricerca - Università di GenovaArticle . 2023https://doi.org/10.1115/gt2022...Conference object . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: CrossrefJournal of Engineering for Gas Turbines and PowerArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefhttp://dx.doi.org/10.1115/gt20...Conference objectLicense: ASME Site License AgreemenData sources: SygmaJournal of Engineering for Gas Turbines and PowerArticleLicense: ASME Site License AgreemenData sources: SygmaJournal of Engineering for Gas Turbines and PowerArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2022-80167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2022 ItalyPublisher:American Society of Mechanical Engineers Funded by:EC | NextMGTEC| NextMGTAuthors: Ravi Nath Tiwari; Konstantinos Eleftheriou; Mario Luigi Ferrari; Theofilos Efstathiadis; +2 AuthorsRavi Nath Tiwari; Konstantinos Eleftheriou; Mario Luigi Ferrari; Theofilos Efstathiadis; Alberto Traverso; Anestis Kalfas;handle: 11567/1099274 , 11567/1101293
Abstract The cost-effectiveness of turbomachinery is a key aspect within the small-size compressor market. For this reason, Tesla turbomachinery, invented by Nikola Tesla in 1913, could be a good solution, particularly for low volumetric flow applications, where volumetric compressors are usually used. It consists of a bladeless rotor which stands out for its ease of construction and its ability to maintain almost the same performance as size decreases. One of its advantages is that it can run either as a turbine or as a compressor with minor modifications at the stator. The objective of this paper is to investigate a 3kW Tesla compressor, which design was derived from an analogous Tesla expander prototype (59% isentropic efficiency from the numerical study), by conducting a computational fluid dynamic analysis for different disk gaps and diffuser configurations. The potential of the Tesla compressor is shown to be quite promising, with a peak isentropic efficiency estimated at 53%. Although bladeless compressor is a simple turbomachinery device, different parts i.e., diffuser, tip clearance, and volute need to be optimized. Utilizing computational fluid dynamics algorithms, different disk gaps and different diffusers are simulated in order to increase the overall performance of the compressor and understand the flow dynamic behavior behind this technology. The dimensionless Ekman number is used to express the optimum disk space of the compressor rotor. Thus, the overall performance of the Tesla compressor is improved by 5–10% points compared to the initial model. Simultaneously, diffuser optimization strategies are applied and proved that there is a direct impact on the optimum design conditions, improving the pressure ratio at high mass flow rates.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di GenovaConference object . 2022Archivio istituzionale della ricerca - Università di GenovaArticle . 2023https://doi.org/10.1115/gt2022...Conference object . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: CrossrefJournal of Engineering for Gas Turbines and PowerArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefhttp://dx.doi.org/10.1115/gt20...Conference objectLicense: ASME Site License AgreemenData sources: SygmaJournal of Engineering for Gas Turbines and PowerArticleLicense: ASME Site License AgreemenData sources: SygmaJournal of Engineering for Gas Turbines and PowerArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2022-80167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di GenovaConference object . 2022Archivio istituzionale della ricerca - Università di GenovaArticle . 2023https://doi.org/10.1115/gt2022...Conference object . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: CrossrefJournal of Engineering for Gas Turbines and PowerArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefhttp://dx.doi.org/10.1115/gt20...Conference objectLicense: ASME Site License AgreemenData sources: SygmaJournal of Engineering for Gas Turbines and PowerArticleLicense: ASME Site License AgreemenData sources: SygmaJournal of Engineering for Gas Turbines and PowerArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2022-80167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2024 ItalyPublisher:IOP Publishing Tiwari R. N.; Pais T.; Reggio F.; Pascenti M.; Traverso A.; Silvestri P.;handle: 11567/1252187
Abstract The SMART PIPING project aims to design, create and test innovative solutions for resilience of water and energy networks, aiming to develop technologies for the energy autonomy of stations monitoring of infrastructures suitable for the transport of fluids (natural gas and biogas, hydrocarbons, water). In this paper, an innovative bladeless turbine is designed and manufactured in relevant environment to demonstrate the feasibility of harvesting significant amount of energy in the urban pipeline distribution network to power local devices to monitor the piping health and enable leakage early-warning. Results show that bladeless turbine can constitute a cost-effective and highly reliable device to enable the digital and energy-efficient transition of urban communities.
Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefArchivio istituzionale della ricerca - Università di GenovaConference object . 2024add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2893/1/012122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefArchivio istituzionale della ricerca - Università di GenovaConference object . 2024add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2893/1/012122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2024 ItalyPublisher:IOP Publishing Tiwari R. N.; Pais T.; Reggio F.; Pascenti M.; Traverso A.; Silvestri P.;handle: 11567/1252187
Abstract The SMART PIPING project aims to design, create and test innovative solutions for resilience of water and energy networks, aiming to develop technologies for the energy autonomy of stations monitoring of infrastructures suitable for the transport of fluids (natural gas and biogas, hydrocarbons, water). In this paper, an innovative bladeless turbine is designed and manufactured in relevant environment to demonstrate the feasibility of harvesting significant amount of energy in the urban pipeline distribution network to power local devices to monitor the piping health and enable leakage early-warning. Results show that bladeless turbine can constitute a cost-effective and highly reliable device to enable the digital and energy-efficient transition of urban communities.
Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefArchivio istituzionale della ricerca - Università di GenovaConference object . 2024add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2893/1/012122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefArchivio istituzionale della ricerca - Università di GenovaConference object . 2024add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2893/1/012122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 ItalyPublisher:Bentham Science Publishers Ltd. Authors: TRAVERSO, ALBERTO; R. BERTONE; MASSARDO, ARISTIDE;handle: 11567/228724
The increasing interest in small-scale renewable-energy plants for distributed power generation has led to a demand for suitable software tools to study and develop control systems able to manage advanced integrated systems. Biomass, as a renewable energy resource, needs to be processed if it is to be exploited in small CHP units and pyrolysis is one of the options available for transforming solid biomass into useful liquid and gaseous fuels. This work is concerned with the development of a time-dependent model of a rotary-kiln pyrolyser for biomass: the model is intended for the de- velopment of control systems and the simulation of integrated energy systems, where the pyrolyser is connected to a power-generation package. The model was developed within the TRANSEO environment and based on a quasi 2-D nu- merical discretisation of the rotary kiln. Results are shown for a real case that is currently under construction: the model is able to predict the impact of different operating conditions on fuel yields, as well as capturing the main transient phenom- ena occurring during changes in the pyrolyser operating conditions. Kewords: Biomass, pyrolysis, distributed generation, transient modelling.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/1874155x07010110x5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/1874155x07010110x5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 ItalyPublisher:Bentham Science Publishers Ltd. Authors: TRAVERSO, ALBERTO; R. BERTONE; MASSARDO, ARISTIDE;handle: 11567/228724
The increasing interest in small-scale renewable-energy plants for distributed power generation has led to a demand for suitable software tools to study and develop control systems able to manage advanced integrated systems. Biomass, as a renewable energy resource, needs to be processed if it is to be exploited in small CHP units and pyrolysis is one of the options available for transforming solid biomass into useful liquid and gaseous fuels. This work is concerned with the development of a time-dependent model of a rotary-kiln pyrolyser for biomass: the model is intended for the de- velopment of control systems and the simulation of integrated energy systems, where the pyrolyser is connected to a power-generation package. The model was developed within the TRANSEO environment and based on a quasi 2-D nu- merical discretisation of the rotary kiln. Results are shown for a real case that is currently under construction: the model is able to predict the impact of different operating conditions on fuel yields, as well as capturing the main transient phenom- ena occurring during changes in the pyrolyser operating conditions. Kewords: Biomass, pyrolysis, distributed generation, transient modelling.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/1874155x07010110x5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/1874155x07010110x5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2016 ItalyPublisher:American Society of Mechanical Engineers Authors: F. Lambruschini; E. Liese; S. E. Zitney; A. Traverso;doi: 10.1115/gt2016-56459
handle: 11567/1035117
In this work, the National Energy Technology Laboratory (NETL) in collaboration with the Thermochemical Power Group (TPG) of the University of Genoa have developed a dynamic model of a 10 MW closed-loop supercritical CO2 (sCO2) recompression Brayton cycle plant in the MATLAB-Simulink environment. The sCO2 cycle modeled here is a closed cycle with an external thermal source used to heat the sCO2 working fluid before it is expanded in a turbine. The turbine exhaust heat is recuperated using high- and low-temperature recuperators, with mixing of two compressor outlets between the recuperators (on the cold-side). About two thirds of the low-pressure sCO2 is compressed by a main compressor, after passing through a cooler, while the remaining working fluid flows directly through a bypass compressor. The reference fluid properties (REFPROP) method by the National Institute of Standards and Technology is used to provide the thermodynamic and transport properties for sCO2 over the cycle temperature and pressure range because the sCO2 behavior is highly non-ideal, especially at the inlet of the two compressors. Dynamic simulations have been carried out to assess the behavior of the plant during a typical process disturbance.
https://www.osti.gov... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2016-56459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://www.osti.gov... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2016-56459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2016 ItalyPublisher:American Society of Mechanical Engineers Authors: F. Lambruschini; E. Liese; S. E. Zitney; A. Traverso;doi: 10.1115/gt2016-56459
handle: 11567/1035117
In this work, the National Energy Technology Laboratory (NETL) in collaboration with the Thermochemical Power Group (TPG) of the University of Genoa have developed a dynamic model of a 10 MW closed-loop supercritical CO2 (sCO2) recompression Brayton cycle plant in the MATLAB-Simulink environment. The sCO2 cycle modeled here is a closed cycle with an external thermal source used to heat the sCO2 working fluid before it is expanded in a turbine. The turbine exhaust heat is recuperated using high- and low-temperature recuperators, with mixing of two compressor outlets between the recuperators (on the cold-side). About two thirds of the low-pressure sCO2 is compressed by a main compressor, after passing through a cooler, while the remaining working fluid flows directly through a bypass compressor. The reference fluid properties (REFPROP) method by the National Institute of Standards and Technology is used to provide the thermodynamic and transport properties for sCO2 over the cycle temperature and pressure range because the sCO2 behavior is highly non-ideal, especially at the inlet of the two compressors. Dynamic simulations have been carried out to assess the behavior of the plant during a typical process disturbance.
https://www.osti.gov... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2016-56459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://www.osti.gov... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2016-56459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Authors: Barberis S.; Traverso A.;handle: 11567/1011668
AbstractStarting from a state of the art of CSP plants and the undergoing research in hybridization of Gas Turbine plants, the paper investigates alternative plant configurations particularly regarding the integration of CSP technology with mixed cycles because of their low water consumption and the possible use of current CSP components, assessed and compared with a through-life thermo-economic analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 5visibility views 5 download downloads 26 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Authors: Barberis S.; Traverso A.;handle: 11567/1011668
AbstractStarting from a state of the art of CSP plants and the undergoing research in hybridization of Gas Turbine plants, the paper investigates alternative plant configurations particularly regarding the integration of CSP technology with mixed cycles because of their low water consumption and the possible use of current CSP components, assessed and compared with a through-life thermo-economic analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 5visibility views 5 download downloads 26 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors: FERRARI, MARIO LUIGI; CUNEO, ALESSANDRA; PASCENTI, MATTEO; TRAVERSO, ALBERTO;handle: 11567/876174
Abstract In thermal grids and district heating, thermal storage devices play an important role to manage energy demand. Additionally, in smart polygeneration grids, thermal energy storage devices are essential to achieve high flexibility in energy demand management at relatively low cost. In this scenario, accurate evaluation of state of charge of storage vessels based on available measurements is critical. The aim of this paper is to develop and compare three different models for state of charge estimation in stratified water tanks (discrete temperature measurements) and the related application in an experimental polygeneration grid with a real-time management tool. The first model is based on the empirical calculation of the state of charge considering the thermal power difference between generation and consumption, and afterwards correction based on measured temperatures. The second model is a mathematical approach considering a pre-defined temperature shape fitted with experimental data. The latter model is based on a 1-D physical approach using a multi-nodal method forced on the basis of the measured temperatures. The models were compared considering an experimental test performed in the polygeneration laboratory by the Thermochemical Power Group (TPG). As a result of the comparative analysis, the first model was selected for applications in complex polygeneration grids, due to its good compromise between accuracy and computational effort. Several tests were carried out to demonstrate the performance of the empirical approach selected for the thermal storage model and the economic benefit related to the utilization of this vessel. The experimental plant, constituted by two different prime movers (a 100 kW microturbine and a 20 kW internal combustion engine) and a thermal storage tank, was able to demonstrate the performance of a real-time management tool. For this reason, special attention was devoted to the variable cost comparisons. The novelty of this work lies in the development of the real-time management tool coupled with a thermal storage model by considering the simplified modelling approach. This is an essential requisite for complex polygeneration grids including hundreds or thousands of prime movers and thermal storage devices. Additionally, it is important to state that in such cases the required real-time performance could be difficult to obtain. The results, produced with the innovative and flexible experimental rig, demonstrate the positive impact of thermal storage as well as the effective management performance of this quite simple dispatching approach. Another important novel aspect regards this experimental assessment considering both specific 3-h tests and extended conditions typical of a possible real application.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors: FERRARI, MARIO LUIGI; CUNEO, ALESSANDRA; PASCENTI, MATTEO; TRAVERSO, ALBERTO;handle: 11567/876174
Abstract In thermal grids and district heating, thermal storage devices play an important role to manage energy demand. Additionally, in smart polygeneration grids, thermal energy storage devices are essential to achieve high flexibility in energy demand management at relatively low cost. In this scenario, accurate evaluation of state of charge of storage vessels based on available measurements is critical. The aim of this paper is to develop and compare three different models for state of charge estimation in stratified water tanks (discrete temperature measurements) and the related application in an experimental polygeneration grid with a real-time management tool. The first model is based on the empirical calculation of the state of charge considering the thermal power difference between generation and consumption, and afterwards correction based on measured temperatures. The second model is a mathematical approach considering a pre-defined temperature shape fitted with experimental data. The latter model is based on a 1-D physical approach using a multi-nodal method forced on the basis of the measured temperatures. The models were compared considering an experimental test performed in the polygeneration laboratory by the Thermochemical Power Group (TPG). As a result of the comparative analysis, the first model was selected for applications in complex polygeneration grids, due to its good compromise between accuracy and computational effort. Several tests were carried out to demonstrate the performance of the empirical approach selected for the thermal storage model and the economic benefit related to the utilization of this vessel. The experimental plant, constituted by two different prime movers (a 100 kW microturbine and a 20 kW internal combustion engine) and a thermal storage tank, was able to demonstrate the performance of a real-time management tool. For this reason, special attention was devoted to the variable cost comparisons. The novelty of this work lies in the development of the real-time management tool coupled with a thermal storage model by considering the simplified modelling approach. This is an essential requisite for complex polygeneration grids including hundreds or thousands of prime movers and thermal storage devices. Additionally, it is important to state that in such cases the required real-time performance could be difficult to obtain. The results, produced with the innovative and flexible experimental rig, demonstrate the positive impact of thermal storage as well as the effective management performance of this quite simple dispatching approach. Another important novel aspect regards this experimental assessment considering both specific 3-h tests and extended conditions typical of a possible real application.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Funded by:EC | SOLARSCO2OLEC| SOLARSCO2OLGini, Lorenzo; Maccarini, Simone; Traverso, Alberto; Barberis, Stefano; Guedez, Rafael; Pesatori, Emanuel; Bisio, Valentina;handle: 11567/1108917
High efficiency, flexibility and competitive capital costs make supercritical CO2 (sCO2) systems a promising technology for renewable power generation in a low carbon energy scenario. Recently, innovative supercritical systems have been studied in the literature and proposed by DOE-NETL (STEP project) and by a few projects in the EU Horizon 2020 (H2020) program aiming to demonstrate supercritical CO2 Brayton power plants, promising superior techno-economic features than steam cycles particularly at high temperatures. The H2020 SOLARSCO2OL project, which started in 2020, is building the first European MW-scale sCO2 demonstration plant and has been specifically tailored for Concentrating Solar Power (CSP) applications. After a detailed explanation of the modelling approach for steady and unsteady cycle simulations, this paper presents the off-design and dynamic analysis of such plant layout, which is based on a simply recuperated sCO2 cycle. The entire system model has been developed in TRANSEO environment. The part-load analysis ranged from 50% of nominal up to a 105% peak load, discussing the impact on compressor and turbine operating conditions. Full operational envelop has been determined considering cycle main constraints, such as maximum turbine inlet temperature and minimum pressure at compressor inlet. The off-design performance analysis highlights the most relevant relationships among the main part-load regulating parameters, namely molten salt mass flow rate, CO2 mass flow rate, total CO2 mass in the loop, and shaft line speed. The results show specific features of different control approaches, discussing the pros and cons of each solution, considering also its upscale towards commercial applications. In particular, the analysis shows that at 51% of load an efficiency decrease of 20% is expected. Finally, the dynamic characterization of the closed loop shows the relatively fast responsiveness of the plant to compressor speed variations, causing quick changes in CO2 mass flow rate, together with longer time scale phenomena related to the plant heat exchangers. In this respect, sCO2 plants demonstrate to have the potential to provide primary reserve for the electrical grid, as far as thermal stresses on main plant components are kept under acceptable limits.
Archivio istituziona... arrow_drop_down Applied Thermal EngineeringArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2023.120152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Applied Thermal EngineeringArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2023.120152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Funded by:EC | SOLARSCO2OLEC| SOLARSCO2OLGini, Lorenzo; Maccarini, Simone; Traverso, Alberto; Barberis, Stefano; Guedez, Rafael; Pesatori, Emanuel; Bisio, Valentina;handle: 11567/1108917
High efficiency, flexibility and competitive capital costs make supercritical CO2 (sCO2) systems a promising technology for renewable power generation in a low carbon energy scenario. Recently, innovative supercritical systems have been studied in the literature and proposed by DOE-NETL (STEP project) and by a few projects in the EU Horizon 2020 (H2020) program aiming to demonstrate supercritical CO2 Brayton power plants, promising superior techno-economic features than steam cycles particularly at high temperatures. The H2020 SOLARSCO2OL project, which started in 2020, is building the first European MW-scale sCO2 demonstration plant and has been specifically tailored for Concentrating Solar Power (CSP) applications. After a detailed explanation of the modelling approach for steady and unsteady cycle simulations, this paper presents the off-design and dynamic analysis of such plant layout, which is based on a simply recuperated sCO2 cycle. The entire system model has been developed in TRANSEO environment. The part-load analysis ranged from 50% of nominal up to a 105% peak load, discussing the impact on compressor and turbine operating conditions. Full operational envelop has been determined considering cycle main constraints, such as maximum turbine inlet temperature and minimum pressure at compressor inlet. The off-design performance analysis highlights the most relevant relationships among the main part-load regulating parameters, namely molten salt mass flow rate, CO2 mass flow rate, total CO2 mass in the loop, and shaft line speed. The results show specific features of different control approaches, discussing the pros and cons of each solution, considering also its upscale towards commercial applications. In particular, the analysis shows that at 51% of load an efficiency decrease of 20% is expected. Finally, the dynamic characterization of the closed loop shows the relatively fast responsiveness of the plant to compressor speed variations, causing quick changes in CO2 mass flow rate, together with longer time scale phenomena related to the plant heat exchangers. In this respect, sCO2 plants demonstrate to have the potential to provide primary reserve for the electrical grid, as far as thermal stresses on main plant components are kept under acceptable limits.
Archivio istituziona... arrow_drop_down Applied Thermal EngineeringArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2023.120152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Applied Thermal EngineeringArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2023.120152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2021 ItalyPublisher:EDP Sciences Funded by:EC | PUMP-HEATEC| PUMP-HEATAuthors: Reboli T.; Rossi I.; Traverso A.; Torelli G.;handle: 11567/1100048
In the era of coal power station phase-out, natural gas fired combined cycle will drive the energy transition towards sustainable power generation. In a panorama of strong requirement for grid flexibility and non-dispatchable renewable penetration, the survival of a thermal power plant is strictly linked with operating successfully in compensating the renewable fluctuating production through flexible generation. The Italian case is taken as reference, considering that energy transition and renewable energy penetration may have similar effects also in different countries. In this direction, a test rig to investigate gas turbine compressor inlet conditioning techniques has been developed at the Tirreno Power laboratory of the University of Genoa, Italy. This is based on a Turbec T100 micro gas turbine (or microturbine), a Mayekawa heat pump and a phase-change material energy storage. The whole test-rig is virtually scaled up, through a cyber-physical system, to emulate a real 400MW combined cycle, with the heat pump governing the inlet conditions at the compressor. The microturbine is therefore used as the physical feedback for the system, whilst the steam bottoming cycle is simulated in real-time according to microturbine operation. The scope is to present the test rig and the procedure adopted to virtually scaleup a microturbine to a heavy-duty GT. the advantage of using microturbine for testing combined cycle flexibility options lays also on the possibility to make accelerated tests and to simulate multiple situations in compressed time windows.
E3S Web of Conferenc... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202123805003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert E3S Web of Conferenc... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202123805003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2021 ItalyPublisher:EDP Sciences Funded by:EC | PUMP-HEATEC| PUMP-HEATAuthors: Reboli T.; Rossi I.; Traverso A.; Torelli G.;handle: 11567/1100048
In the era of coal power station phase-out, natural gas fired combined cycle will drive the energy transition towards sustainable power generation. In a panorama of strong requirement for grid flexibility and non-dispatchable renewable penetration, the survival of a thermal power plant is strictly linked with operating successfully in compensating the renewable fluctuating production through flexible generation. The Italian case is taken as reference, considering that energy transition and renewable energy penetration may have similar effects also in different countries. In this direction, a test rig to investigate gas turbine compressor inlet conditioning techniques has been developed at the Tirreno Power laboratory of the University of Genoa, Italy. This is based on a Turbec T100 micro gas turbine (or microturbine), a Mayekawa heat pump and a phase-change material energy storage. The whole test-rig is virtually scaled up, through a cyber-physical system, to emulate a real 400MW combined cycle, with the heat pump governing the inlet conditions at the compressor. The microturbine is therefore used as the physical feedback for the system, whilst the steam bottoming cycle is simulated in real-time according to microturbine operation. The scope is to present the test rig and the procedure adopted to virtually scaleup a microturbine to a heavy-duty GT. the advantage of using microturbine for testing combined cycle flexibility options lays also on the possibility to make accelerated tests and to simulate multiple situations in compressed time windows.
E3S Web of Conferenc... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202123805003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert E3S Web of Conferenc... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202123805003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2019 ItalyPublisher:EDP Sciences Funded by:EC | PUMP-HEATEC| PUMP-HEATAuthors: Cuneo A.; Barberis S.; Traverso A.; Silvestri P.;handle: 11567/975695
There are several small energy sources that can be exploited to provide useful energy: small temperature differences, mechanical vibrations, flow variations, latent exhausts are just some examples. The recovery of such common and small energy sources, usually wasted, for example with the conversion into useful amounts of electrical energy, is called energy harvesting. Energy harvesting allows low-power embedded devices to be powered from naturally-occurring or unwanted environmental energy (e.g. pressure or temperature difference). The main aim in the last years of researches in such field, was the increasing of the efficiency of such components, with a higher power output and a smaller size. At present, a wide range of systems incorporating energy harvesters are now available commercially, all of them specific to certain types of energy source. Energy harvesting from dissipation processes such as fluid lamination is a challenge for many different applications. In addition, control valves to dissipate overpressures are common usage of many plants and systems. This paper surveys the market opportunities of such harvesting systems, considering the trade-offs affecting their efficiency, their applicability, and ease of deployment. Particular attention will be devoted to small energy harvesters than can exploit small expansions, such as from lamination valves or to systems that can feed mini sensors from small pressure drops, promising compactness, efficiency and cost effectiveness.
Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/201911303010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/201911303010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 ItalyPublisher:EDP Sciences Funded by:EC | PUMP-HEATEC| PUMP-HEATAuthors: Cuneo A.; Barberis S.; Traverso A.; Silvestri P.;handle: 11567/975695
There are several small energy sources that can be exploited to provide useful energy: small temperature differences, mechanical vibrations, flow variations, latent exhausts are just some examples. The recovery of such common and small energy sources, usually wasted, for example with the conversion into useful amounts of electrical energy, is called energy harvesting. Energy harvesting allows low-power embedded devices to be powered from naturally-occurring or unwanted environmental energy (e.g. pressure or temperature difference). The main aim in the last years of researches in such field, was the increasing of the efficiency of such components, with a higher power output and a smaller size. At present, a wide range of systems incorporating energy harvesters are now available commercially, all of them specific to certain types of energy source. Energy harvesting from dissipation processes such as fluid lamination is a challenge for many different applications. In addition, control valves to dissipate overpressures are common usage of many plants and systems. This paper surveys the market opportunities of such harvesting systems, considering the trade-offs affecting their efficiency, their applicability, and ease of deployment. Particular attention will be devoted to small energy harvesters than can exploit small expansions, such as from lamination valves or to systems that can feed mini sensors from small pressure drops, promising compactness, efficiency and cost effectiveness.
Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/201911303010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/201911303010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors: Zaccaria V.; Tucker D.; Traverso A.;handle: 11567/1002543
Abstract The hybridization of Solid Oxide Fuel Cell (SOFC) and gas turbine technologies provides an increase in system efficiency and economic performance. The latter aspect is significantly affected by fuel cell degradation, due to several mechanisms. However, hybrid systems allow different control strategies to minimize degradation effects on system performance and their impact on economic feasibility. A real-time distributed model of a SOFC was used to simulate fuel cell degradation in the cases of a standalone stack and a hybrid configuration, in the latter of which the numerical model is normally coupled with the hybrid system hardware components of the National Energy Technology Laboratory (NETL) hyper facility. The results showed how in a hybrid system it is possible, with an appropriate strategy, to maintain constant voltage even if the cell is degrading, reducing degradation rate during time. At constant power demand, fuel cell life could be significantly extended using the operating strategies allowed by coupling with a turbine (an order of magnitude longer than a standalone fuel cell), maintaining high system efficiency despite fuel cell degradation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.10.098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.10.098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors: Zaccaria V.; Tucker D.; Traverso A.;handle: 11567/1002543
Abstract The hybridization of Solid Oxide Fuel Cell (SOFC) and gas turbine technologies provides an increase in system efficiency and economic performance. The latter aspect is significantly affected by fuel cell degradation, due to several mechanisms. However, hybrid systems allow different control strategies to minimize degradation effects on system performance and their impact on economic feasibility. A real-time distributed model of a SOFC was used to simulate fuel cell degradation in the cases of a standalone stack and a hybrid configuration, in the latter of which the numerical model is normally coupled with the hybrid system hardware components of the National Energy Technology Laboratory (NETL) hyper facility. The results showed how in a hybrid system it is possible, with an appropriate strategy, to maintain constant voltage even if the cell is degrading, reducing degradation rate during time. At constant power demand, fuel cell life could be significantly extended using the operating strategies allowed by coupling with a turbine (an order of magnitude longer than a standalone fuel cell), maintaining high system efficiency despite fuel cell degradation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.10.098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.10.098&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2022 ItalyPublisher:American Society of Mechanical Engineers Funded by:EC | NextMGTEC| NextMGTAuthors: Ravi Nath Tiwari; Konstantinos Eleftheriou; Mario Luigi Ferrari; Theofilos Efstathiadis; +2 AuthorsRavi Nath Tiwari; Konstantinos Eleftheriou; Mario Luigi Ferrari; Theofilos Efstathiadis; Alberto Traverso; Anestis Kalfas;handle: 11567/1099274 , 11567/1101293
Abstract The cost-effectiveness of turbomachinery is a key aspect within the small-size compressor market. For this reason, Tesla turbomachinery, invented by Nikola Tesla in 1913, could be a good solution, particularly for low volumetric flow applications, where volumetric compressors are usually used. It consists of a bladeless rotor which stands out for its ease of construction and its ability to maintain almost the same performance as size decreases. One of its advantages is that it can run either as a turbine or as a compressor with minor modifications at the stator. The objective of this paper is to investigate a 3kW Tesla compressor, which design was derived from an analogous Tesla expander prototype (59% isentropic efficiency from the numerical study), by conducting a computational fluid dynamic analysis for different disk gaps and diffuser configurations. The potential of the Tesla compressor is shown to be quite promising, with a peak isentropic efficiency estimated at 53%. Although bladeless compressor is a simple turbomachinery device, different parts i.e., diffuser, tip clearance, and volute need to be optimized. Utilizing computational fluid dynamics algorithms, different disk gaps and different diffusers are simulated in order to increase the overall performance of the compressor and understand the flow dynamic behavior behind this technology. The dimensionless Ekman number is used to express the optimum disk space of the compressor rotor. Thus, the overall performance of the Tesla compressor is improved by 5–10% points compared to the initial model. Simultaneously, diffuser optimization strategies are applied and proved that there is a direct impact on the optimum design conditions, improving the pressure ratio at high mass flow rates.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di GenovaConference object . 2022Archivio istituzionale della ricerca - Università di GenovaArticle . 2023https://doi.org/10.1115/gt2022...Conference object . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: CrossrefJournal of Engineering for Gas Turbines and PowerArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefhttp://dx.doi.org/10.1115/gt20...Conference objectLicense: ASME Site License AgreemenData sources: SygmaJournal of Engineering for Gas Turbines and PowerArticleLicense: ASME Site License AgreemenData sources: SygmaJournal of Engineering for Gas Turbines and PowerArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2022-80167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di GenovaConference object . 2022Archivio istituzionale della ricerca - Università di GenovaArticle . 2023https://doi.org/10.1115/gt2022...Conference object . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: CrossrefJournal of Engineering for Gas Turbines and PowerArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefhttp://dx.doi.org/10.1115/gt20...Conference objectLicense: ASME Site License AgreemenData sources: SygmaJournal of Engineering for Gas Turbines and PowerArticleLicense: ASME Site License AgreemenData sources: SygmaJournal of Engineering for Gas Turbines and PowerArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2022-80167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2022 ItalyPublisher:American Society of Mechanical Engineers Funded by:EC | NextMGTEC| NextMGTAuthors: Ravi Nath Tiwari; Konstantinos Eleftheriou; Mario Luigi Ferrari; Theofilos Efstathiadis; +2 AuthorsRavi Nath Tiwari; Konstantinos Eleftheriou; Mario Luigi Ferrari; Theofilos Efstathiadis; Alberto Traverso; Anestis Kalfas;handle: 11567/1099274 , 11567/1101293
Abstract The cost-effectiveness of turbomachinery is a key aspect within the small-size compressor market. For this reason, Tesla turbomachinery, invented by Nikola Tesla in 1913, could be a good solution, particularly for low volumetric flow applications, where volumetric compressors are usually used. It consists of a bladeless rotor which stands out for its ease of construction and its ability to maintain almost the same performance as size decreases. One of its advantages is that it can run either as a turbine or as a compressor with minor modifications at the stator. The objective of this paper is to investigate a 3kW Tesla compressor, which design was derived from an analogous Tesla expander prototype (59% isentropic efficiency from the numerical study), by conducting a computational fluid dynamic analysis for different disk gaps and diffuser configurations. The potential of the Tesla compressor is shown to be quite promising, with a peak isentropic efficiency estimated at 53%. Although bladeless compressor is a simple turbomachinery device, different parts i.e., diffuser, tip clearance, and volute need to be optimized. Utilizing computational fluid dynamics algorithms, different disk gaps and different diffusers are simulated in order to increase the overall performance of the compressor and understand the flow dynamic behavior behind this technology. The dimensionless Ekman number is used to express the optimum disk space of the compressor rotor. Thus, the overall performance of the Tesla compressor is improved by 5–10% points compared to the initial model. Simultaneously, diffuser optimization strategies are applied and proved that there is a direct impact on the optimum design conditions, improving the pressure ratio at high mass flow rates.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di GenovaConference object . 2022Archivio istituzionale della ricerca - Università di GenovaArticle . 2023https://doi.org/10.1115/gt2022...Conference object . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: CrossrefJournal of Engineering for Gas Turbines and PowerArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefhttp://dx.doi.org/10.1115/gt20...Conference objectLicense: ASME Site License AgreemenData sources: SygmaJournal of Engineering for Gas Turbines and PowerArticleLicense: ASME Site License AgreemenData sources: SygmaJournal of Engineering for Gas Turbines and PowerArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2022-80167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di GenovaConference object . 2022Archivio istituzionale della ricerca - Università di GenovaArticle . 2023https://doi.org/10.1115/gt2022...Conference object . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: CrossrefJournal of Engineering for Gas Turbines and PowerArticle . 2022 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefhttp://dx.doi.org/10.1115/gt20...Conference objectLicense: ASME Site License AgreemenData sources: SygmaJournal of Engineering for Gas Turbines and PowerArticleLicense: ASME Site License AgreemenData sources: SygmaJournal of Engineering for Gas Turbines and PowerArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2022-80167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2024 ItalyPublisher:IOP Publishing Tiwari R. N.; Pais T.; Reggio F.; Pascenti M.; Traverso A.; Silvestri P.;handle: 11567/1252187
Abstract The SMART PIPING project aims to design, create and test innovative solutions for resilience of water and energy networks, aiming to develop technologies for the energy autonomy of stations monitoring of infrastructures suitable for the transport of fluids (natural gas and biogas, hydrocarbons, water). In this paper, an innovative bladeless turbine is designed and manufactured in relevant environment to demonstrate the feasibility of harvesting significant amount of energy in the urban pipeline distribution network to power local devices to monitor the piping health and enable leakage early-warning. Results show that bladeless turbine can constitute a cost-effective and highly reliable device to enable the digital and energy-efficient transition of urban communities.
Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefArchivio istituzionale della ricerca - Università di GenovaConference object . 2024add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2893/1/012122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefArchivio istituzionale della ricerca - Università di GenovaConference object . 2024add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2893/1/012122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2024 ItalyPublisher:IOP Publishing Tiwari R. N.; Pais T.; Reggio F.; Pascenti M.; Traverso A.; Silvestri P.;handle: 11567/1252187
Abstract The SMART PIPING project aims to design, create and test innovative solutions for resilience of water and energy networks, aiming to develop technologies for the energy autonomy of stations monitoring of infrastructures suitable for the transport of fluids (natural gas and biogas, hydrocarbons, water). In this paper, an innovative bladeless turbine is designed and manufactured in relevant environment to demonstrate the feasibility of harvesting significant amount of energy in the urban pipeline distribution network to power local devices to monitor the piping health and enable leakage early-warning. Results show that bladeless turbine can constitute a cost-effective and highly reliable device to enable the digital and energy-efficient transition of urban communities.
Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefArchivio istituzionale della ricerca - Università di GenovaConference object . 2024add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2893/1/012122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Journal of Physics :... arrow_drop_down Journal of Physics : Conference SeriesArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefArchivio istituzionale della ricerca - Università di GenovaConference object . 2024add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1742-6596/2893/1/012122&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 ItalyPublisher:Bentham Science Publishers Ltd. Authors: TRAVERSO, ALBERTO; R. BERTONE; MASSARDO, ARISTIDE;handle: 11567/228724
The increasing interest in small-scale renewable-energy plants for distributed power generation has led to a demand for suitable software tools to study and develop control systems able to manage advanced integrated systems. Biomass, as a renewable energy resource, needs to be processed if it is to be exploited in small CHP units and pyrolysis is one of the options available for transforming solid biomass into useful liquid and gaseous fuels. This work is concerned with the development of a time-dependent model of a rotary-kiln pyrolyser for biomass: the model is intended for the de- velopment of control systems and the simulation of integrated energy systems, where the pyrolyser is connected to a power-generation package. The model was developed within the TRANSEO environment and based on a quasi 2-D nu- merical discretisation of the rotary kiln. Results are shown for a real case that is currently under construction: the model is able to predict the impact of different operating conditions on fuel yields, as well as capturing the main transient phenom- ena occurring during changes in the pyrolyser operating conditions. Kewords: Biomass, pyrolysis, distributed generation, transient modelling.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/1874155x07010110x5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/1874155x07010110x5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 ItalyPublisher:Bentham Science Publishers Ltd. Authors: TRAVERSO, ALBERTO; R. BERTONE; MASSARDO, ARISTIDE;handle: 11567/228724
The increasing interest in small-scale renewable-energy plants for distributed power generation has led to a demand for suitable software tools to study and develop control systems able to manage advanced integrated systems. Biomass, as a renewable energy resource, needs to be processed if it is to be exploited in small CHP units and pyrolysis is one of the options available for transforming solid biomass into useful liquid and gaseous fuels. This work is concerned with the development of a time-dependent model of a rotary-kiln pyrolyser for biomass: the model is intended for the de- velopment of control systems and the simulation of integrated energy systems, where the pyrolyser is connected to a power-generation package. The model was developed within the TRANSEO environment and based on a quasi 2-D nu- merical discretisation of the rotary kiln. Results are shown for a real case that is currently under construction: the model is able to predict the impact of different operating conditions on fuel yields, as well as capturing the main transient phenom- ena occurring during changes in the pyrolyser operating conditions. Kewords: Biomass, pyrolysis, distributed generation, transient modelling.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/1874155x07010110x5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/1874155x07010110x5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2016 ItalyPublisher:American Society of Mechanical Engineers Authors: F. Lambruschini; E. Liese; S. E. Zitney; A. Traverso;doi: 10.1115/gt2016-56459
handle: 11567/1035117
In this work, the National Energy Technology Laboratory (NETL) in collaboration with the Thermochemical Power Group (TPG) of the University of Genoa have developed a dynamic model of a 10 MW closed-loop supercritical CO2 (sCO2) recompression Brayton cycle plant in the MATLAB-Simulink environment. The sCO2 cycle modeled here is a closed cycle with an external thermal source used to heat the sCO2 working fluid before it is expanded in a turbine. The turbine exhaust heat is recuperated using high- and low-temperature recuperators, with mixing of two compressor outlets between the recuperators (on the cold-side). About two thirds of the low-pressure sCO2 is compressed by a main compressor, after passing through a cooler, while the remaining working fluid flows directly through a bypass compressor. The reference fluid properties (REFPROP) method by the National Institute of Standards and Technology is used to provide the thermodynamic and transport properties for sCO2 over the cycle temperature and pressure range because the sCO2 behavior is highly non-ideal, especially at the inlet of the two compressors. Dynamic simulations have been carried out to assess the behavior of the plant during a typical process disturbance.
https://www.osti.gov... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2016-56459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://www.osti.gov... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2016-56459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2016 ItalyPublisher:American Society of Mechanical Engineers Authors: F. Lambruschini; E. Liese; S. E. Zitney; A. Traverso;doi: 10.1115/gt2016-56459
handle: 11567/1035117
In this work, the National Energy Technology Laboratory (NETL) in collaboration with the Thermochemical Power Group (TPG) of the University of Genoa have developed a dynamic model of a 10 MW closed-loop supercritical CO2 (sCO2) recompression Brayton cycle plant in the MATLAB-Simulink environment. The sCO2 cycle modeled here is a closed cycle with an external thermal source used to heat the sCO2 working fluid before it is expanded in a turbine. The turbine exhaust heat is recuperated using high- and low-temperature recuperators, with mixing of two compressor outlets between the recuperators (on the cold-side). About two thirds of the low-pressure sCO2 is compressed by a main compressor, after passing through a cooler, while the remaining working fluid flows directly through a bypass compressor. The reference fluid properties (REFPROP) method by the National Institute of Standards and Technology is used to provide the thermodynamic and transport properties for sCO2 over the cycle temperature and pressure range because the sCO2 behavior is highly non-ideal, especially at the inlet of the two compressors. Dynamic simulations have been carried out to assess the behavior of the plant during a typical process disturbance.
https://www.osti.gov... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2016-56459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://www.osti.gov... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/gt2016-56459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Authors: Barberis S.; Traverso A.;handle: 11567/1011668
AbstractStarting from a state of the art of CSP plants and the undergoing research in hybridization of Gas Turbine plants, the paper investigates alternative plant configurations particularly regarding the integration of CSP technology with mixed cycles because of their low water consumption and the possible use of current CSP components, assessed and compared with a through-life thermo-economic analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 5visibility views 5 download downloads 26 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Authors: Barberis S.; Traverso A.;handle: 11567/1011668
AbstractStarting from a state of the art of CSP plants and the undergoing research in hybridization of Gas Turbine plants, the paper investigates alternative plant configurations particularly regarding the integration of CSP technology with mixed cycles because of their low water consumption and the possible use of current CSP components, assessed and compared with a through-life thermo-economic analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 5visibility views 5 download downloads 26 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.07.489&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors: FERRARI, MARIO LUIGI; CUNEO, ALESSANDRA; PASCENTI, MATTEO; TRAVERSO, ALBERTO;handle: 11567/876174
Abstract In thermal grids and district heating, thermal storage devices play an important role to manage energy demand. Additionally, in smart polygeneration grids, thermal energy storage devices are essential to achieve high flexibility in energy demand management at relatively low cost. In this scenario, accurate evaluation of state of charge of storage vessels based on available measurements is critical. The aim of this paper is to develop and compare three different models for state of charge estimation in stratified water tanks (discrete temperature measurements) and the related application in an experimental polygeneration grid with a real-time management tool. The first model is based on the empirical calculation of the state of charge considering the thermal power difference between generation and consumption, and afterwards correction based on measured temperatures. The second model is a mathematical approach considering a pre-defined temperature shape fitted with experimental data. The latter model is based on a 1-D physical approach using a multi-nodal method forced on the basis of the measured temperatures. The models were compared considering an experimental test performed in the polygeneration laboratory by the Thermochemical Power Group (TPG). As a result of the comparative analysis, the first model was selected for applications in complex polygeneration grids, due to its good compromise between accuracy and computational effort. Several tests were carried out to demonstrate the performance of the empirical approach selected for the thermal storage model and the economic benefit related to the utilization of this vessel. The experimental plant, constituted by two different prime movers (a 100 kW microturbine and a 20 kW internal combustion engine) and a thermal storage tank, was able to demonstrate the performance of a real-time management tool. For this reason, special attention was devoted to the variable cost comparisons. The novelty of this work lies in the development of the real-time management tool coupled with a thermal storage model by considering the simplified modelling approach. This is an essential requisite for complex polygeneration grids including hundreds or thousands of prime movers and thermal storage devices. Additionally, it is important to state that in such cases the required real-time performance could be difficult to obtain. The results, produced with the innovative and flexible experimental rig, demonstrate the positive impact of thermal storage as well as the effective management performance of this quite simple dispatching approach. Another important novel aspect regards this experimental assessment considering both specific 3-h tests and extended conditions typical of a possible real application.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Authors: FERRARI, MARIO LUIGI; CUNEO, ALESSANDRA; PASCENTI, MATTEO; TRAVERSO, ALBERTO;handle: 11567/876174
Abstract In thermal grids and district heating, thermal storage devices play an important role to manage energy demand. Additionally, in smart polygeneration grids, thermal energy storage devices are essential to achieve high flexibility in energy demand management at relatively low cost. In this scenario, accurate evaluation of state of charge of storage vessels based on available measurements is critical. The aim of this paper is to develop and compare three different models for state of charge estimation in stratified water tanks (discrete temperature measurements) and the related application in an experimental polygeneration grid with a real-time management tool. The first model is based on the empirical calculation of the state of charge considering the thermal power difference between generation and consumption, and afterwards correction based on measured temperatures. The second model is a mathematical approach considering a pre-defined temperature shape fitted with experimental data. The latter model is based on a 1-D physical approach using a multi-nodal method forced on the basis of the measured temperatures. The models were compared considering an experimental test performed in the polygeneration laboratory by the Thermochemical Power Group (TPG). As a result of the comparative analysis, the first model was selected for applications in complex polygeneration grids, due to its good compromise between accuracy and computational effort. Several tests were carried out to demonstrate the performance of the empirical approach selected for the thermal storage model and the economic benefit related to the utilization of this vessel. The experimental plant, constituted by two different prime movers (a 100 kW microturbine and a 20 kW internal combustion engine) and a thermal storage tank, was able to demonstrate the performance of a real-time management tool. For this reason, special attention was devoted to the variable cost comparisons. The novelty of this work lies in the development of the real-time management tool coupled with a thermal storage model by considering the simplified modelling approach. This is an essential requisite for complex polygeneration grids including hundreds or thousands of prime movers and thermal storage devices. Additionally, it is important to state that in such cases the required real-time performance could be difficult to obtain. The results, produced with the innovative and flexible experimental rig, demonstrate the positive impact of thermal storage as well as the effective management performance of this quite simple dispatching approach. Another important novel aspect regards this experimental assessment considering both specific 3-h tests and extended conditions typical of a possible real application.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Funded by:EC | SOLARSCO2OLEC| SOLARSCO2OLGini, Lorenzo; Maccarini, Simone; Traverso, Alberto; Barberis, Stefano; Guedez, Rafael; Pesatori, Emanuel; Bisio, Valentina;handle: 11567/1108917
High efficiency, flexibility and competitive capital costs make supercritical CO2 (sCO2) systems a promising technology for renewable power generation in a low carbon energy scenario. Recently, innovative supercritical systems have been studied in the literature and proposed by DOE-NETL (STEP project) and by a few projects in the EU Horizon 2020 (H2020) program aiming to demonstrate supercritical CO2 Brayton power plants, promising superior techno-economic features than steam cycles particularly at high temperatures. The H2020 SOLARSCO2OL project, which started in 2020, is building the first European MW-scale sCO2 demonstration plant and has been specifically tailored for Concentrating Solar Power (CSP) applications. After a detailed explanation of the modelling approach for steady and unsteady cycle simulations, this paper presents the off-design and dynamic analysis of such plant layout, which is based on a simply recuperated sCO2 cycle. The entire system model has been developed in TRANSEO environment. The part-load analysis ranged from 50% of nominal up to a 105% peak load, discussing the impact on compressor and turbine operating conditions. Full operational envelop has been determined considering cycle main constraints, such as maximum turbine inlet temperature and minimum pressure at compressor inlet. The off-design performance analysis highlights the most relevant relationships among the main part-load regulating parameters, namely molten salt mass flow rate, CO2 mass flow rate, total CO2 mass in the loop, and shaft line speed. The results show specific features of different control approaches, discussing the pros and cons of each solution, considering also its upscale towards commercial applications. In particular, the analysis shows that at 51% of load an efficiency decrease of 20% is expected. Finally, the dynamic characterization of the closed loop shows the relatively fast responsiveness of the plant to compressor speed variations, causing quick changes in CO2 mass flow rate, together with longer time scale phenomena related to the plant heat exchangers. In this respect, sCO2 plants demonstrate to have the potential to provide primary reserve for the electrical grid, as far as thermal stresses on main plant components are kept under acceptable limits.
Archivio istituziona... arrow_drop_down Applied Thermal EngineeringArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2023.120152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Applied Thermal EngineeringArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2023.120152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:Elsevier BV Funded by:EC | SOLARSCO2OLEC| SOLARSCO2OLGini, Lorenzo; Maccarini, Simone; Traverso, Alberto; Barberis, Stefano; Guedez, Rafael; Pesatori, Emanuel; Bisio, Valentina;handle: 11567/1108917
High efficiency, flexibility and competitive capital costs make supercritical CO2 (sCO2) systems a promising technology for renewable power generation in a low carbon energy scenario. Recently, innovative supercritical systems have been studied in the literature and proposed by DOE-NETL (STEP project) and by a few projects in the EU Horizon 2020 (H2020) program aiming to demonstrate supercritical CO2 Brayton power plants, promising superior techno-economic features than steam cycles particularly at high temperatures. The H2020 SOLARSCO2OL project, which started in 2020, is building the first European MW-scale sCO2 demonstration plant and has been specifically tailored for Concentrating Solar Power (CSP) applications. After a detailed explanation of the modelling approach for steady and unsteady cycle simulations, this paper presents the off-design and dynamic analysis of such plant layout, which is based on a simply recuperated sCO2 cycle. The entire system model has been developed in TRANSEO environment. The part-load analysis ranged from 50% of nominal up to a 105% peak load, discussing the impact on compressor and turbine operating conditions. Full operational envelop has been determined considering cycle main constraints, such as maximum turbine inlet temperature and minimum pressure at compressor inlet. The off-design performance analysis highlights the most relevant relationships among the main part-load regulating parameters, namely molten salt mass flow rate, CO2 mass flow rate, total CO2 mass in the loop, and shaft line speed. The results show specific features of different control approaches, discussing the pros and cons of each solution, considering also its upscale towards commercial applications. In particular, the analysis shows that at 51% of load an efficiency decrease of 20% is expected. Finally, the dynamic characterization of the closed loop shows the relatively fast responsiveness of the plant to compressor speed variations, causing quick changes in CO2 mass flow rate, together with longer time scale phenomena related to the plant heat exchangers. In this respect, sCO2 plants demonstrate to have the potential to provide primary reserve for the electrical grid, as far as thermal stresses on main plant components are kept under acceptable limits.
Archivio istituziona... arrow_drop_down Applied Thermal EngineeringArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2023.120152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Applied Thermal EngineeringArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2023.120152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2021 ItalyPublisher:EDP Sciences Funded by:EC | PUMP-HEATEC| PUMP-HEATAuthors: Reboli T.; Rossi I.; Traverso A.; Torelli G.;handle: 11567/1100048
In the era of coal power station phase-out, natural gas fired combined cycle will drive the energy transition towards sustainable power generation. In a panorama of strong requirement for grid flexibility and non-dispatchable renewable penetration, the survival of a thermal power plant is strictly linked with operating successfully in compensating the renewable fluctuating production through flexible generation. The Italian case is taken as reference, considering that energy transition and renewable energy penetration may have similar effects also in different countries. In this direction, a test rig to investigate gas turbine compressor inlet conditioning techniques has been developed at the Tirreno Power laboratory of the University of Genoa, Italy. This is based on a Turbec T100 micro gas turbine (or microturbine), a Mayekawa heat pump and a phase-change material energy storage. The whole test-rig is virtually scaled up, through a cyber-physical system, to emulate a real 400MW combined cycle, with the heat pump governing the inlet conditions at the compressor. The microturbine is therefore used as the physical feedback for the system, whilst the steam bottoming cycle is simulated in real-time according to microturbine operation. The scope is to present the test rig and the procedure adopted to virtually scaleup a microturbine to a heavy-duty GT. the advantage of using microturbine for testing combined cycle flexibility options lays also on the possibility to make accelerated tests and to simulate multiple situations in compressed time windows.
E3S Web of Conferenc... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202123805003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert E3S Web of Conferenc... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202123805003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Conference object 2021 ItalyPublisher:EDP Sciences Funded by:EC | PUMP-HEATEC| PUMP-HEATAuthors: Reboli T.; Rossi I.; Traverso A.; Torelli G.;handle: 11567/1100048
In the era of coal power station phase-out, natural gas fired combined cycle will drive the energy transition towards sustainable power generation. In a panorama of strong requirement for grid flexibility and non-dispatchable renewable penetration, the survival of a thermal power plant is strictly linked with operating successfully in compensating the renewable fluctuating production through flexible generation. The Italian case is taken as reference, considering that energy transition and renewable energy penetration may have similar effects also in different countries. In this direction, a test rig to investigate gas turbine compressor inlet conditioning techniques has been developed at the Tirreno Power laboratory of the University of Genoa, Italy. This is based on a Turbec T100 micro gas turbine (or microturbine), a Mayekawa heat pump and a phase-change material energy storage. The whole test-rig is virtually scaled up, through a cyber-physical system, to emulate a real 400MW combined cycle, with the heat pump governing the inlet conditions at the compressor. The microturbine is therefore used as the physical feedback for the system, whilst the steam bottoming cycle is simulated in real-time according to microturbine operation. The scope is to present the test rig and the procedure adopted to virtually scaleup a microturbine to a heavy-duty GT. the advantage of using microturbine for testing combined cycle flexibility options lays also on the possibility to make accelerated tests and to simulate multiple situations in compressed time windows.
E3S Web of Conferenc... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202123805003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert E3S Web of Conferenc... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202123805003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu