- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024 Netherlands, Spain, France, Lithuania, United Kingdom, Spain, United Kingdom, Lithuania, Spain, Finland, Spain, Italy, Austria, United Kingdom, Austria, SpainPublisher:Elsevier BV Funded by:EC | Inspire4Nature, EC | SURVIVALISTEC| Inspire4Nature ,EC| SURVIVALISTSerratosa, Juan; Oppel, Steffen; Rotics, Shay; Santangeli, Andrea; Butchart, Stuart H.M.; Cano-Alonso, Luis S.; Tellería, Jose Luis; Kemp, Ryno; Nicholas, Aaron; Kalvāns, Aigars; Galarza, Aitor; Franco, Aldina M.A.; Andreotti, Alessandro; Kirschel, Alexander N.G.; Ngari, Alex; Soutullo, Alvaro; Bermejo-Bermejo, Ana; Botha, Andre J.; Ferri, Andrea; Evangelidis, Angelos; Cenerini, Anna; Stamenov, Anton; Hernández-Matías, Antonio; Aradis, Arianna; Grozdanov, Atanas P.; Rodríguez, Beneharo; Şekercioğlu, Çağan H.; Cerecedo-Iglesias, Catuxa; Kassara, Christina; Barboutis, Christos; Bracebridge, Claire; García-Ripollés, Clara; Kendall, Corinne J.; Denac, Damijan; Schabo, Dana G.; Barber, David R.; Popov, Dimitar V.; Dobrev, Dobromir D.; Mallia, Egidio; Kmetova-Biro, Elena; Álvarez, Ernesto; Buechley, Evan R.; Bragin, Evgeny A.; Cordischi, Fabrizio; Zengeya, Fadzai M.; Monti, Flavio; Mougeot, Francois; Tate, Gareth; Stoyanov, Georgi; Dell'Omo, Giacomo; Lucia, Giuseppe; Gradev, Gradimir; Ceccolini, Guido; Friedemann, Guilad; Bauer, Hans-Günther; Kolberg, Holger; Peshev, Hristo; Catry, Inês; Øien, Ingar J.; Alanís, Isidoro Carbonell; Literák, Ivan; Pokrovsky, Ivan; Ojaste, Ivar; Østnes, Jan E.; de la Puente, Javier; Real, Joan; Guilherme, João L.; González, José C.; Fernández-García, José M.; Gil, Juan Antonio; Terraube, Julien; Poprach, Karel; Aghababyan, Karen; Klein, Katharina; Bildstein, Keith L.; Wolter, Kerri; Janssens, Kjell; Kittelberger, Kyle D.; Thompson, Lindy J.; AlJahdhami, Mansoor H.; Galán, Manuel; Tobolka, Marcin; Posillico, Mario; Cipollone, Mario; Gschweng, Marion; Strazds, Māris; Boorman, Mark; Zvidzai, Mark; Acácio, Marta; Romero, Marta; Wikelski, Martin; Schmidt, Matthias; Sarà, Maurizio; McGrady, Michael J.; Dagys, Mindaugas; Mackenzie, Monique L.; Al Taq, Muna; Mgumba, Msafiri P.; Virani, Munir Z.; Kassinis, Nicolaos I.; Borgianni, Nicolò; Thie, Nikki; Tsiopelas, Nikos; Anglister, Nili; Farwig, Nina; Sapir, Nir; Kleven, Oddmund; Krone, Oliver; Duriez, Olivier; Spiegel, Orr; Al Nouri, Osama; López-López, Pascual; Byholm, Patrik; Kamath, Pauline L.; Mirski, Paweł; Palatitz, Peter; Serroni, Pietro; Raab, Rainer; Buij, Ralph; Žydelis, Ramūnas; Nathan, Ran; Bowie, Rauri C.K.; Tsiakiris, Rigas; Hatfield, Richard Stratton; Harel, Roi; Kroglund, Rolf T.; Efrat, Ron; Limiñana, Ruben; Javed, Salim; Marinković, Saša P.; Rösner, Sascha; Pekarsky, Sasha; Kapila, Shiv R.; Marin, Simeon A.; Krejčí, Šimon; Giokas, Sinos; Tumanyan, Siranush; Turjeman, Sondra; Krüger, Sonja C.; Ewing, Steven R.; Stoychev, Stoycho; Nikolov, Stoyan C.; Qaneer, Tareq E.; Spatz, Theresa; Hadjikyriakou, Thomas G.; Mueller, Thomas; Katzner, Todd E.; Aarvak, Tomas; Veselovský, Tomáš; Nygård, Torgeir; Mellone, Ugo; Väli, Ülo; Sellis, Urmas; Urios, Vicente; Nemček, Vladimír; Arkumarev, Volen; Getz, Wayne M.; Fiedler, Wolfgang; Van den Bossche, Willem; Lehnardt, Yael; Jones, Victoria R.;handle: 20.500.14243/468346 , 10261/379357 , 10138/591382 , 10578/43177 , 20.500.14352/118853 , 10023/32204
handle: 20.500.14243/468346 , 10261/379357 , 10138/591382 , 10578/43177 , 20.500.14352/118853 , 10023/32204
Human-induced direct mortality affects huge numbers of birds each year, threatening hundreds of species worldwide. Tracking technologies can be an important tool to investigate temporal and spatial patterns of bird mortality as well as their drivers. We compiled 1704 mortality records from tracking studies across the African-Eurasian flyway for 45 species, including raptors, storks, and cranes, covering the period from 2003 to 2021. Our results show a higher frequency of human-induced causes of mortality than natural causes across taxonomic groups, geographical areas, and age classes. Moreover, we found that the frequency of human-induced mortality remained stable over the study period. From the human-induced mortality events with a known cause (n = 637), three main causes were identified: electrocution (40.5 %), illegal killing (21.7 %), and poisoning (16.3 %). Additionally, combined energy infrastructure-related mortality (i.e., electrocution, power line collision, and wind-farm collision) represented 49 % of all human-induced mortality events. Using a random forest model, the main predictors of human-induced mortality were found to be taxonomic group, geographic location (latitude and longitude), and human footprint index value at the location of mortality. Despite conservation efforts, human drivers of bird mortality in the African-Eurasian flyway do not appear to have declined over the last 15 years for the studied group of species. Results suggest that stronger conservation actions to address these threats across the flyway can reduce their impacts on species. In particular, projected future development of energy infrastructure is a representative example where application of planning, operation, and mitigation measures can enhance bird conservation. This work was funded by the MAVA Foundation trough the MAVA Safe Flyways Energy project, specifically the M7 Birds – Reducing mortality of migratory birds and vultures in the Mediterranean 2016–2022.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2025 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPhaidra - Repository of the University of Veterinary Medicine, ViennaArticle . 2024License: CC BY NCInstitutional Repository of Nature Research CentreArticle . 2024License: CC BY NCData sources: Institutional Repository of Nature Research CentreWageningen Staff PublicationsArticle . 2024License: CC BY NCData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2024 . Peer-reviewedData sources: St Andrews Research RepositoryRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2024.110525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 13visibility views 13 download downloads 20 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2025 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPhaidra - Repository of the University of Veterinary Medicine, ViennaArticle . 2024License: CC BY NCInstitutional Repository of Nature Research CentreArticle . 2024License: CC BY NCData sources: Institutional Repository of Nature Research CentreWageningen Staff PublicationsArticle . 2024License: CC BY NCData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2024 . Peer-reviewedData sources: St Andrews Research RepositoryRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2024.110525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Netherlands, Spain, France, Lithuania, United Kingdom, Spain, United Kingdom, Lithuania, Spain, Finland, Spain, Italy, Austria, United Kingdom, Austria, SpainPublisher:Elsevier BV Funded by:EC | Inspire4Nature, EC | SURVIVALISTEC| Inspire4Nature ,EC| SURVIVALISTSerratosa, Juan; Oppel, Steffen; Rotics, Shay; Santangeli, Andrea; Butchart, Stuart H.M.; Cano-Alonso, Luis S.; Tellería, Jose Luis; Kemp, Ryno; Nicholas, Aaron; Kalvāns, Aigars; Galarza, Aitor; Franco, Aldina M.A.; Andreotti, Alessandro; Kirschel, Alexander N.G.; Ngari, Alex; Soutullo, Alvaro; Bermejo-Bermejo, Ana; Botha, Andre J.; Ferri, Andrea; Evangelidis, Angelos; Cenerini, Anna; Stamenov, Anton; Hernández-Matías, Antonio; Aradis, Arianna; Grozdanov, Atanas P.; Rodríguez, Beneharo; Şekercioğlu, Çağan H.; Cerecedo-Iglesias, Catuxa; Kassara, Christina; Barboutis, Christos; Bracebridge, Claire; García-Ripollés, Clara; Kendall, Corinne J.; Denac, Damijan; Schabo, Dana G.; Barber, David R.; Popov, Dimitar V.; Dobrev, Dobromir D.; Mallia, Egidio; Kmetova-Biro, Elena; Álvarez, Ernesto; Buechley, Evan R.; Bragin, Evgeny A.; Cordischi, Fabrizio; Zengeya, Fadzai M.; Monti, Flavio; Mougeot, Francois; Tate, Gareth; Stoyanov, Georgi; Dell'Omo, Giacomo; Lucia, Giuseppe; Gradev, Gradimir; Ceccolini, Guido; Friedemann, Guilad; Bauer, Hans-Günther; Kolberg, Holger; Peshev, Hristo; Catry, Inês; Øien, Ingar J.; Alanís, Isidoro Carbonell; Literák, Ivan; Pokrovsky, Ivan; Ojaste, Ivar; Østnes, Jan E.; de la Puente, Javier; Real, Joan; Guilherme, João L.; González, José C.; Fernández-García, José M.; Gil, Juan Antonio; Terraube, Julien; Poprach, Karel; Aghababyan, Karen; Klein, Katharina; Bildstein, Keith L.; Wolter, Kerri; Janssens, Kjell; Kittelberger, Kyle D.; Thompson, Lindy J.; AlJahdhami, Mansoor H.; Galán, Manuel; Tobolka, Marcin; Posillico, Mario; Cipollone, Mario; Gschweng, Marion; Strazds, Māris; Boorman, Mark; Zvidzai, Mark; Acácio, Marta; Romero, Marta; Wikelski, Martin; Schmidt, Matthias; Sarà, Maurizio; McGrady, Michael J.; Dagys, Mindaugas; Mackenzie, Monique L.; Al Taq, Muna; Mgumba, Msafiri P.; Virani, Munir Z.; Kassinis, Nicolaos I.; Borgianni, Nicolò; Thie, Nikki; Tsiopelas, Nikos; Anglister, Nili; Farwig, Nina; Sapir, Nir; Kleven, Oddmund; Krone, Oliver; Duriez, Olivier; Spiegel, Orr; Al Nouri, Osama; López-López, Pascual; Byholm, Patrik; Kamath, Pauline L.; Mirski, Paweł; Palatitz, Peter; Serroni, Pietro; Raab, Rainer; Buij, Ralph; Žydelis, Ramūnas; Nathan, Ran; Bowie, Rauri C.K.; Tsiakiris, Rigas; Hatfield, Richard Stratton; Harel, Roi; Kroglund, Rolf T.; Efrat, Ron; Limiñana, Ruben; Javed, Salim; Marinković, Saša P.; Rösner, Sascha; Pekarsky, Sasha; Kapila, Shiv R.; Marin, Simeon A.; Krejčí, Šimon; Giokas, Sinos; Tumanyan, Siranush; Turjeman, Sondra; Krüger, Sonja C.; Ewing, Steven R.; Stoychev, Stoycho; Nikolov, Stoyan C.; Qaneer, Tareq E.; Spatz, Theresa; Hadjikyriakou, Thomas G.; Mueller, Thomas; Katzner, Todd E.; Aarvak, Tomas; Veselovský, Tomáš; Nygård, Torgeir; Mellone, Ugo; Väli, Ülo; Sellis, Urmas; Urios, Vicente; Nemček, Vladimír; Arkumarev, Volen; Getz, Wayne M.; Fiedler, Wolfgang; Van den Bossche, Willem; Lehnardt, Yael; Jones, Victoria R.;handle: 20.500.14243/468346 , 10261/379357 , 10138/591382 , 10578/43177 , 20.500.14352/118853 , 10023/32204
handle: 20.500.14243/468346 , 10261/379357 , 10138/591382 , 10578/43177 , 20.500.14352/118853 , 10023/32204
Human-induced direct mortality affects huge numbers of birds each year, threatening hundreds of species worldwide. Tracking technologies can be an important tool to investigate temporal and spatial patterns of bird mortality as well as their drivers. We compiled 1704 mortality records from tracking studies across the African-Eurasian flyway for 45 species, including raptors, storks, and cranes, covering the period from 2003 to 2021. Our results show a higher frequency of human-induced causes of mortality than natural causes across taxonomic groups, geographical areas, and age classes. Moreover, we found that the frequency of human-induced mortality remained stable over the study period. From the human-induced mortality events with a known cause (n = 637), three main causes were identified: electrocution (40.5 %), illegal killing (21.7 %), and poisoning (16.3 %). Additionally, combined energy infrastructure-related mortality (i.e., electrocution, power line collision, and wind-farm collision) represented 49 % of all human-induced mortality events. Using a random forest model, the main predictors of human-induced mortality were found to be taxonomic group, geographic location (latitude and longitude), and human footprint index value at the location of mortality. Despite conservation efforts, human drivers of bird mortality in the African-Eurasian flyway do not appear to have declined over the last 15 years for the studied group of species. Results suggest that stronger conservation actions to address these threats across the flyway can reduce their impacts on species. In particular, projected future development of energy infrastructure is a representative example where application of planning, operation, and mitigation measures can enhance bird conservation. This work was funded by the MAVA Foundation trough the MAVA Safe Flyways Energy project, specifically the M7 Birds – Reducing mortality of migratory birds and vultures in the Mediterranean 2016–2022.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2025 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPhaidra - Repository of the University of Veterinary Medicine, ViennaArticle . 2024License: CC BY NCInstitutional Repository of Nature Research CentreArticle . 2024License: CC BY NCData sources: Institutional Repository of Nature Research CentreWageningen Staff PublicationsArticle . 2024License: CC BY NCData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2024 . Peer-reviewedData sources: St Andrews Research RepositoryRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2024.110525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 13visibility views 13 download downloads 20 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2025 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPhaidra - Repository of the University of Veterinary Medicine, ViennaArticle . 2024License: CC BY NCInstitutional Repository of Nature Research CentreArticle . 2024License: CC BY NCData sources: Institutional Repository of Nature Research CentreWageningen Staff PublicationsArticle . 2024License: CC BY NCData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2024 . Peer-reviewedData sources: St Andrews Research RepositoryRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2024.110525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Elsevier BV Authors: Visschers, Lola L. B.; Santos, Carlos D.; Franco, Aldina M. A.;pmid: 35523322
Saltwater intrusion can dramatically transform coastal ecosystems, changing vegetation and impacting wildlife and human communities who rely on these natural resources. This phenomenon is difficult to measure over large and remote areas but can be inferred from changes in the distribution of salt-tolerant vegetation, such as mangroves, observable from satellite imagery. The northern coast of Brazil has the largest continuous mangrove forest in the world and very low human occupation. Even so, saltwater intrusion and changes to the coastline have been reported in this region, with potential consequences for mangrove carbon storage and for local livelihoods, but this has not been quantified due to the remoteness of the area. This study measured changes in mangrove distribution along the Northern Brazil coast in the state of Amapá, covering ca. 15,000 km2, over the last 38 years using Landsat satellite imagery. We found that mangrove area in this region is highly dynamic, with significant gains and losses occurring over the study period, but with an overall net gain of 157 km2. Mangroves have been systematically expanding inland and this growth has accelerated close to the shoreline and at the head of tidal channels in the last two decades, indicating rapid and large-scale saltwater intrusion in this region. This phenomenon is likely driven by sea level rise, which also accelerated in this region in recent decades, but anthropogenic impacts such as buffalo grazing may also play an important role.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.155679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.155679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Elsevier BV Authors: Visschers, Lola L. B.; Santos, Carlos D.; Franco, Aldina M. A.;pmid: 35523322
Saltwater intrusion can dramatically transform coastal ecosystems, changing vegetation and impacting wildlife and human communities who rely on these natural resources. This phenomenon is difficult to measure over large and remote areas but can be inferred from changes in the distribution of salt-tolerant vegetation, such as mangroves, observable from satellite imagery. The northern coast of Brazil has the largest continuous mangrove forest in the world and very low human occupation. Even so, saltwater intrusion and changes to the coastline have been reported in this region, with potential consequences for mangrove carbon storage and for local livelihoods, but this has not been quantified due to the remoteness of the area. This study measured changes in mangrove distribution along the Northern Brazil coast in the state of Amapá, covering ca. 15,000 km2, over the last 38 years using Landsat satellite imagery. We found that mangrove area in this region is highly dynamic, with significant gains and losses occurring over the study period, but with an overall net gain of 157 km2. Mangroves have been systematically expanding inland and this growth has accelerated close to the shoreline and at the head of tidal channels in the last two decades, indicating rapid and large-scale saltwater intrusion in this region. This phenomenon is likely driven by sea level rise, which also accelerated in this region in recent decades, but anthropogenic impacts such as buffalo grazing may also play an important role.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.155679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.155679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Portugal, United Kingdom, PortugalPublisher:Wiley Funded by:UKRI | Environment East (EnvEast...UKRI| Environment East (EnvEast) Doctoral Training PartnershipAuthors: Claire Buchan; James J. Gilroy; Inês Catry; Aldina M. A. Franco;AbstractPartial migration—wherein migratory and non‐migratory individuals exist within the same population—represents a behavioural dimorphism; for it to persist over time, both strategies should yield equal individual fitness. This balance may be maintained through trade‐offs where migrants gain survival benefits by avoiding unfavourable conditions, while residents gain breeding benefits from early access to resources.There has been little overarching quantitative analysis of the evidence for this fitness balance. As migrants—especially long‐distance migrants—may be particularly vulnerable to environmental change, it is possible that recent anthropogenic impacts could drive shifts in fitness balances within these populations.We tested these predictions using a multi‐taxa meta‐analysis. Of 2,939 reviewed studies, 23 contained suitable information for meta‐analysis, yielding 129 effect sizes.Of these, 73% (n = 94) reported higher resident fitness, 22% (n = 28) reported higher migrant fitness, and 5% (n = 7) reported equal fitness. Once weighted for precision, we found balanced fitness benefits across the entire dataset, but a consistently higher fitness of residents over migrants in birds and herpetofauna (the best‐sampled groups). Residency benefits were generally associated with survival, not breeding success, and increased with the number of years of data over which effect sizes were calculated, suggesting deviations from fitness parity are not due to sampling artefacts.A pervasive survival benefit to residency documented in recent literature could indicate that increased exposure to threats associated with anthropogenic change faced by migrating individuals may be shifting the relative fitness balance between strategies.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2020 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2019License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 51 citations 51 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 10visibility views 10 download downloads 16 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2020 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2019License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Portugal, United Kingdom, PortugalPublisher:Wiley Funded by:UKRI | Environment East (EnvEast...UKRI| Environment East (EnvEast) Doctoral Training PartnershipAuthors: Claire Buchan; James J. Gilroy; Inês Catry; Aldina M. A. Franco;AbstractPartial migration—wherein migratory and non‐migratory individuals exist within the same population—represents a behavioural dimorphism; for it to persist over time, both strategies should yield equal individual fitness. This balance may be maintained through trade‐offs where migrants gain survival benefits by avoiding unfavourable conditions, while residents gain breeding benefits from early access to resources.There has been little overarching quantitative analysis of the evidence for this fitness balance. As migrants—especially long‐distance migrants—may be particularly vulnerable to environmental change, it is possible that recent anthropogenic impacts could drive shifts in fitness balances within these populations.We tested these predictions using a multi‐taxa meta‐analysis. Of 2,939 reviewed studies, 23 contained suitable information for meta‐analysis, yielding 129 effect sizes.Of these, 73% (n = 94) reported higher resident fitness, 22% (n = 28) reported higher migrant fitness, and 5% (n = 7) reported equal fitness. Once weighted for precision, we found balanced fitness benefits across the entire dataset, but a consistently higher fitness of residents over migrants in birds and herpetofauna (the best‐sampled groups). Residency benefits were generally associated with survival, not breeding success, and increased with the number of years of data over which effect sizes were calculated, suggesting deviations from fitness parity are not due to sampling artefacts.A pervasive survival benefit to residency documented in recent literature could indicate that increased exposure to threats associated with anthropogenic change faced by migrating individuals may be shifting the relative fitness balance between strategies.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2020 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2019License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 51 citations 51 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 10visibility views 10 download downloads 16 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2020 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2019License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 19 May 2022 NetherlandsPublisher:Dryad Gauld, Jethro George; Silva, João P.; Atkinson, Philip W.; Record, Paul; Acácio, Marta; Arkumarev, Volen; Blas, Julio; Bouten, Willem; Burton, Niall; Catry, Inês; Champagnon, Jocelyn; Masden, Elizabeth A.; Clewley, Gary D.; Dagys, Mindaugas; Duriez, Olivier; Exo, Klaus‐Michael; Fiedler, Wolfgang; Flack, Andrea; Friedemann, Guilad; Fritz, Johannes; García-Ripollés, Clara; Garthe, Stefan; Giunchi, Dimitri; Grozdanov, Atanas; Harel, Roi; Humphreys, Elizabeth M.; Janssen, René; Kölzsch, Andrea; Kulikova, Olga; Lameris, Thomas K.; López-López, Pascual; Monti, Flavio; Nathan, Ran; Nikolov, Stoyan; Oppel, Steffen; Peshev, Hristo; Phipps, Louis; Pokrovsky, Ivan; Ross-Smith, Viola H.; Scragg, Emily S.; Sforzi, Andrea; Stoynov, Emilian; Thaxter, Chris; Van Steelant, Wouter; Toor, Mariëlle; Vorneweg, Bernd; Waldenström, Jonas; Wikelski, Martin; Žydelis, Ramūnas; Franco, Aldina M. A.; Saravia, Victoria;The full methodology to produce this data is described in Gauld et al. (2022) Hotspots in the grid: avian sensitivity and vulnerability to collision risk from energy infrastructure interactions in Europe and north Africa, Journal of Applied Ecology In brief: 65 Bird movement datasets containing high resolution GPS tracking data were downloaded from the www.movebank.org repository in April of 2019. These data were processed to remove locations associated with poor GPS accuracy and code locations in flight as present within a danger height band for wind turbines (15 - 135m above ground), Transmission Powerlines (10 - 60m above ground) or not. All datasets were combined into a single dataframe. This was overlaid onto a 5 x 5km fishnet grid covering Europe and North Africa, each grid cell had a unique NID value. For each species present within a given grid cell, the proportions of GPS locations in flight at danger height for the two danger height bands were calculated and weighted for uncertainty using the Wilson Confidence Interval, the resulting value for each grid cell was multiplied by the MBRCI (Morpho-Behavioural Conservation Status Risk Index) value to produce a sensitivity score for each species present in each grid cell where sufficient tracking data is available. To produce the family level sensitivity surface, the maximum sensitivity score of any species within a given family in a given grid cell is used. To produce the combined sensitivity surface, the maximum sensitivity score of any species within a given grid cell is used. The seasonal surfaces were produced in the same manner but calculated separately for Breeding and Non-Breeding periods. The vulnerability surface was produced by overlaying the sensitivity scores onto the density of either wind turbines or power lines in each grid cell. Grid cells were then categorised according to vulnerability by quantiles so Very Low: <0.025 percentile Low: 0.025 <0.25 percentile Moderate: 0.25 < 0.75 Percentile High: 0.75 < 0.975 Percentile Very High: >0.975 Percentile and No Data where GPS tracking data was not present. Wind turbine and power line densities were derived from the best available continental scale data at the time of the analysis. The accuracy of these datasets is discussed extensively in the supporting information of the paper. Raw data was processed in R, QGIS and ArcMap Wind turbines and power lines can cause bird mortality due to collision or electrocution. The biodiversity impacts of energy infrastructure (EI) can be minimised through effective landscape-scale planning and mitigation. The identification of high-vulnerability areas is urgently needed to assess potential cumulative impacts of EI while supporting the transition to zero-carbon energy. We collected GPS location data from 1,454 birds from 27 species susceptible to collision within Europe and North Africa and identified areas where tracked birds are most at risk of colliding with existing EI. Sensitivity to EI development was estimated for wind turbines and power lines by calculating the proportion of GPS flight locations at heights where birds were at risk of collision and accounting for species’ specific susceptibility to collision. We mapped the maximum collision sensitivity value obtained across all species, in each 5x5 km grid cell, across Europe and North Africa. Vulnerability to collision was obtained by overlaying the sensitivity surfaces with density of wind turbines and transmission power lines. Results: Exposure to risk varied across the 27 species, with some species flying consistently at heights where they risk collision. For areas with sufficient tracking data within Europe and North Africa, 13.6% of the area was classified as high sensitivity to wind turbines and 9.4% was classified as high sensitivity to transmission power lines. Sensitive areas were concentrated within important migratory corridors and along coastlines. Hotspots of vulnerability to collision with wind turbines and transmission power lines (2018 data) were scattered across the study region with highest concentrations occurring in central Europe, near the strait of Gibraltar and the Bosporus in Turkey. Synthesis and Applications: We identify the areas of Europe and North Africa that are most sensitive for the specific populations of birds for which sufficient GPS tracking data at high spatial resolution were available. We also map vulnerability hotspots where mitigation at existing EI should be prioritised to reduce collision risks. As tracking data availability improves our method could be applied to more species and areas to help reduce bird-EI conflicts. The results here are intended to provide a continental scale guide to where the collision risk hotspots are for the tracked birds used in the analysis and help guide further wind farms and power line development away from the higher risk areas for birds. It is important not to assume that areas where we do not have tracking data are free from risk, therefore this analysis does not remove the need for more local scale investigations into the ecological impact of a proposed development.
Universiteit van Ams... arrow_drop_down Universiteit van Amsterdam Digital Academic RepositoryDatasetLicense: CC 0Data sources: Universiteit van Amsterdam Digital Academic Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jm63xsjcw&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 7visibility views 7 download downloads 3 Powered bymore_vert Universiteit van Ams... arrow_drop_down Universiteit van Amsterdam Digital Academic RepositoryDatasetLicense: CC 0Data sources: Universiteit van Amsterdam Digital Academic Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jm63xsjcw&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 19 May 2022 NetherlandsPublisher:Dryad Gauld, Jethro George; Silva, João P.; Atkinson, Philip W.; Record, Paul; Acácio, Marta; Arkumarev, Volen; Blas, Julio; Bouten, Willem; Burton, Niall; Catry, Inês; Champagnon, Jocelyn; Masden, Elizabeth A.; Clewley, Gary D.; Dagys, Mindaugas; Duriez, Olivier; Exo, Klaus‐Michael; Fiedler, Wolfgang; Flack, Andrea; Friedemann, Guilad; Fritz, Johannes; García-Ripollés, Clara; Garthe, Stefan; Giunchi, Dimitri; Grozdanov, Atanas; Harel, Roi; Humphreys, Elizabeth M.; Janssen, René; Kölzsch, Andrea; Kulikova, Olga; Lameris, Thomas K.; López-López, Pascual; Monti, Flavio; Nathan, Ran; Nikolov, Stoyan; Oppel, Steffen; Peshev, Hristo; Phipps, Louis; Pokrovsky, Ivan; Ross-Smith, Viola H.; Scragg, Emily S.; Sforzi, Andrea; Stoynov, Emilian; Thaxter, Chris; Van Steelant, Wouter; Toor, Mariëlle; Vorneweg, Bernd; Waldenström, Jonas; Wikelski, Martin; Žydelis, Ramūnas; Franco, Aldina M. A.; Saravia, Victoria;The full methodology to produce this data is described in Gauld et al. (2022) Hotspots in the grid: avian sensitivity and vulnerability to collision risk from energy infrastructure interactions in Europe and north Africa, Journal of Applied Ecology In brief: 65 Bird movement datasets containing high resolution GPS tracking data were downloaded from the www.movebank.org repository in April of 2019. These data were processed to remove locations associated with poor GPS accuracy and code locations in flight as present within a danger height band for wind turbines (15 - 135m above ground), Transmission Powerlines (10 - 60m above ground) or not. All datasets were combined into a single dataframe. This was overlaid onto a 5 x 5km fishnet grid covering Europe and North Africa, each grid cell had a unique NID value. For each species present within a given grid cell, the proportions of GPS locations in flight at danger height for the two danger height bands were calculated and weighted for uncertainty using the Wilson Confidence Interval, the resulting value for each grid cell was multiplied by the MBRCI (Morpho-Behavioural Conservation Status Risk Index) value to produce a sensitivity score for each species present in each grid cell where sufficient tracking data is available. To produce the family level sensitivity surface, the maximum sensitivity score of any species within a given family in a given grid cell is used. To produce the combined sensitivity surface, the maximum sensitivity score of any species within a given grid cell is used. The seasonal surfaces were produced in the same manner but calculated separately for Breeding and Non-Breeding periods. The vulnerability surface was produced by overlaying the sensitivity scores onto the density of either wind turbines or power lines in each grid cell. Grid cells were then categorised according to vulnerability by quantiles so Very Low: <0.025 percentile Low: 0.025 <0.25 percentile Moderate: 0.25 < 0.75 Percentile High: 0.75 < 0.975 Percentile Very High: >0.975 Percentile and No Data where GPS tracking data was not present. Wind turbine and power line densities were derived from the best available continental scale data at the time of the analysis. The accuracy of these datasets is discussed extensively in the supporting information of the paper. Raw data was processed in R, QGIS and ArcMap Wind turbines and power lines can cause bird mortality due to collision or electrocution. The biodiversity impacts of energy infrastructure (EI) can be minimised through effective landscape-scale planning and mitigation. The identification of high-vulnerability areas is urgently needed to assess potential cumulative impacts of EI while supporting the transition to zero-carbon energy. We collected GPS location data from 1,454 birds from 27 species susceptible to collision within Europe and North Africa and identified areas where tracked birds are most at risk of colliding with existing EI. Sensitivity to EI development was estimated for wind turbines and power lines by calculating the proportion of GPS flight locations at heights where birds were at risk of collision and accounting for species’ specific susceptibility to collision. We mapped the maximum collision sensitivity value obtained across all species, in each 5x5 km grid cell, across Europe and North Africa. Vulnerability to collision was obtained by overlaying the sensitivity surfaces with density of wind turbines and transmission power lines. Results: Exposure to risk varied across the 27 species, with some species flying consistently at heights where they risk collision. For areas with sufficient tracking data within Europe and North Africa, 13.6% of the area was classified as high sensitivity to wind turbines and 9.4% was classified as high sensitivity to transmission power lines. Sensitive areas were concentrated within important migratory corridors and along coastlines. Hotspots of vulnerability to collision with wind turbines and transmission power lines (2018 data) were scattered across the study region with highest concentrations occurring in central Europe, near the strait of Gibraltar and the Bosporus in Turkey. Synthesis and Applications: We identify the areas of Europe and North Africa that are most sensitive for the specific populations of birds for which sufficient GPS tracking data at high spatial resolution were available. We also map vulnerability hotspots where mitigation at existing EI should be prioritised to reduce collision risks. As tracking data availability improves our method could be applied to more species and areas to help reduce bird-EI conflicts. The results here are intended to provide a continental scale guide to where the collision risk hotspots are for the tracked birds used in the analysis and help guide further wind farms and power line development away from the higher risk areas for birds. It is important not to assume that areas where we do not have tracking data are free from risk, therefore this analysis does not remove the need for more local scale investigations into the ecological impact of a proposed development.
Universiteit van Ams... arrow_drop_down Universiteit van Amsterdam Digital Academic RepositoryDatasetLicense: CC 0Data sources: Universiteit van Amsterdam Digital Academic Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jm63xsjcw&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 7visibility views 7 download downloads 3 Powered bymore_vert Universiteit van Ams... arrow_drop_down Universiteit van Amsterdam Digital Academic RepositoryDatasetLicense: CC 0Data sources: Universiteit van Amsterdam Digital Academic Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jm63xsjcw&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Switzerland, Finland, United Kingdom, United KingdomPublisher:Elsevier BV Pearce-Higgins, James; Antao, Laura; Bates, Rachel; Bowgen, Katharine; Bradshaw, Catherine; Duffield, Simon; Ffoulkes, Charles; Franco, Aldina; Geschke, J.; Gregory, Richard; Harley, Mike; Hodgson, Jenny; Jenkins, Rhosanna; Kapos, Val; Maltby, Katherine; Watts, Olly; Willis, Steve; Morecroft, Michael;handle: 10138/341846
Impacts of climate change on natural and human systems will become increasingly severe as the magnitude of climate change increases. Climate change adaptation interventions to address current and projected impacts are thus paramount. Yet, evidence on their effectiveness remains limited, highlighting the need for appropriate ecological indicators to measure progress of climate change adaptation for the natural environment. We outline conceptual, analytical, and practical challenges in developing such indicators, before proposing a framework with three process-based and two results-based indicator types to track progress in adapting to climate change. We emphasize the importance of dynamic assessment and modification over time, as new adaptation targets are set and/or as intervention actions are monitored and evaluated. Our framework and proposed indicators are flexible and widely applicable across species, habitats, and monitoring programmes, and could be accommodated within existing national or international frameworks to enable the evaluation of both large-scale policy instruments and local management interventions. We conclude by suggesting further work required to develop these indicators fully, and hope this will stimulate the use of ecological indicators to evaluate the effectiveness of policy interventions for the adaptation of the natural environment across the globe.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2022 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Durham Research OnlineArticle . 2022 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/36038/1/36038.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2022License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/36038/Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2022.108690&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2022 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Durham Research OnlineArticle . 2022 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/36038/1/36038.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2022License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/36038/Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2022.108690&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Switzerland, Finland, United Kingdom, United KingdomPublisher:Elsevier BV Pearce-Higgins, James; Antao, Laura; Bates, Rachel; Bowgen, Katharine; Bradshaw, Catherine; Duffield, Simon; Ffoulkes, Charles; Franco, Aldina; Geschke, J.; Gregory, Richard; Harley, Mike; Hodgson, Jenny; Jenkins, Rhosanna; Kapos, Val; Maltby, Katherine; Watts, Olly; Willis, Steve; Morecroft, Michael;handle: 10138/341846
Impacts of climate change on natural and human systems will become increasingly severe as the magnitude of climate change increases. Climate change adaptation interventions to address current and projected impacts are thus paramount. Yet, evidence on their effectiveness remains limited, highlighting the need for appropriate ecological indicators to measure progress of climate change adaptation for the natural environment. We outline conceptual, analytical, and practical challenges in developing such indicators, before proposing a framework with three process-based and two results-based indicator types to track progress in adapting to climate change. We emphasize the importance of dynamic assessment and modification over time, as new adaptation targets are set and/or as intervention actions are monitored and evaluated. Our framework and proposed indicators are flexible and widely applicable across species, habitats, and monitoring programmes, and could be accommodated within existing national or international frameworks to enable the evaluation of both large-scale policy instruments and local management interventions. We conclude by suggesting further work required to develop these indicators fully, and hope this will stimulate the use of ecological indicators to evaluate the effectiveness of policy interventions for the adaptation of the natural environment across the globe.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2022 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Durham Research OnlineArticle . 2022 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/36038/1/36038.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2022License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/36038/Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2022.108690&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2022 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Durham Research OnlineArticle . 2022 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/36038/1/36038.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2022License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/36038/Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2022.108690&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Wiley McDermott Long, Osgur; Warren, Rachel; Price, Jeff; Brereton, Tom M.; Botham, Marc S.; Franco, Aldina M.A.;pmid: 27796048
Summary There is growing recognition as to the importance of extreme climatic events (ECEs) in determining changes in species populations. In fact, it is often the extent of climate variability that determines a population's ability to persist at a given site. This study examined the impact of ECEs on the resident UK butterfly species (n = 41) over a 37‐year period. The study investigated the sensitivity of butterflies to four extremes (drought, extreme precipitation, extreme heat and extreme cold), identified at the site level, across each species' life stages. Variations in the vulnerability of butterflies at the site level were also compared based on three life‐history traits (voltinism, habitat requirement and range). This is the first study to examine the effects of ECEs at the site level across all life stages of a butterfly, identifying sensitive life stages and unravelling the role life‐history traits play in species sensitivity to ECEs. Butterfly population changes were found to be primarily driven by temperature extremes. Extreme heat was detrimental during overwintering periods and beneficial during adult periods and extreme cold had opposite impacts on both of these life stages. Previously undocumented detrimental effects were identified for extreme precipitation during the pupal life stage for univoltine species. Generalists were found to have significantly more negative associations with ECEs than specialists. With future projections of warmer, wetter winters and more severe weather events, UK butterflies could come under severe pressure given the findings of this study.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2017 . Peer-reviewedData sources: University of East Anglia digital repositoryJournal of Animal EcologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.12594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 82 citations 82 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2017 . Peer-reviewedData sources: University of East Anglia digital repositoryJournal of Animal EcologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.12594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Wiley McDermott Long, Osgur; Warren, Rachel; Price, Jeff; Brereton, Tom M.; Botham, Marc S.; Franco, Aldina M.A.;pmid: 27796048
Summary There is growing recognition as to the importance of extreme climatic events (ECEs) in determining changes in species populations. In fact, it is often the extent of climate variability that determines a population's ability to persist at a given site. This study examined the impact of ECEs on the resident UK butterfly species (n = 41) over a 37‐year period. The study investigated the sensitivity of butterflies to four extremes (drought, extreme precipitation, extreme heat and extreme cold), identified at the site level, across each species' life stages. Variations in the vulnerability of butterflies at the site level were also compared based on three life‐history traits (voltinism, habitat requirement and range). This is the first study to examine the effects of ECEs at the site level across all life stages of a butterfly, identifying sensitive life stages and unravelling the role life‐history traits play in species sensitivity to ECEs. Butterfly population changes were found to be primarily driven by temperature extremes. Extreme heat was detrimental during overwintering periods and beneficial during adult periods and extreme cold had opposite impacts on both of these life stages. Previously undocumented detrimental effects were identified for extreme precipitation during the pupal life stage for univoltine species. Generalists were found to have significantly more negative associations with ECEs than specialists. With future projections of warmer, wetter winters and more severe weather events, UK butterflies could come under severe pressure given the findings of this study.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2017 . Peer-reviewedData sources: University of East Anglia digital repositoryJournal of Animal EcologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.12594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 82 citations 82 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2017 . Peer-reviewedData sources: University of East Anglia digital repositoryJournal of Animal EcologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.12594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Finland, United KingdomPublisher:Springer Science and Business Media LLC Funded by:FCT | SFRH/BPD/111084/2015, UKRI | Next Generation Unmanned ...FCT| SFRH/BPD/111084/2015 ,UKRI| Next Generation Unmanned Systems Science (NEXUSS)Acácio, Marta; Catry, Inês; Soriano-Redondo, Andrea; Silva, João Paulo; Atkinson, Philip W.; Franco, Aldina M. A.;Abstract Background Migration phenology is shifting for many long-distance migrants due to global climate change, however the timing and duration of migration may influence the environmental conditions individuals encounter, with potential fitness consequences. Species with asynchronous migrations, i.e., with variability in migration timing, provide an excellent opportunity to investigate how of the conditions individuals experience during migration can vary and affect the migratory performance, route, and destination of migrants. Methods Here, we use GPS tracking and accelerometer data to examine if timing of autumn migration influences the migratory performance (duration, distance, route straightness, energy expenditure) and migration destinations of a long-distance, asynchronous, migrant, the white stork (Ciconia ciconia). We also compare the weather conditions (wind speed, wind direction, and boundary layer height) encountered on migration and examine the influence of wind direction on storks’ flight directions. Results From 2016 to 2020, we tracked 172 white storks and obtained 75 complete migrations from the breeding grounds in Europe to the sub-Saharan wintering areas. Autumn migration season spanned over a 3-month period (July–October) and arrival destinations covered a broad area of the Sahel, 2450 km apart, from Senegal to Niger. We found that timing of migration influenced both the performance and conditions individuals experienced: later storks spent fewer days on migration, adopted shorter and more direct routes in the Sahara Desert and consumed more energy when flying, as they were exposed to less supportive weather conditions. In the Desert, storks’ flight directions were significantly influenced by wind direction, with later individuals facing stronger easterly winds (i.e., winds blowing to the west), hence being more likely to end their migration in western areas of the Sahel region. Contrastingly, early storks encountered more supportive weather conditions, spent less energy on migration and were exposed to westerly winds, thus being more likely to end migration in eastern Sahel. Conclusions Our results show that the timing of migration influences the environmental conditions individuals face, the energetic costs of migration, and the wintering destinations, where birds may be exposed to different environmental conditions and distinct threats. These findings highlight that on-going changes in migration phenology, due to environmental change, may have critical fitness consequences for long-distance soaring migrants.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40462-022-00328-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40462-022-00328-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Finland, United KingdomPublisher:Springer Science and Business Media LLC Funded by:FCT | SFRH/BPD/111084/2015, UKRI | Next Generation Unmanned ...FCT| SFRH/BPD/111084/2015 ,UKRI| Next Generation Unmanned Systems Science (NEXUSS)Acácio, Marta; Catry, Inês; Soriano-Redondo, Andrea; Silva, João Paulo; Atkinson, Philip W.; Franco, Aldina M. A.;Abstract Background Migration phenology is shifting for many long-distance migrants due to global climate change, however the timing and duration of migration may influence the environmental conditions individuals encounter, with potential fitness consequences. Species with asynchronous migrations, i.e., with variability in migration timing, provide an excellent opportunity to investigate how of the conditions individuals experience during migration can vary and affect the migratory performance, route, and destination of migrants. Methods Here, we use GPS tracking and accelerometer data to examine if timing of autumn migration influences the migratory performance (duration, distance, route straightness, energy expenditure) and migration destinations of a long-distance, asynchronous, migrant, the white stork (Ciconia ciconia). We also compare the weather conditions (wind speed, wind direction, and boundary layer height) encountered on migration and examine the influence of wind direction on storks’ flight directions. Results From 2016 to 2020, we tracked 172 white storks and obtained 75 complete migrations from the breeding grounds in Europe to the sub-Saharan wintering areas. Autumn migration season spanned over a 3-month period (July–October) and arrival destinations covered a broad area of the Sahel, 2450 km apart, from Senegal to Niger. We found that timing of migration influenced both the performance and conditions individuals experienced: later storks spent fewer days on migration, adopted shorter and more direct routes in the Sahara Desert and consumed more energy when flying, as they were exposed to less supportive weather conditions. In the Desert, storks’ flight directions were significantly influenced by wind direction, with later individuals facing stronger easterly winds (i.e., winds blowing to the west), hence being more likely to end their migration in western areas of the Sahel region. Contrastingly, early storks encountered more supportive weather conditions, spent less energy on migration and were exposed to westerly winds, thus being more likely to end migration in eastern Sahel. Conclusions Our results show that the timing of migration influences the environmental conditions individuals face, the energetic costs of migration, and the wintering destinations, where birds may be exposed to different environmental conditions and distinct threats. These findings highlight that on-going changes in migration phenology, due to environmental change, may have critical fitness consequences for long-distance soaring migrants.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40462-022-00328-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40462-022-00328-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Oxford University Press (OUP) Tom H. Oliver; Robert J. Wilson; James W. Pearce-Higgins; Aldina M. A. Franco; Michael D. Morecroft; Deborah A. Procter; Nina J. O'Hanlon; Nina J. O'Hanlon; Jeremy A. Thomas; Barbara J. Anderson; Barbara J. Anderson; Richard B. Bradbury; David B. Roy; Alison R. Holt; Kevin J. Walker; Chris D. Thomas; Nigel A. D. Bourn; Jane K. Hill; Jenny A. Hodgson; Humphrey Q. P. Crick; Richard Fox; John M. Baxter; Richard A. Findon; Clive A. Walmsley; Phillipa K. Gillingham; Phillipa K. Gillingham;doi: 10.1111/bij.12506
A cornerstone of conservation is the designation and management of protected areas (PAs): locations often under conservation management containing species of conservation concern, where some development and other detrimental influences are prevented or mitigated. However, the value of PAs for conserving biodiversity in the long term has been questioned given that species are changing their distributions in response to climatic change. There is a concern that PAs may become climatically unsuitable for those species that they were designated to protect, and may not be located appropriately to receive newly-colonizing species for which the climate is improving. In the present study, we analyze fine-scale distribution data from detailed resurveys of seven butterfly and 11 bird species in Great Britain aiming to examine any effect of PA designation in preventing extinctions and promoting colonizations. We found a positive effect of PA designation on species' persistence at trailing-edge warm range margins, although with a decreased magnitude at higher latitudes and altitudes. In addition, colonizations by range expanding species were more likely to occur on PAs even after altitude and latitude were taken into account. PAs will therefore remain an important strategy for conservation. The potential for PA management to mitigate the effects of climatic change for retracting species deserves further investigation.
Biological Journal o... arrow_drop_down University of East Anglia digital repositoryArticle . 2015 . Peer-reviewedData sources: University of East Anglia digital repositoryBiological Journal of the Linnean SocietyArticle . 2015 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/bij.12506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biological Journal o... arrow_drop_down University of East Anglia digital repositoryArticle . 2015 . Peer-reviewedData sources: University of East Anglia digital repositoryBiological Journal of the Linnean SocietyArticle . 2015 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/bij.12506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Oxford University Press (OUP) Tom H. Oliver; Robert J. Wilson; James W. Pearce-Higgins; Aldina M. A. Franco; Michael D. Morecroft; Deborah A. Procter; Nina J. O'Hanlon; Nina J. O'Hanlon; Jeremy A. Thomas; Barbara J. Anderson; Barbara J. Anderson; Richard B. Bradbury; David B. Roy; Alison R. Holt; Kevin J. Walker; Chris D. Thomas; Nigel A. D. Bourn; Jane K. Hill; Jenny A. Hodgson; Humphrey Q. P. Crick; Richard Fox; John M. Baxter; Richard A. Findon; Clive A. Walmsley; Phillipa K. Gillingham; Phillipa K. Gillingham;doi: 10.1111/bij.12506
A cornerstone of conservation is the designation and management of protected areas (PAs): locations often under conservation management containing species of conservation concern, where some development and other detrimental influences are prevented or mitigated. However, the value of PAs for conserving biodiversity in the long term has been questioned given that species are changing their distributions in response to climatic change. There is a concern that PAs may become climatically unsuitable for those species that they were designated to protect, and may not be located appropriately to receive newly-colonizing species for which the climate is improving. In the present study, we analyze fine-scale distribution data from detailed resurveys of seven butterfly and 11 bird species in Great Britain aiming to examine any effect of PA designation in preventing extinctions and promoting colonizations. We found a positive effect of PA designation on species' persistence at trailing-edge warm range margins, although with a decreased magnitude at higher latitudes and altitudes. In addition, colonizations by range expanding species were more likely to occur on PAs even after altitude and latitude were taken into account. PAs will therefore remain an important strategy for conservation. The potential for PA management to mitigate the effects of climatic change for retracting species deserves further investigation.
Biological Journal o... arrow_drop_down University of East Anglia digital repositoryArticle . 2015 . Peer-reviewedData sources: University of East Anglia digital repositoryBiological Journal of the Linnean SocietyArticle . 2015 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/bij.12506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biological Journal o... arrow_drop_down University of East Anglia digital repositoryArticle . 2015 . Peer-reviewedData sources: University of East Anglia digital repositoryBiological Journal of the Linnean SocietyArticle . 2015 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/bij.12506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Poland, United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Understanding causes and ...UKRI| Understanding causes and consequences of the extreme thermal sensitivity of male fertility using a model insectKris Sales; Ramakrishnan Vasudeva; Matthew E. Dickinson; Joanne L. Godwin; Alyson J. Lumley; Łukasz Michalczyk; Laura Hebberecht; Paul Thomas; Aldina Franco; Matthew J. G. Gage;AbstractClimate change is affecting biodiversity, but proximate drivers remain poorly understood. Here, we examine how experimental heatwaves impact on reproduction in an insect system. Male sensitivity to heat is recognised in endotherms, but ectotherms have received limited attention, despite comprising most of biodiversity and being more influenced by temperature variation. Using a flour beetle model system, we find that heatwave conditions (5 to 7 °C above optimum for 5 days) damaged male, but not female, reproduction. Heatwaves reduce male fertility and sperm competitiveness, and successive heatwaves almost sterilise males. Heatwaves reduce sperm production, viability, and migration through the female. Inseminated sperm in female storage are also damaged by heatwaves. Finally, we discover transgenerational impacts, with reduced reproductive potential and lifespan of offspring when fathered by males, or sperm, that had experienced heatwaves. This male reproductive damage under heatwave conditions provides one potential driver behind biodiversity declines and contractions through global warming.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-07273-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 191 citations 191 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-07273-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Poland, United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Understanding causes and ...UKRI| Understanding causes and consequences of the extreme thermal sensitivity of male fertility using a model insectKris Sales; Ramakrishnan Vasudeva; Matthew E. Dickinson; Joanne L. Godwin; Alyson J. Lumley; Łukasz Michalczyk; Laura Hebberecht; Paul Thomas; Aldina Franco; Matthew J. G. Gage;AbstractClimate change is affecting biodiversity, but proximate drivers remain poorly understood. Here, we examine how experimental heatwaves impact on reproduction in an insect system. Male sensitivity to heat is recognised in endotherms, but ectotherms have received limited attention, despite comprising most of biodiversity and being more influenced by temperature variation. Using a flour beetle model system, we find that heatwave conditions (5 to 7 °C above optimum for 5 days) damaged male, but not female, reproduction. Heatwaves reduce male fertility and sperm competitiveness, and successive heatwaves almost sterilise males. Heatwaves reduce sperm production, viability, and migration through the female. Inseminated sperm in female storage are also damaged by heatwaves. Finally, we discover transgenerational impacts, with reduced reproductive potential and lifespan of offspring when fathered by males, or sperm, that had experienced heatwaves. This male reproductive damage under heatwave conditions provides one potential driver behind biodiversity declines and contractions through global warming.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-07273-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 191 citations 191 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-07273-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024 Netherlands, Spain, France, Lithuania, United Kingdom, Spain, United Kingdom, Lithuania, Spain, Finland, Spain, Italy, Austria, United Kingdom, Austria, SpainPublisher:Elsevier BV Funded by:EC | Inspire4Nature, EC | SURVIVALISTEC| Inspire4Nature ,EC| SURVIVALISTSerratosa, Juan; Oppel, Steffen; Rotics, Shay; Santangeli, Andrea; Butchart, Stuart H.M.; Cano-Alonso, Luis S.; Tellería, Jose Luis; Kemp, Ryno; Nicholas, Aaron; Kalvāns, Aigars; Galarza, Aitor; Franco, Aldina M.A.; Andreotti, Alessandro; Kirschel, Alexander N.G.; Ngari, Alex; Soutullo, Alvaro; Bermejo-Bermejo, Ana; Botha, Andre J.; Ferri, Andrea; Evangelidis, Angelos; Cenerini, Anna; Stamenov, Anton; Hernández-Matías, Antonio; Aradis, Arianna; Grozdanov, Atanas P.; Rodríguez, Beneharo; Şekercioğlu, Çağan H.; Cerecedo-Iglesias, Catuxa; Kassara, Christina; Barboutis, Christos; Bracebridge, Claire; García-Ripollés, Clara; Kendall, Corinne J.; Denac, Damijan; Schabo, Dana G.; Barber, David R.; Popov, Dimitar V.; Dobrev, Dobromir D.; Mallia, Egidio; Kmetova-Biro, Elena; Álvarez, Ernesto; Buechley, Evan R.; Bragin, Evgeny A.; Cordischi, Fabrizio; Zengeya, Fadzai M.; Monti, Flavio; Mougeot, Francois; Tate, Gareth; Stoyanov, Georgi; Dell'Omo, Giacomo; Lucia, Giuseppe; Gradev, Gradimir; Ceccolini, Guido; Friedemann, Guilad; Bauer, Hans-Günther; Kolberg, Holger; Peshev, Hristo; Catry, Inês; Øien, Ingar J.; Alanís, Isidoro Carbonell; Literák, Ivan; Pokrovsky, Ivan; Ojaste, Ivar; Østnes, Jan E.; de la Puente, Javier; Real, Joan; Guilherme, João L.; González, José C.; Fernández-García, José M.; Gil, Juan Antonio; Terraube, Julien; Poprach, Karel; Aghababyan, Karen; Klein, Katharina; Bildstein, Keith L.; Wolter, Kerri; Janssens, Kjell; Kittelberger, Kyle D.; Thompson, Lindy J.; AlJahdhami, Mansoor H.; Galán, Manuel; Tobolka, Marcin; Posillico, Mario; Cipollone, Mario; Gschweng, Marion; Strazds, Māris; Boorman, Mark; Zvidzai, Mark; Acácio, Marta; Romero, Marta; Wikelski, Martin; Schmidt, Matthias; Sarà, Maurizio; McGrady, Michael J.; Dagys, Mindaugas; Mackenzie, Monique L.; Al Taq, Muna; Mgumba, Msafiri P.; Virani, Munir Z.; Kassinis, Nicolaos I.; Borgianni, Nicolò; Thie, Nikki; Tsiopelas, Nikos; Anglister, Nili; Farwig, Nina; Sapir, Nir; Kleven, Oddmund; Krone, Oliver; Duriez, Olivier; Spiegel, Orr; Al Nouri, Osama; López-López, Pascual; Byholm, Patrik; Kamath, Pauline L.; Mirski, Paweł; Palatitz, Peter; Serroni, Pietro; Raab, Rainer; Buij, Ralph; Žydelis, Ramūnas; Nathan, Ran; Bowie, Rauri C.K.; Tsiakiris, Rigas; Hatfield, Richard Stratton; Harel, Roi; Kroglund, Rolf T.; Efrat, Ron; Limiñana, Ruben; Javed, Salim; Marinković, Saša P.; Rösner, Sascha; Pekarsky, Sasha; Kapila, Shiv R.; Marin, Simeon A.; Krejčí, Šimon; Giokas, Sinos; Tumanyan, Siranush; Turjeman, Sondra; Krüger, Sonja C.; Ewing, Steven R.; Stoychev, Stoycho; Nikolov, Stoyan C.; Qaneer, Tareq E.; Spatz, Theresa; Hadjikyriakou, Thomas G.; Mueller, Thomas; Katzner, Todd E.; Aarvak, Tomas; Veselovský, Tomáš; Nygård, Torgeir; Mellone, Ugo; Väli, Ülo; Sellis, Urmas; Urios, Vicente; Nemček, Vladimír; Arkumarev, Volen; Getz, Wayne M.; Fiedler, Wolfgang; Van den Bossche, Willem; Lehnardt, Yael; Jones, Victoria R.;handle: 20.500.14243/468346 , 10261/379357 , 10138/591382 , 10578/43177 , 20.500.14352/118853 , 10023/32204
handle: 20.500.14243/468346 , 10261/379357 , 10138/591382 , 10578/43177 , 20.500.14352/118853 , 10023/32204
Human-induced direct mortality affects huge numbers of birds each year, threatening hundreds of species worldwide. Tracking technologies can be an important tool to investigate temporal and spatial patterns of bird mortality as well as their drivers. We compiled 1704 mortality records from tracking studies across the African-Eurasian flyway for 45 species, including raptors, storks, and cranes, covering the period from 2003 to 2021. Our results show a higher frequency of human-induced causes of mortality than natural causes across taxonomic groups, geographical areas, and age classes. Moreover, we found that the frequency of human-induced mortality remained stable over the study period. From the human-induced mortality events with a known cause (n = 637), three main causes were identified: electrocution (40.5 %), illegal killing (21.7 %), and poisoning (16.3 %). Additionally, combined energy infrastructure-related mortality (i.e., electrocution, power line collision, and wind-farm collision) represented 49 % of all human-induced mortality events. Using a random forest model, the main predictors of human-induced mortality were found to be taxonomic group, geographic location (latitude and longitude), and human footprint index value at the location of mortality. Despite conservation efforts, human drivers of bird mortality in the African-Eurasian flyway do not appear to have declined over the last 15 years for the studied group of species. Results suggest that stronger conservation actions to address these threats across the flyway can reduce their impacts on species. In particular, projected future development of energy infrastructure is a representative example where application of planning, operation, and mitigation measures can enhance bird conservation. This work was funded by the MAVA Foundation trough the MAVA Safe Flyways Energy project, specifically the M7 Birds – Reducing mortality of migratory birds and vultures in the Mediterranean 2016–2022.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2025 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPhaidra - Repository of the University of Veterinary Medicine, ViennaArticle . 2024License: CC BY NCInstitutional Repository of Nature Research CentreArticle . 2024License: CC BY NCData sources: Institutional Repository of Nature Research CentreWageningen Staff PublicationsArticle . 2024License: CC BY NCData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2024 . Peer-reviewedData sources: St Andrews Research RepositoryRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2024.110525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 13visibility views 13 download downloads 20 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2025 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPhaidra - Repository of the University of Veterinary Medicine, ViennaArticle . 2024License: CC BY NCInstitutional Repository of Nature Research CentreArticle . 2024License: CC BY NCData sources: Institutional Repository of Nature Research CentreWageningen Staff PublicationsArticle . 2024License: CC BY NCData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2024 . Peer-reviewedData sources: St Andrews Research RepositoryRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2024.110525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Netherlands, Spain, France, Lithuania, United Kingdom, Spain, United Kingdom, Lithuania, Spain, Finland, Spain, Italy, Austria, United Kingdom, Austria, SpainPublisher:Elsevier BV Funded by:EC | Inspire4Nature, EC | SURVIVALISTEC| Inspire4Nature ,EC| SURVIVALISTSerratosa, Juan; Oppel, Steffen; Rotics, Shay; Santangeli, Andrea; Butchart, Stuart H.M.; Cano-Alonso, Luis S.; Tellería, Jose Luis; Kemp, Ryno; Nicholas, Aaron; Kalvāns, Aigars; Galarza, Aitor; Franco, Aldina M.A.; Andreotti, Alessandro; Kirschel, Alexander N.G.; Ngari, Alex; Soutullo, Alvaro; Bermejo-Bermejo, Ana; Botha, Andre J.; Ferri, Andrea; Evangelidis, Angelos; Cenerini, Anna; Stamenov, Anton; Hernández-Matías, Antonio; Aradis, Arianna; Grozdanov, Atanas P.; Rodríguez, Beneharo; Şekercioğlu, Çağan H.; Cerecedo-Iglesias, Catuxa; Kassara, Christina; Barboutis, Christos; Bracebridge, Claire; García-Ripollés, Clara; Kendall, Corinne J.; Denac, Damijan; Schabo, Dana G.; Barber, David R.; Popov, Dimitar V.; Dobrev, Dobromir D.; Mallia, Egidio; Kmetova-Biro, Elena; Álvarez, Ernesto; Buechley, Evan R.; Bragin, Evgeny A.; Cordischi, Fabrizio; Zengeya, Fadzai M.; Monti, Flavio; Mougeot, Francois; Tate, Gareth; Stoyanov, Georgi; Dell'Omo, Giacomo; Lucia, Giuseppe; Gradev, Gradimir; Ceccolini, Guido; Friedemann, Guilad; Bauer, Hans-Günther; Kolberg, Holger; Peshev, Hristo; Catry, Inês; Øien, Ingar J.; Alanís, Isidoro Carbonell; Literák, Ivan; Pokrovsky, Ivan; Ojaste, Ivar; Østnes, Jan E.; de la Puente, Javier; Real, Joan; Guilherme, João L.; González, José C.; Fernández-García, José M.; Gil, Juan Antonio; Terraube, Julien; Poprach, Karel; Aghababyan, Karen; Klein, Katharina; Bildstein, Keith L.; Wolter, Kerri; Janssens, Kjell; Kittelberger, Kyle D.; Thompson, Lindy J.; AlJahdhami, Mansoor H.; Galán, Manuel; Tobolka, Marcin; Posillico, Mario; Cipollone, Mario; Gschweng, Marion; Strazds, Māris; Boorman, Mark; Zvidzai, Mark; Acácio, Marta; Romero, Marta; Wikelski, Martin; Schmidt, Matthias; Sarà, Maurizio; McGrady, Michael J.; Dagys, Mindaugas; Mackenzie, Monique L.; Al Taq, Muna; Mgumba, Msafiri P.; Virani, Munir Z.; Kassinis, Nicolaos I.; Borgianni, Nicolò; Thie, Nikki; Tsiopelas, Nikos; Anglister, Nili; Farwig, Nina; Sapir, Nir; Kleven, Oddmund; Krone, Oliver; Duriez, Olivier; Spiegel, Orr; Al Nouri, Osama; López-López, Pascual; Byholm, Patrik; Kamath, Pauline L.; Mirski, Paweł; Palatitz, Peter; Serroni, Pietro; Raab, Rainer; Buij, Ralph; Žydelis, Ramūnas; Nathan, Ran; Bowie, Rauri C.K.; Tsiakiris, Rigas; Hatfield, Richard Stratton; Harel, Roi; Kroglund, Rolf T.; Efrat, Ron; Limiñana, Ruben; Javed, Salim; Marinković, Saša P.; Rösner, Sascha; Pekarsky, Sasha; Kapila, Shiv R.; Marin, Simeon A.; Krejčí, Šimon; Giokas, Sinos; Tumanyan, Siranush; Turjeman, Sondra; Krüger, Sonja C.; Ewing, Steven R.; Stoychev, Stoycho; Nikolov, Stoyan C.; Qaneer, Tareq E.; Spatz, Theresa; Hadjikyriakou, Thomas G.; Mueller, Thomas; Katzner, Todd E.; Aarvak, Tomas; Veselovský, Tomáš; Nygård, Torgeir; Mellone, Ugo; Väli, Ülo; Sellis, Urmas; Urios, Vicente; Nemček, Vladimír; Arkumarev, Volen; Getz, Wayne M.; Fiedler, Wolfgang; Van den Bossche, Willem; Lehnardt, Yael; Jones, Victoria R.;handle: 20.500.14243/468346 , 10261/379357 , 10138/591382 , 10578/43177 , 20.500.14352/118853 , 10023/32204
handle: 20.500.14243/468346 , 10261/379357 , 10138/591382 , 10578/43177 , 20.500.14352/118853 , 10023/32204
Human-induced direct mortality affects huge numbers of birds each year, threatening hundreds of species worldwide. Tracking technologies can be an important tool to investigate temporal and spatial patterns of bird mortality as well as their drivers. We compiled 1704 mortality records from tracking studies across the African-Eurasian flyway for 45 species, including raptors, storks, and cranes, covering the period from 2003 to 2021. Our results show a higher frequency of human-induced causes of mortality than natural causes across taxonomic groups, geographical areas, and age classes. Moreover, we found that the frequency of human-induced mortality remained stable over the study period. From the human-induced mortality events with a known cause (n = 637), three main causes were identified: electrocution (40.5 %), illegal killing (21.7 %), and poisoning (16.3 %). Additionally, combined energy infrastructure-related mortality (i.e., electrocution, power line collision, and wind-farm collision) represented 49 % of all human-induced mortality events. Using a random forest model, the main predictors of human-induced mortality were found to be taxonomic group, geographic location (latitude and longitude), and human footprint index value at the location of mortality. Despite conservation efforts, human drivers of bird mortality in the African-Eurasian flyway do not appear to have declined over the last 15 years for the studied group of species. Results suggest that stronger conservation actions to address these threats across the flyway can reduce their impacts on species. In particular, projected future development of energy infrastructure is a representative example where application of planning, operation, and mitigation measures can enhance bird conservation. This work was funded by the MAVA Foundation trough the MAVA Safe Flyways Energy project, specifically the M7 Birds – Reducing mortality of migratory birds and vultures in the Mediterranean 2016–2022.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2025 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPhaidra - Repository of the University of Veterinary Medicine, ViennaArticle . 2024License: CC BY NCInstitutional Repository of Nature Research CentreArticle . 2024License: CC BY NCData sources: Institutional Repository of Nature Research CentreWageningen Staff PublicationsArticle . 2024License: CC BY NCData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2024 . Peer-reviewedData sources: St Andrews Research RepositoryRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2024.110525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 16 citations 16 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 13visibility views 13 download downloads 20 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2024 . Peer-reviewedLicense: CC BY NCData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2024License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAHELDA - Digital Repository of the University of HelsinkiArticle . 2025 . Peer-reviewedData sources: HELDA - Digital Repository of the University of HelsinkiPhaidra - Repository of the University of Veterinary Medicine, ViennaArticle . 2024License: CC BY NCInstitutional Repository of Nature Research CentreArticle . 2024License: CC BY NCData sources: Institutional Repository of Nature Research CentreWageningen Staff PublicationsArticle . 2024License: CC BY NCData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2024 . Peer-reviewedData sources: St Andrews Research RepositoryRepositorio Institucional de la Universidad de AlicanteArticle . 2024Data sources: Repositorio Institucional de la Universidad de AlicanteInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biocon.2024.110525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Elsevier BV Authors: Visschers, Lola L. B.; Santos, Carlos D.; Franco, Aldina M. A.;pmid: 35523322
Saltwater intrusion can dramatically transform coastal ecosystems, changing vegetation and impacting wildlife and human communities who rely on these natural resources. This phenomenon is difficult to measure over large and remote areas but can be inferred from changes in the distribution of salt-tolerant vegetation, such as mangroves, observable from satellite imagery. The northern coast of Brazil has the largest continuous mangrove forest in the world and very low human occupation. Even so, saltwater intrusion and changes to the coastline have been reported in this region, with potential consequences for mangrove carbon storage and for local livelihoods, but this has not been quantified due to the remoteness of the area. This study measured changes in mangrove distribution along the Northern Brazil coast in the state of Amapá, covering ca. 15,000 km2, over the last 38 years using Landsat satellite imagery. We found that mangrove area in this region is highly dynamic, with significant gains and losses occurring over the study period, but with an overall net gain of 157 km2. Mangroves have been systematically expanding inland and this growth has accelerated close to the shoreline and at the head of tidal channels in the last two decades, indicating rapid and large-scale saltwater intrusion in this region. This phenomenon is likely driven by sea level rise, which also accelerated in this region in recent decades, but anthropogenic impacts such as buffalo grazing may also play an important role.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.155679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.155679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Elsevier BV Authors: Visschers, Lola L. B.; Santos, Carlos D.; Franco, Aldina M. A.;pmid: 35523322
Saltwater intrusion can dramatically transform coastal ecosystems, changing vegetation and impacting wildlife and human communities who rely on these natural resources. This phenomenon is difficult to measure over large and remote areas but can be inferred from changes in the distribution of salt-tolerant vegetation, such as mangroves, observable from satellite imagery. The northern coast of Brazil has the largest continuous mangrove forest in the world and very low human occupation. Even so, saltwater intrusion and changes to the coastline have been reported in this region, with potential consequences for mangrove carbon storage and for local livelihoods, but this has not been quantified due to the remoteness of the area. This study measured changes in mangrove distribution along the Northern Brazil coast in the state of Amapá, covering ca. 15,000 km2, over the last 38 years using Landsat satellite imagery. We found that mangrove area in this region is highly dynamic, with significant gains and losses occurring over the study period, but with an overall net gain of 157 km2. Mangroves have been systematically expanding inland and this growth has accelerated close to the shoreline and at the head of tidal channels in the last two decades, indicating rapid and large-scale saltwater intrusion in this region. This phenomenon is likely driven by sea level rise, which also accelerated in this region in recent decades, but anthropogenic impacts such as buffalo grazing may also play an important role.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.155679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2022.155679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Portugal, United Kingdom, PortugalPublisher:Wiley Funded by:UKRI | Environment East (EnvEast...UKRI| Environment East (EnvEast) Doctoral Training PartnershipAuthors: Claire Buchan; James J. Gilroy; Inês Catry; Aldina M. A. Franco;AbstractPartial migration—wherein migratory and non‐migratory individuals exist within the same population—represents a behavioural dimorphism; for it to persist over time, both strategies should yield equal individual fitness. This balance may be maintained through trade‐offs where migrants gain survival benefits by avoiding unfavourable conditions, while residents gain breeding benefits from early access to resources.There has been little overarching quantitative analysis of the evidence for this fitness balance. As migrants—especially long‐distance migrants—may be particularly vulnerable to environmental change, it is possible that recent anthropogenic impacts could drive shifts in fitness balances within these populations.We tested these predictions using a multi‐taxa meta‐analysis. Of 2,939 reviewed studies, 23 contained suitable information for meta‐analysis, yielding 129 effect sizes.Of these, 73% (n = 94) reported higher resident fitness, 22% (n = 28) reported higher migrant fitness, and 5% (n = 7) reported equal fitness. Once weighted for precision, we found balanced fitness benefits across the entire dataset, but a consistently higher fitness of residents over migrants in birds and herpetofauna (the best‐sampled groups). Residency benefits were generally associated with survival, not breeding success, and increased with the number of years of data over which effect sizes were calculated, suggesting deviations from fitness parity are not due to sampling artefacts.A pervasive survival benefit to residency documented in recent literature could indicate that increased exposure to threats associated with anthropogenic change faced by migrating individuals may be shifting the relative fitness balance between strategies.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2020 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2019License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 51 citations 51 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 10visibility views 10 download downloads 16 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2020 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2019License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Portugal, United Kingdom, PortugalPublisher:Wiley Funded by:UKRI | Environment East (EnvEast...UKRI| Environment East (EnvEast) Doctoral Training PartnershipAuthors: Claire Buchan; James J. Gilroy; Inês Catry; Aldina M. A. Franco;AbstractPartial migration—wherein migratory and non‐migratory individuals exist within the same population—represents a behavioural dimorphism; for it to persist over time, both strategies should yield equal individual fitness. This balance may be maintained through trade‐offs where migrants gain survival benefits by avoiding unfavourable conditions, while residents gain breeding benefits from early access to resources.There has been little overarching quantitative analysis of the evidence for this fitness balance. As migrants—especially long‐distance migrants—may be particularly vulnerable to environmental change, it is possible that recent anthropogenic impacts could drive shifts in fitness balances within these populations.We tested these predictions using a multi‐taxa meta‐analysis. Of 2,939 reviewed studies, 23 contained suitable information for meta‐analysis, yielding 129 effect sizes.Of these, 73% (n = 94) reported higher resident fitness, 22% (n = 28) reported higher migrant fitness, and 5% (n = 7) reported equal fitness. Once weighted for precision, we found balanced fitness benefits across the entire dataset, but a consistently higher fitness of residents over migrants in birds and herpetofauna (the best‐sampled groups). Residency benefits were generally associated with survival, not breeding success, and increased with the number of years of data over which effect sizes were calculated, suggesting deviations from fitness parity are not due to sampling artefacts.A pervasive survival benefit to residency documented in recent literature could indicate that increased exposure to threats associated with anthropogenic change faced by migrating individuals may be shifting the relative fitness balance between strategies.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2020 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2019License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 51 citations 51 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 10visibility views 10 download downloads 16 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2020 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Universidade de Lisboa: Repositório.ULArticle . 2019License: CC BYData sources: Universidade de Lisboa: Repositório.ULadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.13155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 19 May 2022 NetherlandsPublisher:Dryad Gauld, Jethro George; Silva, João P.; Atkinson, Philip W.; Record, Paul; Acácio, Marta; Arkumarev, Volen; Blas, Julio; Bouten, Willem; Burton, Niall; Catry, Inês; Champagnon, Jocelyn; Masden, Elizabeth A.; Clewley, Gary D.; Dagys, Mindaugas; Duriez, Olivier; Exo, Klaus‐Michael; Fiedler, Wolfgang; Flack, Andrea; Friedemann, Guilad; Fritz, Johannes; García-Ripollés, Clara; Garthe, Stefan; Giunchi, Dimitri; Grozdanov, Atanas; Harel, Roi; Humphreys, Elizabeth M.; Janssen, René; Kölzsch, Andrea; Kulikova, Olga; Lameris, Thomas K.; López-López, Pascual; Monti, Flavio; Nathan, Ran; Nikolov, Stoyan; Oppel, Steffen; Peshev, Hristo; Phipps, Louis; Pokrovsky, Ivan; Ross-Smith, Viola H.; Scragg, Emily S.; Sforzi, Andrea; Stoynov, Emilian; Thaxter, Chris; Van Steelant, Wouter; Toor, Mariëlle; Vorneweg, Bernd; Waldenström, Jonas; Wikelski, Martin; Žydelis, Ramūnas; Franco, Aldina M. A.; Saravia, Victoria;The full methodology to produce this data is described in Gauld et al. (2022) Hotspots in the grid: avian sensitivity and vulnerability to collision risk from energy infrastructure interactions in Europe and north Africa, Journal of Applied Ecology In brief: 65 Bird movement datasets containing high resolution GPS tracking data were downloaded from the www.movebank.org repository in April of 2019. These data were processed to remove locations associated with poor GPS accuracy and code locations in flight as present within a danger height band for wind turbines (15 - 135m above ground), Transmission Powerlines (10 - 60m above ground) or not. All datasets were combined into a single dataframe. This was overlaid onto a 5 x 5km fishnet grid covering Europe and North Africa, each grid cell had a unique NID value. For each species present within a given grid cell, the proportions of GPS locations in flight at danger height for the two danger height bands were calculated and weighted for uncertainty using the Wilson Confidence Interval, the resulting value for each grid cell was multiplied by the MBRCI (Morpho-Behavioural Conservation Status Risk Index) value to produce a sensitivity score for each species present in each grid cell where sufficient tracking data is available. To produce the family level sensitivity surface, the maximum sensitivity score of any species within a given family in a given grid cell is used. To produce the combined sensitivity surface, the maximum sensitivity score of any species within a given grid cell is used. The seasonal surfaces were produced in the same manner but calculated separately for Breeding and Non-Breeding periods. The vulnerability surface was produced by overlaying the sensitivity scores onto the density of either wind turbines or power lines in each grid cell. Grid cells were then categorised according to vulnerability by quantiles so Very Low: <0.025 percentile Low: 0.025 <0.25 percentile Moderate: 0.25 < 0.75 Percentile High: 0.75 < 0.975 Percentile Very High: >0.975 Percentile and No Data where GPS tracking data was not present. Wind turbine and power line densities were derived from the best available continental scale data at the time of the analysis. The accuracy of these datasets is discussed extensively in the supporting information of the paper. Raw data was processed in R, QGIS and ArcMap Wind turbines and power lines can cause bird mortality due to collision or electrocution. The biodiversity impacts of energy infrastructure (EI) can be minimised through effective landscape-scale planning and mitigation. The identification of high-vulnerability areas is urgently needed to assess potential cumulative impacts of EI while supporting the transition to zero-carbon energy. We collected GPS location data from 1,454 birds from 27 species susceptible to collision within Europe and North Africa and identified areas where tracked birds are most at risk of colliding with existing EI. Sensitivity to EI development was estimated for wind turbines and power lines by calculating the proportion of GPS flight locations at heights where birds were at risk of collision and accounting for species’ specific susceptibility to collision. We mapped the maximum collision sensitivity value obtained across all species, in each 5x5 km grid cell, across Europe and North Africa. Vulnerability to collision was obtained by overlaying the sensitivity surfaces with density of wind turbines and transmission power lines. Results: Exposure to risk varied across the 27 species, with some species flying consistently at heights where they risk collision. For areas with sufficient tracking data within Europe and North Africa, 13.6% of the area was classified as high sensitivity to wind turbines and 9.4% was classified as high sensitivity to transmission power lines. Sensitive areas were concentrated within important migratory corridors and along coastlines. Hotspots of vulnerability to collision with wind turbines and transmission power lines (2018 data) were scattered across the study region with highest concentrations occurring in central Europe, near the strait of Gibraltar and the Bosporus in Turkey. Synthesis and Applications: We identify the areas of Europe and North Africa that are most sensitive for the specific populations of birds for which sufficient GPS tracking data at high spatial resolution were available. We also map vulnerability hotspots where mitigation at existing EI should be prioritised to reduce collision risks. As tracking data availability improves our method could be applied to more species and areas to help reduce bird-EI conflicts. The results here are intended to provide a continental scale guide to where the collision risk hotspots are for the tracked birds used in the analysis and help guide further wind farms and power line development away from the higher risk areas for birds. It is important not to assume that areas where we do not have tracking data are free from risk, therefore this analysis does not remove the need for more local scale investigations into the ecological impact of a proposed development.
Universiteit van Ams... arrow_drop_down Universiteit van Amsterdam Digital Academic RepositoryDatasetLicense: CC 0Data sources: Universiteit van Amsterdam Digital Academic Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jm63xsjcw&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 7visibility views 7 download downloads 3 Powered bymore_vert Universiteit van Ams... arrow_drop_down Universiteit van Amsterdam Digital Academic RepositoryDatasetLicense: CC 0Data sources: Universiteit van Amsterdam Digital Academic Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jm63xsjcw&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 19 May 2022 NetherlandsPublisher:Dryad Gauld, Jethro George; Silva, João P.; Atkinson, Philip W.; Record, Paul; Acácio, Marta; Arkumarev, Volen; Blas, Julio; Bouten, Willem; Burton, Niall; Catry, Inês; Champagnon, Jocelyn; Masden, Elizabeth A.; Clewley, Gary D.; Dagys, Mindaugas; Duriez, Olivier; Exo, Klaus‐Michael; Fiedler, Wolfgang; Flack, Andrea; Friedemann, Guilad; Fritz, Johannes; García-Ripollés, Clara; Garthe, Stefan; Giunchi, Dimitri; Grozdanov, Atanas; Harel, Roi; Humphreys, Elizabeth M.; Janssen, René; Kölzsch, Andrea; Kulikova, Olga; Lameris, Thomas K.; López-López, Pascual; Monti, Flavio; Nathan, Ran; Nikolov, Stoyan; Oppel, Steffen; Peshev, Hristo; Phipps, Louis; Pokrovsky, Ivan; Ross-Smith, Viola H.; Scragg, Emily S.; Sforzi, Andrea; Stoynov, Emilian; Thaxter, Chris; Van Steelant, Wouter; Toor, Mariëlle; Vorneweg, Bernd; Waldenström, Jonas; Wikelski, Martin; Žydelis, Ramūnas; Franco, Aldina M. A.; Saravia, Victoria;The full methodology to produce this data is described in Gauld et al. (2022) Hotspots in the grid: avian sensitivity and vulnerability to collision risk from energy infrastructure interactions in Europe and north Africa, Journal of Applied Ecology In brief: 65 Bird movement datasets containing high resolution GPS tracking data were downloaded from the www.movebank.org repository in April of 2019. These data were processed to remove locations associated with poor GPS accuracy and code locations in flight as present within a danger height band for wind turbines (15 - 135m above ground), Transmission Powerlines (10 - 60m above ground) or not. All datasets were combined into a single dataframe. This was overlaid onto a 5 x 5km fishnet grid covering Europe and North Africa, each grid cell had a unique NID value. For each species present within a given grid cell, the proportions of GPS locations in flight at danger height for the two danger height bands were calculated and weighted for uncertainty using the Wilson Confidence Interval, the resulting value for each grid cell was multiplied by the MBRCI (Morpho-Behavioural Conservation Status Risk Index) value to produce a sensitivity score for each species present in each grid cell where sufficient tracking data is available. To produce the family level sensitivity surface, the maximum sensitivity score of any species within a given family in a given grid cell is used. To produce the combined sensitivity surface, the maximum sensitivity score of any species within a given grid cell is used. The seasonal surfaces were produced in the same manner but calculated separately for Breeding and Non-Breeding periods. The vulnerability surface was produced by overlaying the sensitivity scores onto the density of either wind turbines or power lines in each grid cell. Grid cells were then categorised according to vulnerability by quantiles so Very Low: <0.025 percentile Low: 0.025 <0.25 percentile Moderate: 0.25 < 0.75 Percentile High: 0.75 < 0.975 Percentile Very High: >0.975 Percentile and No Data where GPS tracking data was not present. Wind turbine and power line densities were derived from the best available continental scale data at the time of the analysis. The accuracy of these datasets is discussed extensively in the supporting information of the paper. Raw data was processed in R, QGIS and ArcMap Wind turbines and power lines can cause bird mortality due to collision or electrocution. The biodiversity impacts of energy infrastructure (EI) can be minimised through effective landscape-scale planning and mitigation. The identification of high-vulnerability areas is urgently needed to assess potential cumulative impacts of EI while supporting the transition to zero-carbon energy. We collected GPS location data from 1,454 birds from 27 species susceptible to collision within Europe and North Africa and identified areas where tracked birds are most at risk of colliding with existing EI. Sensitivity to EI development was estimated for wind turbines and power lines by calculating the proportion of GPS flight locations at heights where birds were at risk of collision and accounting for species’ specific susceptibility to collision. We mapped the maximum collision sensitivity value obtained across all species, in each 5x5 km grid cell, across Europe and North Africa. Vulnerability to collision was obtained by overlaying the sensitivity surfaces with density of wind turbines and transmission power lines. Results: Exposure to risk varied across the 27 species, with some species flying consistently at heights where they risk collision. For areas with sufficient tracking data within Europe and North Africa, 13.6% of the area was classified as high sensitivity to wind turbines and 9.4% was classified as high sensitivity to transmission power lines. Sensitive areas were concentrated within important migratory corridors and along coastlines. Hotspots of vulnerability to collision with wind turbines and transmission power lines (2018 data) were scattered across the study region with highest concentrations occurring in central Europe, near the strait of Gibraltar and the Bosporus in Turkey. Synthesis and Applications: We identify the areas of Europe and North Africa that are most sensitive for the specific populations of birds for which sufficient GPS tracking data at high spatial resolution were available. We also map vulnerability hotspots where mitigation at existing EI should be prioritised to reduce collision risks. As tracking data availability improves our method could be applied to more species and areas to help reduce bird-EI conflicts. The results here are intended to provide a continental scale guide to where the collision risk hotspots are for the tracked birds used in the analysis and help guide further wind farms and power line development away from the higher risk areas for birds. It is important not to assume that areas where we do not have tracking data are free from risk, therefore this analysis does not remove the need for more local scale investigations into the ecological impact of a proposed development.
Universiteit van Ams... arrow_drop_down Universiteit van Amsterdam Digital Academic RepositoryDatasetLicense: CC 0Data sources: Universiteit van Amsterdam Digital Academic Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jm63xsjcw&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 7visibility views 7 download downloads 3 Powered bymore_vert Universiteit van Ams... arrow_drop_down Universiteit van Amsterdam Digital Academic RepositoryDatasetLicense: CC 0Data sources: Universiteit van Amsterdam Digital Academic Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jm63xsjcw&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Switzerland, Finland, United Kingdom, United KingdomPublisher:Elsevier BV Pearce-Higgins, James; Antao, Laura; Bates, Rachel; Bowgen, Katharine; Bradshaw, Catherine; Duffield, Simon; Ffoulkes, Charles; Franco, Aldina; Geschke, J.; Gregory, Richard; Harley, Mike; Hodgson, Jenny; Jenkins, Rhosanna; Kapos, Val; Maltby, Katherine; Watts, Olly; Willis, Steve; Morecroft, Michael;handle: 10138/341846
Impacts of climate change on natural and human systems will become increasingly severe as the magnitude of climate change increases. Climate change adaptation interventions to address current and projected impacts are thus paramount. Yet, evidence on their effectiveness remains limited, highlighting the need for appropriate ecological indicators to measure progress of climate change adaptation for the natural environment. We outline conceptual, analytical, and practical challenges in developing such indicators, before proposing a framework with three process-based and two results-based indicator types to track progress in adapting to climate change. We emphasize the importance of dynamic assessment and modification over time, as new adaptation targets are set and/or as intervention actions are monitored and evaluated. Our framework and proposed indicators are flexible and widely applicable across species, habitats, and monitoring programmes, and could be accommodated within existing national or international frameworks to enable the evaluation of both large-scale policy instruments and local management interventions. We conclude by suggesting further work required to develop these indicators fully, and hope this will stimulate the use of ecological indicators to evaluate the effectiveness of policy interventions for the adaptation of the natural environment across the globe.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2022 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Durham Research OnlineArticle . 2022 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/36038/1/36038.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2022License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/36038/Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2022.108690&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2022 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Durham Research OnlineArticle . 2022 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/36038/1/36038.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2022License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/36038/Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2022.108690&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Switzerland, Finland, United Kingdom, United KingdomPublisher:Elsevier BV Pearce-Higgins, James; Antao, Laura; Bates, Rachel; Bowgen, Katharine; Bradshaw, Catherine; Duffield, Simon; Ffoulkes, Charles; Franco, Aldina; Geschke, J.; Gregory, Richard; Harley, Mike; Hodgson, Jenny; Jenkins, Rhosanna; Kapos, Val; Maltby, Katherine; Watts, Olly; Willis, Steve; Morecroft, Michael;handle: 10138/341846
Impacts of climate change on natural and human systems will become increasingly severe as the magnitude of climate change increases. Climate change adaptation interventions to address current and projected impacts are thus paramount. Yet, evidence on their effectiveness remains limited, highlighting the need for appropriate ecological indicators to measure progress of climate change adaptation for the natural environment. We outline conceptual, analytical, and practical challenges in developing such indicators, before proposing a framework with three process-based and two results-based indicator types to track progress in adapting to climate change. We emphasize the importance of dynamic assessment and modification over time, as new adaptation targets are set and/or as intervention actions are monitored and evaluated. Our framework and proposed indicators are flexible and widely applicable across species, habitats, and monitoring programmes, and could be accommodated within existing national or international frameworks to enable the evaluation of both large-scale policy instruments and local management interventions. We conclude by suggesting further work required to develop these indicators fully, and hope this will stimulate the use of ecological indicators to evaluate the effectiveness of policy interventions for the adaptation of the natural environment across the globe.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2022 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Durham Research OnlineArticle . 2022 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/36038/1/36038.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2022License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/36038/Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2022.108690&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2022 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Durham Research OnlineArticle . 2022 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/36038/1/36038.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2022License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/36038/Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2022.108690&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Wiley McDermott Long, Osgur; Warren, Rachel; Price, Jeff; Brereton, Tom M.; Botham, Marc S.; Franco, Aldina M.A.;pmid: 27796048
Summary There is growing recognition as to the importance of extreme climatic events (ECEs) in determining changes in species populations. In fact, it is often the extent of climate variability that determines a population's ability to persist at a given site. This study examined the impact of ECEs on the resident UK butterfly species (n = 41) over a 37‐year period. The study investigated the sensitivity of butterflies to four extremes (drought, extreme precipitation, extreme heat and extreme cold), identified at the site level, across each species' life stages. Variations in the vulnerability of butterflies at the site level were also compared based on three life‐history traits (voltinism, habitat requirement and range). This is the first study to examine the effects of ECEs at the site level across all life stages of a butterfly, identifying sensitive life stages and unravelling the role life‐history traits play in species sensitivity to ECEs. Butterfly population changes were found to be primarily driven by temperature extremes. Extreme heat was detrimental during overwintering periods and beneficial during adult periods and extreme cold had opposite impacts on both of these life stages. Previously undocumented detrimental effects were identified for extreme precipitation during the pupal life stage for univoltine species. Generalists were found to have significantly more negative associations with ECEs than specialists. With future projections of warmer, wetter winters and more severe weather events, UK butterflies could come under severe pressure given the findings of this study.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2017 . Peer-reviewedData sources: University of East Anglia digital repositoryJournal of Animal EcologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.12594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 82 citations 82 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2017 . Peer-reviewedData sources: University of East Anglia digital repositoryJournal of Animal EcologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.12594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Wiley McDermott Long, Osgur; Warren, Rachel; Price, Jeff; Brereton, Tom M.; Botham, Marc S.; Franco, Aldina M.A.;pmid: 27796048
Summary There is growing recognition as to the importance of extreme climatic events (ECEs) in determining changes in species populations. In fact, it is often the extent of climate variability that determines a population's ability to persist at a given site. This study examined the impact of ECEs on the resident UK butterfly species (n = 41) over a 37‐year period. The study investigated the sensitivity of butterflies to four extremes (drought, extreme precipitation, extreme heat and extreme cold), identified at the site level, across each species' life stages. Variations in the vulnerability of butterflies at the site level were also compared based on three life‐history traits (voltinism, habitat requirement and range). This is the first study to examine the effects of ECEs at the site level across all life stages of a butterfly, identifying sensitive life stages and unravelling the role life‐history traits play in species sensitivity to ECEs. Butterfly population changes were found to be primarily driven by temperature extremes. Extreme heat was detrimental during overwintering periods and beneficial during adult periods and extreme cold had opposite impacts on both of these life stages. Previously undocumented detrimental effects were identified for extreme precipitation during the pupal life stage for univoltine species. Generalists were found to have significantly more negative associations with ECEs than specialists. With future projections of warmer, wetter winters and more severe weather events, UK butterflies could come under severe pressure given the findings of this study.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2017 . Peer-reviewedData sources: University of East Anglia digital repositoryJournal of Animal EcologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.12594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 82 citations 82 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2017 . Peer-reviewedData sources: University of East Anglia digital repositoryJournal of Animal EcologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.12594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Finland, United KingdomPublisher:Springer Science and Business Media LLC Funded by:FCT | SFRH/BPD/111084/2015, UKRI | Next Generation Unmanned ...FCT| SFRH/BPD/111084/2015 ,UKRI| Next Generation Unmanned Systems Science (NEXUSS)Acácio, Marta; Catry, Inês; Soriano-Redondo, Andrea; Silva, João Paulo; Atkinson, Philip W.; Franco, Aldina M. A.;Abstract Background Migration phenology is shifting for many long-distance migrants due to global climate change, however the timing and duration of migration may influence the environmental conditions individuals encounter, with potential fitness consequences. Species with asynchronous migrations, i.e., with variability in migration timing, provide an excellent opportunity to investigate how of the conditions individuals experience during migration can vary and affect the migratory performance, route, and destination of migrants. Methods Here, we use GPS tracking and accelerometer data to examine if timing of autumn migration influences the migratory performance (duration, distance, route straightness, energy expenditure) and migration destinations of a long-distance, asynchronous, migrant, the white stork (Ciconia ciconia). We also compare the weather conditions (wind speed, wind direction, and boundary layer height) encountered on migration and examine the influence of wind direction on storks’ flight directions. Results From 2016 to 2020, we tracked 172 white storks and obtained 75 complete migrations from the breeding grounds in Europe to the sub-Saharan wintering areas. Autumn migration season spanned over a 3-month period (July–October) and arrival destinations covered a broad area of the Sahel, 2450 km apart, from Senegal to Niger. We found that timing of migration influenced both the performance and conditions individuals experienced: later storks spent fewer days on migration, adopted shorter and more direct routes in the Sahara Desert and consumed more energy when flying, as they were exposed to less supportive weather conditions. In the Desert, storks’ flight directions were significantly influenced by wind direction, with later individuals facing stronger easterly winds (i.e., winds blowing to the west), hence being more likely to end their migration in western areas of the Sahel region. Contrastingly, early storks encountered more supportive weather conditions, spent less energy on migration and were exposed to westerly winds, thus being more likely to end migration in eastern Sahel. Conclusions Our results show that the timing of migration influences the environmental conditions individuals face, the energetic costs of migration, and the wintering destinations, where birds may be exposed to different environmental conditions and distinct threats. These findings highlight that on-going changes in migration phenology, due to environmental change, may have critical fitness consequences for long-distance soaring migrants.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40462-022-00328-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40462-022-00328-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Finland, United KingdomPublisher:Springer Science and Business Media LLC Funded by:FCT | SFRH/BPD/111084/2015, UKRI | Next Generation Unmanned ...FCT| SFRH/BPD/111084/2015 ,UKRI| Next Generation Unmanned Systems Science (NEXUSS)Acácio, Marta; Catry, Inês; Soriano-Redondo, Andrea; Silva, João Paulo; Atkinson, Philip W.; Franco, Aldina M. A.;Abstract Background Migration phenology is shifting for many long-distance migrants due to global climate change, however the timing and duration of migration may influence the environmental conditions individuals encounter, with potential fitness consequences. Species with asynchronous migrations, i.e., with variability in migration timing, provide an excellent opportunity to investigate how of the conditions individuals experience during migration can vary and affect the migratory performance, route, and destination of migrants. Methods Here, we use GPS tracking and accelerometer data to examine if timing of autumn migration influences the migratory performance (duration, distance, route straightness, energy expenditure) and migration destinations of a long-distance, asynchronous, migrant, the white stork (Ciconia ciconia). We also compare the weather conditions (wind speed, wind direction, and boundary layer height) encountered on migration and examine the influence of wind direction on storks’ flight directions. Results From 2016 to 2020, we tracked 172 white storks and obtained 75 complete migrations from the breeding grounds in Europe to the sub-Saharan wintering areas. Autumn migration season spanned over a 3-month period (July–October) and arrival destinations covered a broad area of the Sahel, 2450 km apart, from Senegal to Niger. We found that timing of migration influenced both the performance and conditions individuals experienced: later storks spent fewer days on migration, adopted shorter and more direct routes in the Sahara Desert and consumed more energy when flying, as they were exposed to less supportive weather conditions. In the Desert, storks’ flight directions were significantly influenced by wind direction, with later individuals facing stronger easterly winds (i.e., winds blowing to the west), hence being more likely to end their migration in western areas of the Sahel region. Contrastingly, early storks encountered more supportive weather conditions, spent less energy on migration and were exposed to westerly winds, thus being more likely to end migration in eastern Sahel. Conclusions Our results show that the timing of migration influences the environmental conditions individuals face, the energetic costs of migration, and the wintering destinations, where birds may be exposed to different environmental conditions and distinct threats. These findings highlight that on-going changes in migration phenology, due to environmental change, may have critical fitness consequences for long-distance soaring migrants.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40462-022-00328-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40462-022-00328-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Oxford University Press (OUP) Tom H. Oliver; Robert J. Wilson; James W. Pearce-Higgins; Aldina M. A. Franco; Michael D. Morecroft; Deborah A. Procter; Nina J. O'Hanlon; Nina J. O'Hanlon; Jeremy A. Thomas; Barbara J. Anderson; Barbara J. Anderson; Richard B. Bradbury; David B. Roy; Alison R. Holt; Kevin J. Walker; Chris D. Thomas; Nigel A. D. Bourn; Jane K. Hill; Jenny A. Hodgson; Humphrey Q. P. Crick; Richard Fox; John M. Baxter; Richard A. Findon; Clive A. Walmsley; Phillipa K. Gillingham; Phillipa K. Gillingham;doi: 10.1111/bij.12506
A cornerstone of conservation is the designation and management of protected areas (PAs): locations often under conservation management containing species of conservation concern, where some development and other detrimental influences are prevented or mitigated. However, the value of PAs for conserving biodiversity in the long term has been questioned given that species are changing their distributions in response to climatic change. There is a concern that PAs may become climatically unsuitable for those species that they were designated to protect, and may not be located appropriately to receive newly-colonizing species for which the climate is improving. In the present study, we analyze fine-scale distribution data from detailed resurveys of seven butterfly and 11 bird species in Great Britain aiming to examine any effect of PA designation in preventing extinctions and promoting colonizations. We found a positive effect of PA designation on species' persistence at trailing-edge warm range margins, although with a decreased magnitude at higher latitudes and altitudes. In addition, colonizations by range expanding species were more likely to occur on PAs even after altitude and latitude were taken into account. PAs will therefore remain an important strategy for conservation. The potential for PA management to mitigate the effects of climatic change for retracting species deserves further investigation.
Biological Journal o... arrow_drop_down University of East Anglia digital repositoryArticle . 2015 . Peer-reviewedData sources: University of East Anglia digital repositoryBiological Journal of the Linnean SocietyArticle . 2015 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/bij.12506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biological Journal o... arrow_drop_down University of East Anglia digital repositoryArticle . 2015 . Peer-reviewedData sources: University of East Anglia digital repositoryBiological Journal of the Linnean SocietyArticle . 2015 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/bij.12506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Oxford University Press (OUP) Tom H. Oliver; Robert J. Wilson; James W. Pearce-Higgins; Aldina M. A. Franco; Michael D. Morecroft; Deborah A. Procter; Nina J. O'Hanlon; Nina J. O'Hanlon; Jeremy A. Thomas; Barbara J. Anderson; Barbara J. Anderson; Richard B. Bradbury; David B. Roy; Alison R. Holt; Kevin J. Walker; Chris D. Thomas; Nigel A. D. Bourn; Jane K. Hill; Jenny A. Hodgson; Humphrey Q. P. Crick; Richard Fox; John M. Baxter; Richard A. Findon; Clive A. Walmsley; Phillipa K. Gillingham; Phillipa K. Gillingham;doi: 10.1111/bij.12506
A cornerstone of conservation is the designation and management of protected areas (PAs): locations often under conservation management containing species of conservation concern, where some development and other detrimental influences are prevented or mitigated. However, the value of PAs for conserving biodiversity in the long term has been questioned given that species are changing their distributions in response to climatic change. There is a concern that PAs may become climatically unsuitable for those species that they were designated to protect, and may not be located appropriately to receive newly-colonizing species for which the climate is improving. In the present study, we analyze fine-scale distribution data from detailed resurveys of seven butterfly and 11 bird species in Great Britain aiming to examine any effect of PA designation in preventing extinctions and promoting colonizations. We found a positive effect of PA designation on species' persistence at trailing-edge warm range margins, although with a decreased magnitude at higher latitudes and altitudes. In addition, colonizations by range expanding species were more likely to occur on PAs even after altitude and latitude were taken into account. PAs will therefore remain an important strategy for conservation. The potential for PA management to mitigate the effects of climatic change for retracting species deserves further investigation.
Biological Journal o... arrow_drop_down University of East Anglia digital repositoryArticle . 2015 . Peer-reviewedData sources: University of East Anglia digital repositoryBiological Journal of the Linnean SocietyArticle . 2015 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/bij.12506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biological Journal o... arrow_drop_down University of East Anglia digital repositoryArticle . 2015 . Peer-reviewedData sources: University of East Anglia digital repositoryBiological Journal of the Linnean SocietyArticle . 2015 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/bij.12506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Poland, United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Understanding causes and ...UKRI| Understanding causes and consequences of the extreme thermal sensitivity of male fertility using a model insectKris Sales; Ramakrishnan Vasudeva; Matthew E. Dickinson; Joanne L. Godwin; Alyson J. Lumley; Łukasz Michalczyk; Laura Hebberecht; Paul Thomas; Aldina Franco; Matthew J. G. Gage;AbstractClimate change is affecting biodiversity, but proximate drivers remain poorly understood. Here, we examine how experimental heatwaves impact on reproduction in an insect system. Male sensitivity to heat is recognised in endotherms, but ectotherms have received limited attention, despite comprising most of biodiversity and being more influenced by temperature variation. Using a flour beetle model system, we find that heatwave conditions (5 to 7 °C above optimum for 5 days) damaged male, but not female, reproduction. Heatwaves reduce male fertility and sperm competitiveness, and successive heatwaves almost sterilise males. Heatwaves reduce sperm production, viability, and migration through the female. Inseminated sperm in female storage are also damaged by heatwaves. Finally, we discover transgenerational impacts, with reduced reproductive potential and lifespan of offspring when fathered by males, or sperm, that had experienced heatwaves. This male reproductive damage under heatwave conditions provides one potential driver behind biodiversity declines and contractions through global warming.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-07273-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 191 citations 191 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-07273-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Poland, United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Understanding causes and ...UKRI| Understanding causes and consequences of the extreme thermal sensitivity of male fertility using a model insectKris Sales; Ramakrishnan Vasudeva; Matthew E. Dickinson; Joanne L. Godwin; Alyson J. Lumley; Łukasz Michalczyk; Laura Hebberecht; Paul Thomas; Aldina Franco; Matthew J. G. Gage;AbstractClimate change is affecting biodiversity, but proximate drivers remain poorly understood. Here, we examine how experimental heatwaves impact on reproduction in an insect system. Male sensitivity to heat is recognised in endotherms, but ectotherms have received limited attention, despite comprising most of biodiversity and being more influenced by temperature variation. Using a flour beetle model system, we find that heatwave conditions (5 to 7 °C above optimum for 5 days) damaged male, but not female, reproduction. Heatwaves reduce male fertility and sperm competitiveness, and successive heatwaves almost sterilise males. Heatwaves reduce sperm production, viability, and migration through the female. Inseminated sperm in female storage are also damaged by heatwaves. Finally, we discover transgenerational impacts, with reduced reproductive potential and lifespan of offspring when fathered by males, or sperm, that had experienced heatwaves. This male reproductive damage under heatwave conditions provides one potential driver behind biodiversity declines and contractions through global warming.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-07273-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 191 citations 191 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-07273-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu